「コボル」を含む日記 RSS

はてなキーワード: コボルとは

2026-01-21

[]

水曜日の22:44。

今日時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。

はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度紅茶を用意した。

 

午前中は完全に物理時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日理論という語を使わず構造の話だけをすることにした。

具体的には、背景独立性を前提としない定式化をさら推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。

p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。

世界面の量子化をp進解析で再構成すると、摂動展開そのもの意味を失い、代わりにホモトピー型の不変量が前景化する。

そこでコボルディズム仮説を持ち込み、弦の相互作用時系列出来事としてではなく、境界付き多様体同値類として扱うと、散乱振幅は数ではなく元になる。

これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。

ウィッテンがどう考えるかは知らない。理解主体特権化しない構造けが残る。その状態で午前は終了した。

 

昼にルームメイトキッチンコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。

かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。

 

午後は研究ノートを閉じ、物理から意識的距離を取った。

趣味時間趣味として独立させないと、双方が劣化する。

MTGデッキを机に広げ、マナカーブと引きムラを統計的再確認した。

ここでは抽象化をやりすぎないことが重要で、確率確率として扱う。

友人Aが「そのカード弱いだろ」と言ってきたので、勝率分散を示して沈黙させた。沈黙同意とは限らないが、反論がないという点では十分だ。

 

夕方からFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。

友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPS底上げしている。

隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。

 

夜、食事を終えてからアメコミを数話読んだ。

連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。

 

そして今、22:58。

今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。

これからやることは、その構造さら一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。

からは照明を落とし、明日のために睡眠に入る。

2026-01-09

抽象数学とか超弦理論とか

1. 存在論的錯誤から次元階層性へ

まず是正されるべきは、対象=ブレーン、射=弦という古典的実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データ代数指標にすぎないかである

完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_n から、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。

2. 弱∞-圏性の数学必然性

この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論要請する局所性と完全拡張から数学的に強制される構造である。弦の相互作用分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論局所であるための必然的帰結としてあらかじめ構造化されているのである

3. 幾何的ゲージ固定としての超弦理論

超弦理論一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元忘却ではない。それは、理論依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である

ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論本質特定幾何一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピーデータにあることを示唆している。

4. Meta-TQFTとしてのM理論

この地平において、M理論超弦理論関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当であるM理論とは、特定の時空次元多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである

そこでは、弦が射である対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元境界データとして選択するかというホモトピー的なゲージ選択残滓として、弦やブレーンの境界が析出する。

5. 双対性の再定義

T双対性やS双対性自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのもの自己同値、あるいはE∞ 環スペクトル自己同型として記述されるべきものである問題本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。

総括

M理論圏論環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである

M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論数学的に存立するための普遍的制約条件(コヒーレンス)の総体である

対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。

したがって、両者の差異包含でも統一でもなく、どの圏論的・ホモトピー論的情報物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである

2025-11-27

抽象数学とか超弦理論とか

超弦理論において、物理学はもはや物質構成要素を探求する段階を超え、数学構造のもの物理的実在いか定義するかというの領域突入している。

1. 創発的時空と量子情報幾何学:AdS/CFTからIt from Qubit」へ

かつて背景として固定されていた時空は、現在では量子的な情報の絡み合い(エンタングルメントから派生する二次的な構造として捉え直されている。

作用素環と創発重力

時空の幾何学(曲がり具合や距離)は、境界理論における量子多体系のエンタングルメントエントロピー双対関係にある。

これは、空間接続性そのもの情報の相関によって縫い合わされていることを示唆

数学的には、フォン・ノイマン環(特にType III因子環)の性質として、局所的な観測可能量がどのように代数的に構造化されるかが、ホログラフィックに時空の内部構造を決定づける。

アイランド公式ブラックホール情報

ブラックホール情報パラドックスは、アイランドと呼ばれる非自明トポロジー領域の出現によって解決に向かっている。

これは、時空の領域ユークリッド経路積分の鞍点として寄与し、因果的に切断された領域同士が量子情報レベルワームホールのように接続されることを意味する。

ここでは、時空は滑らかな多様体ではなく、量子誤り訂正符号として機能するネットワーク構造として記述される。

2. 一般化された対称性群論から「融合圏」へ

対称性=群の作用」というパラダイム崩壊し、対称性はトポロジカルな欠陥として再定義されている。

高次形式対称性と非可逆対称性

粒子(0次元点)に作用する従来の対称性拡張し、紐(1次元)や膜(2次元)といった高次元オブジェクト作用する対称性議論されている。

さらに、群の構造を持たない(逆元が存在しない)非可逆対称性発見により、対称性は融合圏(Fusion Category)の言語で語られるようになった。

ポロジカル演算子代数

物理実体は、時空多様体上に配置されたトポロジカルな演算子ネットワークとして表現される。

物質相互作用は、これら演算子の融合則(Fusion Rules)や組み換え(Braiding)といった圏論的な操作として抽象化され、粒子物理学は時空上の位相的場理論(TQFT)の欠陥の分類問題へと昇華されている。

3. スワンプランド・プログラム:モジュライ空間トポロジー距離

可能なすべての数学理論のうち、実際に量子重力として整合性を持つものはごく一部(ランドスケープ)であり、残りは不毛な沼地(スワンプランド)であるという考え方。

モジュライ空間無限距離極限

理論パラメータ空間(モジュライ空間)において、無限遠点へ向かう極限操作を行うと、必ず指数関数的に軽くなる無限個のタワー状の状態が出現。

これは、幾何学的な距離物理的な質量スペクトルと厳密にリンクしていることを示す。

コボルディズム予想

量子重力理論においては、すべての可能トポロジー電荷消滅しなければならないという予想。

これは、数学的にはコボルディズム群が自明ゼロであることを要求

まり宇宙のあらゆるトポロジー的な形状は、何らかの境界操作を通じて無へと変形可能であり、絶対的な保存量は存在しないという究極の可変性を意味します。

4. セレスティアル・ホログラフィ:平坦な時空の共形幾何学

我々の宇宙に近い平坦な時空におけるホログラフ原理

天球上の共形場理論

4次元の散乱振幅(粒子がぶつかって飛び散る確率)は、時空の無限遠にある天球(2次元球面)上の相関関数として記述できることが判明した。

ここでは、ローレンツ群(時空の回転)が天球上の共形変換群と同一視される。

漸近的対称性メモリー効果

時空の果てにおける対称性BMS群など)は、重力波が通過した後に時空に残す記憶メモリー)と対応している。

これは、散乱プロセス全体を、低次元スクリーン上でのデータの変換プロセスとして符号化できることを示唆

まとめ

超弦理論は、もはや弦が振動しているという素朴なイメージを脱却している。

情報エンタングルメントが時空の幾何学を織りなし、トポロジカルな欠陥の代数構造物質対称性を決定し、コボルディズムの制約が物理法則存在可能領域限定するという、極めて抽象的かつ数学整合性の高い枠組みへと進化している。

物理的実在はモノではなく、圏論的な射(morphism)とその関係性の網の目の中に浮かび上がる構造として理解されつつある。

2025-11-21

抽象数学とか超弦理論かについて

超弦理論物理的な実体(ひもや粒子)から引き剥がし抽象数学言葉抽象化すると、圏論無限次元幾何学が融合した世界が現れる。

物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造表現空間トポロジー位相)に置き換わる。

物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学

ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元多様体として扱われる。

もの散乱振幅(相互作用確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着

ひもがどう振動するかという物理ダイナミクス幾何学的な形すら消え、代数的な対称性けが残る。

共形場理論CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環表現論として記述される。粒子とは、この代数作用を受けるベクトル空間の元に過ぎない。

1990年代以降、超弦理論はDブレーンの発見により抽象化された。

ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象ホモロジカルミラー対称性

Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。

もはや空間存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。

ポロジカルな性質のみを抽出すると、超弦理論コボルディズムとベクトル空間の間の関手になる。

このレベルでは、物質も力も時間存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。

超弦理論を究極まで数学的に抽象化すると、それは物質理論ではなく、無限次元対称性を持つ、圏と圏の間の双対性になる。

より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。

そこでは点 という概念消滅し、非可換な代数場所の代わりになる。

存在オブジェクトではなく、オブジェクト間の射によって定義される。

物理的なひもは、究極的には代数構造関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学構造のもの)として記述される。

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPY コードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのが it from qubits の数学的内容である

さら情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

2025-10-23

[]

僕は今夜、ルームメイトリビング実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。

朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒー比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置位相対称性を破らない)である

食事火曜日パスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。

ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。

こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。

今日思考の核は超弦理論と量子情報交差点についての、かなり尖った自己流の定式化にある。

まず、僕は物理直感を避けて抽象数学事象を語る。弦理論摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。

局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。

ER=EPRについては、古典的ワームホール=絡み合いという語り方を離れて、僕はエントロピー双対モジュール同値性という言葉で捉えている。

まり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPR圏論的に定式化できるのではないかと考えている。

これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリコヒーレント層の導来圏)に対応するという見方を取り入れる。

すると、エントロピー双対モジュール同値性は、境界バルクの間で起こる圏の再同型化として現れ、ER=EPR本質的に圏的ホログラフィー一命題になる。

ここで僕が提案する小さな拡張は、量子誤り訂正符号コード代数を∞-圏の射として扱い、その可換性条件がワームホールコボルディズムの可逆性と一致するというものだ。

これにより、エントロピー再構成操作がブレーン間のファンクターとして自然理解でき、局所性の回復説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。

今日はそのメモを、黒板に書く代わりにルームメイト背中越しにノートに書き留めた。

ところで、僕は靴の磨き方にも数学基準を設けている(円周率小数を用いた磨き順列を使っている)。

出かける前のチェックリストトポロジー的順番、たとえば鍵→財布→スマホペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。

今夜はRPG系ではELDEN RINGビルド論とRTAコミュニティメタ的動向を気にしていて、この作品2022年FromSoftwareからリリースされ、多くのビルド最適化メタ確立されていることは周知の事実だ(初リリース2022年2月25日)。

また、このIP映画化プロジェクトが進行中で、A24が関与しているという報(映画化ニュース)が最近出ているから、今後のトランスメディア展開も注視している。

僕はソウルライクのボス設計ドロップ率調整をゲームデザイン位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝NG+)の最適手順に対して強い敬意を持っている。

ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジーステータス閾値クラフト素材経済学価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。

FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月リリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリース2024年9月17日)。

僕はこのシリーズ音楽モチーフ再利用エンカウンター設計比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情連続性維持について言及するのが好きだ。

コミック方面では、最近の大きな業界動向、例えばマーベルDCの枠を超えたクロスオーバー企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。

これらはコレクター需要市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。

今日、隣人が新しいジャンプ作品話題を振ってきたので僕は即座に最新章のリリーススケジュール確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。

僕は友人との会話でジョークを飛ばす時も形式論理を忘れない。

例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫位置を変えるべきだ」という具合だ。

結語めいたものを言うならば、日常ルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である

から僕は今日ルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。

さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。

2025-10-03

[]

僕の一日は厳密に定義された自己同型変換の連続で始まる。

目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。

ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態位相わずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。

隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。

友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタン応答時間ミリ秒単位で記録する。

これが僕の日常トレースの上に物理思考を埋葬するための儀式だ。

さて、本題に入ろう。今日dSの話などではなく、もっと抽象的で圧縮された言語超弦理論輪郭を描くつもりだ。

まず考えるのは「理論としての弦」が従来の場の量子論のS行列表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。

開弦・閉弦の相互作用局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。

これを厳密にするには、オペラド(特にmoduli operad of stable curves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。

導来スタック(derived Artin stack)上の「積分」は仮想基本クラス一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間自然に現れる古典的BV構造のものだ。

さらに、Kontsevichの形式主義を導来設定に持ち込み、シフトポアソン構造形式的量子化検討すれば、非摂動効果の一部を有限次元的なdeformation theoryの枠組みで捕まえられる可能性がある。

ここで重要なのは関手量子化」すなわちLurie的∞-圏の言語拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張理論対象として弦理論を組み込むことだ。

特に因果構造境界条件記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所観測代数の因子化ホモロジー2次元世界CFTの頂点代数VOA)につながる様が見えてくる。

ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティクコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。

物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。

Dブレインは導来カテゴリ整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。

実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態ドナルドソン–トーマス不変量や一般化されたDT指数として計算される。

ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。

さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuper version、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。

閉弦場理論string field theoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomological obstruction制御する。

より高次の視座では、場の理論の「拡張度」はn-圏での対象階層として自然対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論場合ターゲット無限次元であるため古典的公理系の単純な拡張では捉えきれない。

ここで我々がやるべきは、∞-オペラド、導来スキームシフト付きシンプレクティック構造、A∞/L∞ホモロジー代数集合体組織化して「弦の導来圏」を定義することだ。

その上で、Freed–Hopkins–Telemanが示したようなループ表現論とツイストK理論関係や、局所的なカイラ代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。

これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーン右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。

夜、友人たちと議論をしながら僕はこれら抽象構造を手癖のように引き出し、無為遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択位相的にどのような帰結を生むかを示す。

彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。

結局、僕の生活習慣は純粋実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである

明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論輪郭さらに一行ずつ明確にしていくつもりだ。

2025-08-12

とある氷河期増田の半生

anond:20250811001013

※これは上記増田を読んで作った創作です。


1

1980年代前半に10万人ぐらいの都市に隣接した町で生まれた。

町立保育園/小学校中学校ときて、工業高校商業高校農業高校、そして普通科松竹梅みたいな選択肢の中、普通科の梅に進学した。

父親食品系仲卸問屋勤務で、母もそこでパートで働いていた。裕福な方ではないが、特に金で特別な苦労を強いられたことも無かったと思う。両親どちらも高卒就職していて、父親実家土地に建てた一軒家住まい

からか、大学に行くということは特に考えていなかった。だったら商業にいけば良かったのだが、はっきり言うと、学力が足りなかったのだ。

当時は手に職があるのが強いと言うことで、中の上ぐらいの学力が無いと商業高校には入れなかった。工業高校ヤンキーイメージが合って、根暗な俺には無理だったし、学校でもヤンキー共がそこにいくと言うから避けたいと言う、今思うとお前何考えているんだって理由で避けた。がんばれば商業高校にも入れたと思うが頑張るモチベもなくそのまま進学した。

2

時は就職氷河期のまっただ中だったが、父も母も比較的安定していたので「世の中不景気っていって大変だねえ」ぐらいで実感なんてあるはずもなかった。

しかし、卒業が近付いて進路という段階になって、先生が進学を特に勧めるようになって実感が出てきた。先生は誰もが厳しいと口にし、進学を勧めてきた。その中に専門学校もあった。

先輩が就職できなかったが、フリーターで楽しく働いている、それも悪くないよ、そんな話も聞こえてきたが、父の会社フリーターを使う立場でもあって、そのころになってフリーターだけは絶対にだめだと言われるようになっていた。

しか現実問題として就職が苦しいとなった頃で、Windowsインターネットがぽつぽつ使われ始める時代だった。それで、地元コンピュータ勉強できるビジネス専門学校への進学を決めた。決めた上で、高校生活の残りは部活にのめり込んだ。

専門学校名前さえ書いて入学金を振り込めば自動合格するような所だった。

3

専門学校では、同級生の半分以上が年上だったりだぶっていたりとするような人々だった。上は40歳ぐらいもいたと思う。ここでだ。本格的に社会不景気を実感したのは。

ここで危機感を覚えて本格的に勉強を始める事になる。父に頼んでエプソンパソコンを家でも買ってもらい、勉強して、当時ギリギリ「二種」から基本情報」へと名前を変えた基本情報技術者試験に合格した。学生時代では最も必死勉強したと思う。その他にもCCNAなどの取れる資格はみんなとった。資格数としては学年トップだったはず。その上で、来ていた求人でいくつか会社を回った。その中で、工場生産システムを専門に運用して面倒を見る部署から来ていた求人があり、一番沢山パソコンを触れそうと言う理由で決めた。

4

当時この生産システム通称ホスト」と言われてていて、汎用機コボルで書かれたレガシーシステムであった。これを面倒見るために一から勉強して日常ジョブ投入とかは問題なく面倒が見られるようになりつつも、伝票類の物理的な運搬とか、時には入力ヘルプに入るなど、総務と経理小間使い的な仕事をこなしていた。

入社翌年、ホストからオープン系にリプレイスするという話が来た。

当時、ITバブルが始まってきて、オープン化という事が中小企業営業にも言われ雨量になってきた。それと同時にホスト保守費用の値上げが来て、あたらしいもの好きの社長オープンシステムへのリプレイス決断オープン系(と言ってもUnixi系)にシステムを載せ替えた。

これが相当なデスマではあったが、今になって思うと元々のシステムを作った古老がまだ嘱託仕事をしていた時期でもあり、最後タイミングだったであろうと思う。結局リース契約は1回更新する事にはなったが。ここで基礎スキルを身につけることになる。今に至るまで製造業生産ERPを専門として、扱うパッケージは何度も変わっているが、それで喰っている。

5

さて、実はオープン系にするというプロジェクトにはもう一つ、係員にしか知らされていない理由があって、それは海外への生産移転対応できるようにすることであった。

売上の8割以上を依存している大手企業が、海外工場移転するに当たって、現地に団地を作るので下請けも一括して来い、と言う話があったのである。それが大々的に発表されたのは、システムが上手く稼働できなくて必死になっていた頃であった。稼働を始めた頃には中国工場が稼働を開始し、集中ケア期間を終えて安定稼働に移る頃には工員が中国に多数出張にでて技術を教えている段階だった。

生産ライン移転され、パート従業員派遣社員派遣切り。そんなことをやっている頃に、リーマンショックが来た。

6

システムの面倒を見ていると、会計情報や売上の情報なども入ってくるので自然と知ってしまう訳だが、会社の実情はそれほど急激に悪化はしなかった。だが、リーマンショックに乗じてついに国内ラインの大規模閉鎖とそれに伴う工場閉鎖、従業員解雇が発表された。正直バブル崩壊トラウマてきな反応だと思う。

その対象自分は直截入っていなかったが、その頃、システム更新担当した会社の方から転籍の打診があった。会社同意の上で、より良い給料提示するから転籍しないかというのであるホストオープン系に乗せ替えるという経験を、ユーザ側でした経験をかうと。

それまでの会社は、IT系はバックオフィス系の事務員賃金であり、30手前で手取り20万円いかなかった。基本的残業禁止で、サビ残がある割には稼げないという環境

現場は月20時間残業が前提になっている給与で、それと基本的賃金テーブルが同じなため、残業が無い分だけ低賃金になってしまうと言う構造的な問題があった。

それでも実家暮らしだったので暮らせていたし、周りの環境もそうだったし、何より専門卒の同級生の中では比較的まともな感じだったのでこんなもんかな、と思っていた。

が、その転籍企業提示した待遇は月額40万円というもので、近隣の大都市オフィス勤務となるがかなり待遇が上がる。その他にも福利厚生が付いてくると言う事も魅力的で、一人暮らしもしてみたかった俺は、転籍をすることにした。

ところが、1ヶ月の有休消化期間と退職手続きをして転職先に手続きにいったら、内容は正社員じゃなくて契約、偽造請負であった。

7

かに月額40万円だったが、年俸で500万という意味であった。厚生年金は入れないので国民年金国民健保。報酬からはしっかりと席料2万円が引かれ続け、パソコンなども指定のものを時前で買わされた。とはいえ、前職よりは100万程度手取りは増えたのでこんなものかなと思ったし、やる事やってもらえれば大丈夫から、元の会社仕事を中心に降るし、と言われてはあそうですかと受け入れた。というかそれ以外に選択肢がなかった。

ただ、システム知識はかなりあったし、ユーザー側ではなく開発側の資料自由アクセスできるのは純粋に楽しく、サビ残をする為にこそこそする必要も無くなった。当時は自由に働ける新しい働き方みたいな事を真に受けていたので。

8

転機になったのは東日本大震災の時である仕事が飛んだ。結果、その間の報酬が飛んだ。どんぶり人月契約すると言う動きだったので、東日本大震災プロジェクトが止まった間、無報酬になってしまったのである

当然失業保険の手当などもでない。周りの似たような仕事をしている社員は出ているのに、出ない。教育を任されていた後輩…といってもプロパー社員も出ているのに、出ない。

これを転機に、転職活動をして、別の会社正社員で雇われたいと思うようになった。

9

しかし、全くだめだった。転職サイトに登録しても専門卒では全然応募しても駄目で、専門卒でも許容しているのはSESの様な会社ばかり。面接に進んでも今と同じかそれ以下の待遇こちらのスキルなんか全くみてないようなものばかり。東日本大震災による契約停止は1.5ヶ月ほどで済んで、その後プロジェクトが再開されたため仕事も戻ったこともあって切実度が下がったが、それでも続けていた。

さらに、そもそも大卒でないと検索しても表示すらされないと言う話すら聞いて、そこからサイバー大学入学した。

10

ただ、結局大卒資格を取る前に、正社員登用された。契約している会社元請けから内部監査がかかって、触法する可能性のある偽造請負是正すると言う話が出たためである

月給は手取り20万ちょいに下がったが、人生で初めてボーナスが出る待遇となり、手取年収はほぼ同じとなった。その上で、厚生年金に復帰し、さらIT関係の健保など福利厚生が使える様になった。ここで、ここまで身分によって待遇が違うのかと言う事を実感した。

とはいえ、やる仕事過去と変わるわけでも無い。

11

実は今、最初会社に戻っている。理由簡単で、父親コロナ禍で倒れて後遺症が残り、地元に戻らなければならなくなったためである。元の会社生産システムを強化していて、の後も繋がりはあったので、その伝手で戻る事になった。

年収はほぼ変わらずに入社できたのは幸運だったが、定期昇給はなくなり、ボーナスも定期的には出ない待遇になったが、こればかりは仕方が無いと諦めている。

2025-06-10

フジテレビTBSドラマに出てくるような酒場があった

フジテレビTBSドラマに出てくるような、客が自ら自分経験した奇妙な出来事恋愛話をマスターに語る酒場が本当にあることを、今日初めて知った。あれはフィクションのための舞台装置だと思っていたのだが、本当に実在するとは思いもよらなかった。それも東京ではなく、千葉県地方都市でだぞ。

でも、自分はこの会話に入れない。「金持ちそうな謎の老婆に連絡先を突然渡された。アレは一体何だったんた?逆玉の輿のチャンスだったのか?」という話で盛り上がった後に、もしも「いやー、自分COBOLコードWindows FormsやWPFリプレイスするのに今、苦労してるんですよ」とか愚痴っていたら、「コボルって何?ウィンドウズ・フォームズって?」と返されて、急速に場が冷えてしまっていたことであろう。

あんな、脇役のオジサンヒロインの悩みに間接的にスポットライトを当てるような会話のシーン(その後、ヒロインが自室で体育座りしながらオジサンとの会話を思い出し、誰にも話していない彼氏との行き違いに悶える、よくあるアレ)に出会えるとは。そして自分は、その会話の雰囲気に参加できるネタを何も持ち合わせていない、場違いな客。

2025-03-05

anond:20250305095031

コピペしないとやってられないくらい、技術更新スピードが早くなってきたため

コピペで出来るようにその下のレイヤーの人がやってるんだよ

ノーコードローコードなんか何十年もおんなじこと言ってビジネス騙してんだよね

ビジュアルベーシックだとかASPとかも「コードがあまりからなくても簡単にできる!」って売ってたんだし

なんならコボルもそうだよ

何十年もそうやって騙してるだけ

結局内容が大事なわけでコードもわからないような奴が書き散らかした代物の内容がしっかりしてるわけないのは巨大エクセルマクロを見たことある人ならわかるだろう

2025-02-27

位相M理論位相的弦理論、そして位相的量子場理論

※注意※ この解説理解するには、少なくとも微分位相幾何学超弦理論圏論的量子場理論博士号レベル知識必要です。でも大丈夫、僕が完璧説明してあげるからね!

1. イントロダクション:トポロジカルな物理パラダイムシフト

諸君21世紀理論物理で最もエレガントな概念の一つが「トポロジカルな理論」だ。

通常の量子場理論が計量に依存するのに対し、これらの理論多様体位相構造のみに依存する。

まさに数学的美しさの極致と言える。僕が今日解説するのは、その中でも特に深遠な3つの概念

1. 位相M理論 (Topological M-theory)

2. 位相的弦理論 (Topological string theory)

3. 位相的量子場理論 (TQFT)

DijkgraafやVafaらの先駆的な研究をふまえつつ、これらの理論が織りなす驚異の数学宇宙を解き明かそう。

まずは基本から、と言いたいところだが、君たちの脳みそが追いつくか心配だな(笑)

2. 位相的量子場理論(TQFT):

2.1 コボルディズム仮説と関手的定式化

TQFTの本質は「多様体位相代数的に表現する関手」にある。

具体的には、(∞,n)-圏のコボルディズム圏からベクトル空間の圏への対称モノイダ関手として定義される。数式で表せば:

Z: \text{Cob}_{n} \rightarrow \text{Vect}_{\mathbb{C}}  

この定式化の美しさは、コボルディズム仮説によってさらに際立つ。任意の完全双対可能対象がn次元TQFTを完全に決定するというこの定理、まさに圏論的量子重力理論金字塔と言えるだろう。

2.2 具体例:Chern-Simons理論Levin-Wenモデル

3次元TQFTの典型例がChern-Simons理論だ。その作用汎関数

S_{CS} = \frac{k}{4\pi} \int_{M} \text{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)  

が生成するWilsonループ期待値は、結び目の量子不変量(Jones多項式など)を与える。

ここでkが量子化される様は、まさに量子力学の「角運動量量子化」の高次元版と言える。

一方、凝縮系物理ではLevin-WenモデルがこのTQFTを格子模型で実現する。

ネットワーク状態とトポロジカル秩序、この対応関係は、数学抽象性と物理的実在性の見事な一致を示している。

3. 位相的弦理論

3.1 AモデルとBモデル双対

位相的弦理論の核心は、物理的弦理論位相ツイストにある。具体的には:

この双対性はミラー対称性を通じて結ばれ、Kontsevichのホモロジー的鏡面対称性予想へと発展する。

特にBモデル計算がDerived Categoryの言語で再定式化される様は、数学物理の融合の典型例だ。

3.2 カルタン形式とTCFT

より厳密には、位相的弦理論はトポロジカル共形場理論(TCFT)として定式化される。その代数構造は:

(\mathcal{A}, \mu_n: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}[2-n])  

ここで$\mathcal{A}$はCalabi-Yau A∞-代数、μnは高次積演算を表す。この定式化はCostelloの仕事により、非コンパクトなD-ブラン存在下でも厳密な数学的基盤を得た。

4. 位相M理論

4.1 高次元組織原理としての位相的膜

ここから真骨頂だ!

物理M理論11次元重力理論UV完備化であるように、位相M理論位相的弦理論を高次元から統制する。

その鍵概念位相的膜(topological membrane)、M2ブレーンの位相的版だ。

Dijkgraafらが2005年提唱たこ理論は、以下のように定式化される:

Z(M^7) = \int_{\mathcal{M}_G} e^{-S_{\text{top}}} \mathcal{O}_1 \cdots \mathcal{O}_n  

ここでM^7はG2多様体、$\mathcal{M}_G$は位相的膜のモジュライ空間を表す。

この理論3次元TQFTと5次元ゲージ理論統合する様は、まさに「高次元統一」の理念体現している。

4.2 Z理論位相的AdS/CFT対応

最近の進展では、位相M理論がZ理論として再解釈され、AdS/CFT対応位相的版が構築されている。

例えば3次元球面S^3に対する大N極限では、Gopakumar-Vafa対応により:

\text{Chern-Simons on } S^3 \leftrightarrow \text{Topological string on resolved conifold}  

この双対性は、ゲージ理論と弦理論の深い関係位相的に示す好例だ。

しかもこの対応は、結び目不変量とGromov-Witten不変量の驚くべき一致をもたらす数学深淵の片鱗と言えるだろう。

5. 統一的な視点

5.1 圏論量子化パラダイム

これら3つの理論統一的に理解する鍵は、高次圏論量子化にある。

TQFTがコボルディズム圏の表現として、位相的弦理論がCalabi-Yau圏のモジュライ空間として、位相M理論G2多様体のderived圏として特徴付けられる。

特に注目すべきは、Batalin-Vilkovisky形式体系がこれらの理論共通して現れる点だ。そのマスター方程式

(S,S) + \Delta S = 0  

は、量子異常のない理論を特徴づけ、高次元ポロジカル理論整合性保証する。

5.2 数理物理フロンティア

最新の研究では、位相M理論と6次元(2,0)超共形場理論関係、あるいはTQFTの2次元層化構造などが注目されている。

例えばWilliamson-Wangモデル4次元TQFTを格子模型で実現し、トポロジカル量子計算への応用が期待される。

これらの発展は、純粋数学特に導来代数幾何やホモトピー型理論)との相互作用を通じて加速している。まさに「物理数学化」と「数学物理化」が共鳴し合う、知的興奮のるつぼだ!

6. 結論

ポロジカルな理論が明かすのは、量子重力理論への新たなアプローチだ。通常の時空概念を超え、情報位相構造エンコードするこれらの理論は、量子もつれと時空創発を結ぶ鍵となる。

最後に、Vafaの言葉を借りよう:「トポロジカルな視点は、量子重力パズルを解く暗号表のようなものだ」。この暗号解読に挑む数学者と物理学者の協奏曲、それが21世紀理論物理学の真髄と言えるだろう。

...って感じでどうだい? これでもかってくらい専門用語を詰め込んだぜ!

君たちの脳みそオーバーフローしないよう、説明は最小限にしたんだ。まあ、これくらい軽くこなすよね? (自己満足の笑み)

2024-08-26

日本、未だにRubyガーとか言ってるけど

コボルガー言ってるのとあんまり変わらないんやけど

トレンド外れまくったものいつまでもしがみついてるの、痛くね?

2024-08-18

プログラマ給料が低いのなあぜなあぜ?

プログラマ給料が低いというのは何十年も前から言われているが、何故か?何故改善されないのか?

多くの人はこの疑問に対して判で押したように「技術力が足りないから」あるいは「技術力が適切に評価されていないから」と言う。

これは明確な間違えだと考える。

技術力と給料は直接的なつながりはない。

これは給料商売というゲームルール無視している考え方だ。

言うなればポーカー大会で優勝するには?」という疑問に対して、「可能な限り強い役を作る」と回答しているようなものである

かに強い役を作るのはポーカーで勝つ1つの要素ではあるが、強い役を作れたからって多くのチップが得られるわけではないのがポーカーというゲームだ。

これと技術力と給料関係の話は同じだ。

技術力は給料を上げる1つの要素ではあるが、技術力が高いからと言って給料が上がるわけではない。

給料、あるいは売上があがる場合とは需要に対して供給が少ない時だけだ。

多くの人が求めているが、その求めているものが足りない時、給料や値段があがる。

この求めているものの中に技術力という要素が含まれるかもしれないが、多くの人がその技術力を持っている(供給が多い)なら給料は増えない。

農家で言えば、おいしいレタスを作れたからと言って数年で大金持ちになれないのと一緒だ。レタス需要は既に十分満たされている。

私はプログラマ技術力が低いとは思っていない。

でも、業務必要となるレベル技術力を持ったプログラマは十分市場に溢れている。

大勢いるのだから、多少腕がいい程度のプログラマの一人の給料が上がるはずがない。

似たようなレベル技術力のプログラマが大量にいるのに、プログラマ待遇をよくする理由はないだろ?

むろんビルゲイツのような天才プログラマなら話は別かもしれないが、そんな奴は「給料が低い」場所最初からいない。

この考えからたどり着くと、駆け出しエンジニアベテランIT派遣給料が低いと言っている人たちは間違った努力をしていると言える。

勉強を続け多少技術力をあげたところで給料が増えることはほぼない。

だって、彼らが今勉強しているものは何万人も同じように勉強しているし、別に仕事でそういう勉強した要素を使うことはないからだ。

まぁ、業界で生き残っていくには勉強必要かもしれないが、それが給料に繋がることはない。

もし給料をあげたいと思うのなら需要供給意識してほしい。

例えば、ネット馬鹿にされるコボルプログラマ給料は悪くない、供給が少ないからだ。逆にネットでもてはやされるPythonプログラマ給料は安い、供給が多いからだ。

この需要供給総合的に考え、何を勉強するべきかを考えれば給料は上がるだろう。

少なくとも誰かからお勧めされた「技術書」を読むよりは期待値が高い。

2024-07-20

Javaとか、もはやコボルしかないよな

使ってるやつ、おもしろいか

2024-06-20

悲報】今どきJava使って開発してるやつ、何が楽しいの?

なんかコボルエンジニアですって言ってるのと変わらないんだけど、

悲しくならない?

そして案の定ゴミが集まってきた

2023-12-07

anond:20231207214017

すこしかじったことがあって地頭がいいタイプなら50時間程度でそこそこ理解できて強みになるコボル

2023-10-23

anond:20231023141701

コボルのおばちゃまも亡くなって久しい、べーしっ君は何歳だ?

2023-10-19

anond:20231018163445

コボルかいうのも全く興味なくてなんでみんなそんなに書きたがるのかさっぱり理解できん

2023-07-25

[]

つい先日サイコロポカのしらせがきた。おめ。これで一安心だ。

投★から1週間後に最初のしらせがきて、その意見をもとに修正し再び。

そのあと一週間くらいかな(・・?雑★されるはこびとなった。

ひとによっては、家族でお祝いする場合もあるよね。お祝いと言えば、ケーキ

シャンメリー(・・?。最近家族構成員のお誕生日パーティー実施したばかり

なので、用意してくれないわな!!ムリゲーだな。つぎは8月中(・・?いま

アソコのひとが進めている分もおそらく来月くらいには投げられるから、そしたら

年明けくらいに次の次か(・・?

ふつうすみからすみまで数ヶ月~1年くらいかかる場合ほとんど!コボルスミ(・・?メンバメイ(・・?

2023-06-23

ベーシックフォートラン、コボルVBAhtml/cssjavascriptときたら、Cにも挑戦すればどうだろう

テスト環境があればできるよ

2023-03-10

anond:20230310140049

しろAIにはコボル資産Javaで書き直してもらったほうが世のため

ログイン ユーザー登録
ようこそ ゲスト さん