はてなキーワード: 群論とは
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義, 直観主義, ユニバース問題, ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定, 二次剰余)
解析数論(ゼータ/ L-関数, 素数定理, サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, several complex variables)
関数解析
バナッハ/ヒルベルト空間, スペクトル理論, C*代数, von Neumann代数
フーリエ解析, Littlewood–Paley理論, 擬微分作用素
確率解析
マルチンゲール, 伊藤積分, SDE, ギルサノフ, 反射原理
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流, ヤン–ミルズ, モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin), カオス, シンボリック力学
点集合位相, ホモトピー・ホモロジー, 基本群, スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory, 幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色, マッチング, マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン, ブーストラップ)
実験計画/サーベイ, 因果推論(IV, PS, DiD, SCM)
時系列(ARIMA, 状態空間, Kalman/粒子フィルタ)
二次計画, 円錐計画(SOCP, SDP), 双対性, KKT
非凸最適化
離散最適化
整数計画, ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
常微分方程式の数値解法(Runge–Kutta, 構造保存)
エントロピー, 符号化(誤り訂正, LDPC, Polar), レート歪み
公開鍵(RSA, 楕円曲線, LWE/格子), 証明可能安全性, MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
無裁定, 確率ボラ, リスク測度, 最適ヘッジ, 高頻度データ
データ解析
今朝も僕は予定通り6時30分に起床した。これは単なる習慣ではなく、日内リズムを最適化するための科学的必然だ。カフェイン摂取は起床から90分後に限定しているのだが、これはアデノシン受容体の占有率が高い状態で摂取しても効果が半減するという論文的知見に基づく。ルームメイトは「柔軟な生活」を好むらしいが、それはただのだらしなさに過ぎない。僕にとっては歯磨きの回数、シャワーの温度、さらにはバスルームに入る順序までが完全に固定されていることこそ、認知リソースの無駄を防ぐ合理的行動なのだ。
午前中は例によって超弦理論の計算に没頭した。今日の焦点は、compactified manifold における (E_8 \times E_8) heterotic string のゲージ束縛条件と、dS vacua における non-perturbative stabilization の整合性についてだった。AdS/CFT ではウィッテンですら体系化できるが、dS/CFT の場合は holographic dual が未確立であるため、僕は entanglement wedge reconstruction を拡張して「非等方的情報チャネル」として解釈を試みている。問題は、有限エントロピー境界条件下で moduli space の measure が well-defined である保証がなく、結果として vacuum selection の基準が「人間原理的な便宜」に堕してしまうことだ。僕はこれを「観測者選択効果の不当な混入」と呼んでいる。昼食の最中に隣人が僕に話しかけてきたが、彼女の話題が全くこの深刻な問いに資することがなかったので、僕は愛想笑いをしただけで再びノートに数式を書き込んだ。
午後は研究から一時的に離れて、ゲームの進行管理を行った。昨日購入した「Baldur’s Gate 3」のパッチノートを熟読したのだが、Larian Studios が hotfix で Paladin の Smite ダメージ計算式を微調整した件は、Dungeons & Dragons 5版のルールブックを徹底的に理解している僕からすれば遅すぎる対応だ。Damage Dice の集計方法を間違えるなど、明らかに playtesting が不足している証拠だ。それに比べて「Stellaris」の 3.12 アップデートにおける人口成長モデルの修正は、シミュレーション科学的に正当性がある。種族特性ごとの logistic growth モデルを導入し、資源依存性と結合させたのは評価できるが、まだ phase transition の扱いに粗さが残っている。こうした不完全性を見ると、つい僕が開発チームに直接メールを書きたくなる。
夜にはコミックの再読。今日手に取ったのは Jonathan Hickman の「House of X / Powers of X」。これは単なるマーベルのリブート企画ではなく、群論的多様体を下敷きにしたストーリーテリングであり、Moira X の時間線の重ね合わせはまさに量子多世界解釈をポップカルチャー的に翻案したものだ。普通の読者が「難解だ」と感じるのは当然で、群同型と射影の概念を知らずにこの作品を理解できるはずがない。
一日の終わりに僕はいつものように部屋のチェックを行った。窓の施錠は時計回りに確認し、机の上のノートは直角に整列させ、枕の位置は壁からちょうど40センチ離れていることを確かめた。これらはただの「強迫観念」ではなく、環境を量子真空の基底状態に近づけるための僕なりの実践だ。ルームメイトが見れば笑うだろうし、隣人は「神経質すぎる」と言うかもしれないが、僕にとっては必然的行為なのだ。人類の未来が dS 背景での情報保存にかかっている以上、僕の習慣の厳密さもまた、その縮図に過ぎない。
一般人のよくある言い回しとして「大学の数学科でやっているのは数学ではなく哲学だ」というものがあります。これは実態を誤解したものと考えます。数学と哲学の論理構造や依拠する原理の違いに着目し、どのように誤解であると言えるかを解説してください。
---
多くの人が「大学の数学科は“哲学的なこと”をしている」と感じるのは、次のような体験的印象に基づいています。
**抽象度の高さ**
学校数学は数値計算や図形、方程式など具体的な操作が多いですが、大学では集合・位相・群・環などの抽象概念が中心になります。実体がない記号を扱うため、「思弁的で現実離れしている」という印象を受けやすい。
**証明の重視**
高校までの数学では、公式や定理を使って問題を解くことが主でした。大学数学では定理を“証明する”こと自体が中心になります。演繹的に進むため、哲学の論証と混同されやすい。
**直感に反する結果**
カントール集合やゲーデルの不完全性定理など、常識を裏切る結論に出会うと「これはもはや哲学では?」と感じがちです。
---
数学ではまず**公理系**(集合論・論理体系など)を定め、そこから**形式的に定義と定理を導く**ことが中心です。
証明は論理的整合性のもとに、有限の推論ステップで厳密に完結します。
「真偽」は定められた公理系の内部で決まる(たとえば ZFC の下での定理かどうか)。
哲学では「公理」や「定義」の選び方自体が主要な思考対象です。
例:真理とは何か、存在とは何か、数学の基盤は何に依拠するか。
推論自体は論理を用いますが、**議論の目的は推論よりも前提や概念の意味を吟味すること**にあります。
証明可能性よりも「概念的・認識論的な一貫性」を探ります。
### 要するに:
数学は**選んだ前提の内部で閉じた演繹体系**。
哲学は**前提や体系そのものを開かれた問いとして扱う**。
---
数学 哲学 ----- ---------------- ---------------- 基盤 公理・定義・形式論理 推論+概念分析・経験・メタ理論 真理の基準 公理系内の定理性 妥当性・合理性・批判的検討 方法 定義→補題→定理→系の形式的構築 問題設定→概念批判→異論との対話 ゴール 内部一貫性と定理の発見 前提の吟味と概念の明確化 ---
数学の抽象化は「より多くの具体例を統一的に扱う」ための道具です。たとえば群論は「対称性」という実際的な現象を一般化しています。現実逃避ではなく応用力の拡張です。
哲学的議論は自然言語の意味に依存しますが、数学の証明は形式言語に還元可能なレベルまで精密化されます。
哲学は「数学の基礎は何か」「無限とは何か」を問うかもしれませんが、数学科の学生が行うのは、すでに受け入れた公理体系の中で定理を立てる作業です。
---
## 5. まとめ
抽象度の高さや証明重視の新鮮さを「哲学的」と感じているに過ぎない
実際には**数学は厳密な公理体系の中での定理の探求**であり、前提の批判や概念の意味そのものを問う哲学とは方法も目標も異なる
「String Theory and M theory = 超弦理論 = 抽象数学」ってのが間違いだとか、数式証明しろだとか、随分と威勢がいいな。
だがな、その主張、まるで的外れだぞ。ガキの自己放尿と同じで、見てるこっちが恥ずかしくなる。
笑わせるな。この理論の根幹を成しているのは、リーマン多様体だのカラビ-ヤウ空間だのホモロジー理論だの、お前の頭じゃ理解不能なレベルの抽象数学の塊だ。
それがなきゃ、超弦理論なんて一行も書けやしねぇ。お前が「抽象数学」とやらを、そろばん勘定程度のものだと思ってんなら、それはもう、救いようがねぇ無知だ。
「その数式証明してよ」だと?何をどう証明しろってんだ?お前が言ってる「証明」ってのは、数学的な導出のことか?
それとも、実験で再現しろってことか?どっちにしろ、超弦理論は物理学の最先端で、まだ実験的な検証が十分に進んでねぇ未完成の理論だ。
仮に、お前が数式証明を求めてるんだとして、例えば南部-ゴトー作用の数式でも示してやるか?
だがな、その数式が何を表してるのか、どうやって導き出されるのかを理解するには、微分幾何学、場の量子論、群論、お前が毛嫌いする抽象数学の知識が山ほど要る。
お前がそれを理解できるとでも思ってんのか?
小学校で習う算数で、大学の微積分を証明しろって言ってるようなもんだぞ。
お前の要求は、己の無知をこれ見よがしに晒す、まさに自己放尿そのものだ。
いいか、お前の主張はな、超弦理論の根底にある数学的基盤、そして科学における「証明」の意味に対する理解が、完全に欠落してるってことを物語ってるんだよ。
真理を愛するだぁ?まずはてめぇの頭の悪さを認め、謙虚に学ぶことから始めろ。でなきゃ、お前はずっと、自分の浅はかな妄想の中で溺れ続けることになるぞ。
数学的宇宙仮説(Mathematical Universe Hypothesis, MUH)は、マックス・テグマークが提唱する「物理的実在が数学的構造そのものである」という大胆な命題から発展した理論的枠組みである[1][6]。本報告では、arXivや学術機関ドメインに基づく最新の研究動向を分析し、この仮説が直面する理論的課題と観測的可能性を包括的に検討する。
テグマークのMUHは、外部実在仮説(External Reality Hypothesis, ERH)を基盤としている[1]。ERHが「人間の認識から独立した物理的実在の存在」を前提とするのに対し、MUHはこれを「数学的構造の客観的実在性」へと拡張する。近年の議論では、この関係性がゲーデルの不完全性定理との関連で再解釈されている。2024年の研究[2]では、ブラックホール熱力学との類推から、宇宙のエントロピーと数学的構造の決定可能性が議論され、非加法エントロピー(Tsallisエントロピー)を用いた宇宙モデルが提案されている。
従来のMUH批判に対応する形で、テグマークは計算可能性の概念を理論に組み込んでいる[6]。2019年の論文[1]では、ゲーデル的に完全(完全に決定可能)な数学的構造のみが物理的実在を持つとする修正仮説が提示されている。このアプローチは、宇宙の初期条件の単純性を説明すると共に、観測可能な物理法則の計算複雑性を制限する理論的根拠として機能する[3]。
MUHに基づく多宇宙論は、4つのレベルに分類される[4]。レベルⅠ(空間的無限宇宙)、レベルⅡ(インフレーション的バブル宇宙)、レベルⅢ(量子多世界)、レベルⅣ(数学的構造の多様性)である。最新の展開では、ブラックホールの情報パラドックス解決策として提案されるホログラフィック原理が、レベルⅣ多宇宙の数学的記述と整合する可能性が指摘されている[2]。
Barrowらが提唱する修正エントロピー(∆-エントロピー)を用いた宇宙モデル[2]は、MUHの数学的構造に新たな解釈を付与する。このモデルでは、時空の量子ゆらぎがエントロピーの非加法性によって記述され、観測データ(宇宙マイクロ波背景放射や重力レンズ効果)との整合性が検証されている[2]。特にダークマター分布の理論予測と観測結果の比較から、数学的構造の「計算可能領域」が具体的な物理量として抽出可能であることが示唆されている。
2024年の研究[2]では、PeVスケールのダークマターと高エネルギー宇宙ニュートリノの関連性が議論されている。IceCube観測所のデータ解析から、Tsallisエントロピーパラメータδ≃3/2が示唆される事実は、MUHが予測する数学的構造の特定のクラス(非加法統計力学系)と現実宇宙の対応関係を裏付ける可能性がある[2]。
宇宙マイクロ波背景放射(CMB)の偏光データをMUHの枠組みで再解釈する試みが進展している[2]。特に、Bモード偏光の非ガウス性統計解析から、初期量子ゆらぎの数学的構造における対称性の破れパターンが、レベルⅣ多宇宙の存在確率分布と矛盾しないことが示されている。
Academia.eduの批判的論文[3]が指摘するように、MUHは数学的対象と物理的実在の同一視に関する伝統的な哲学的問題を内包する。2024年の議論では、カントの超越論的観念論との対比が活発化しており、数学的構造の「内的実在性」と「外的実在性」の区別が理論の一貫性を保つ鍵とされている[4]。
SchmidhuberやHutらが指摘するゲーデルの不完全性定理との矛盾[6]に対し、テグマークは「計算可能で決定可能な構造のみが物理的実在を持つ」という制限を課すことで反論している[1][6]。この制約下では、自己言及的なパラドックスを生じさせる数学的構造が物理的宇宙として実現されないため、観測宇宙の論理的整合性が保たれるとされる。
MUHのレベルⅣ多宇宙は、弦理論のランドスケープ問題と数学的構造の多様性という点で深い関連を持つ[1]。最近の研究では、カルビ-ヤウ多様体のトポロジー的安定性が、数学的宇宙の「生存可能条件」として再解釈されている。特に、超対称性の自発的破れメカニズムが、数学的構造の選択原理として機能する可能性が議論されている[2]。
時空の離散構造を仮定するループ量子重力理論は、MUHの数学的実在論と親和性が高い[2]。2024年の論文では、スピンネットワークの組み合わせ論的構造が、レベルⅣ多宇宙における「計算可能な数学的オブジェクト」の具体例として分析されている。ここでは、プランクスケールの時空幾何が群論的対称性によって記述されることが、MUHの予測と一致すると指摘されている。
MUHが提唱する「自己意識部分構造(SAS)」概念[6]について、近年は量子脳理論との関連性が注目されている[3]。特に、オルロッキ量子モデルとの比較から、意識現象の数学的記述可能性が議論されている。ただし、この拡張解釈は哲学的自由意志の問題を新たに引き起こすため、理論的慎重さが求められる段階にある。
汎用人工知能(AGI)の開発が進む現代において、MUHは機械知性の存在論的基盤を提供する可能性がある[3]。数学的構造内で「意識」を定義するSAS理論は、シンギュラリティ後の知性体の物理的実在性について、従来の物質主義的枠組みを超えた議論を可能にする。
MUHの観点から、無次元物理定数(微細構造定数α≈1/137など)の数値が数学的構造の必然性から説明される可能性が探られている[1]。特に、保型関数理論やモジュラー対称性を用いた定数値の導出試みが、レベルⅣ多宇宙における「典型的な」数学的構造の特性と関連付けられている。
近年の観測データに基づき、宇宙加速膨張の原因となるダークエネルギーが、数学的構造の位相欠陥としてモデル化されるケースが増えている[2]。Barrowモデルにおける∆-パラメータの観測的制約(∆≲10^-4)は、MUHが想定する数学的宇宙の「滑らかさ」と密接に関連している。
MUHが提起する根本的問題は、数学的真理の認識可能性に関する伝統的哲学問題を物理学へ移植した点にある[3][4]。2024年の時点で、この問題に対する決定的解決策は見出されていないが、計算複雑性理論と量子情報理論の融合が新たな突破口を開くと期待されている[2]。
今後の重要課題は、MUHから導出可能な検証可能な予測の具体化である。現在の主要なアプローチは、(1)初期宇宙の量子ゆらぎパターンの数学的構造分析、(2)高エネルギー宇宙線の異常事象の統計的検証、(3)量子重力効果の間接的観測を通じた時空離散性の検出、の3方向で進展している[2][6]。
数学的宇宙仮説は、その野心的なスコープにもかかわらず、近年の理論物理学と数学の交差点で着実な進展を遂げている。ブラックホール熱力学との接続[2]、計算可能性制約の導入[1][6]、観測データとの整合性検証[2]など、従来の哲学的議論を超えた具体的な研究プログラムが展開されつつある。しかしながら、数学的実在論の認識論的基盤[3][4]やゲーデル問題[6]といった根本的な課題は未解決のままであり、これらに対する理論的突破口が今後の発展の鍵を握る。特に、量子重力理論の完成がMUHの検証可能性に決定的な役割を果たすと予測される。
Citations:
[1] http://www.arxiv.org/pdf/0704.0646v1.pdf
[2] https://arxiv.org/pdf/2403.09797.pdf
[3] https://www.academia.edu/38333889/Max_Tegmark_Our_Universe_is_Not_Mathematical
[4] https://inquire.jp/2019/05/07/review_mathematical_universe/
[6] https://en.wikipedia.org/wiki/Mathematical_universe_hypothesis
「まぁ、ピタゴラスの定理なんて、あれはもう初歩の話よね。確かに、a² + b² = c² は中学生レベルでも理解できるけれど、そこに潜む深い代数的構造や、ユークリッド幾何学との関連性を本当に理解しているのかしら?あの定理の背後には、単なる平面上の直角三角形の話じゃなくて、リーマン幾何学や複素数平面を通じたさらに高度な次元の世界が見えてくるのよ。それに、ピタゴラスの定理を特別な場合とする円錐曲線や、楕円関数論まで考え始めると、幾何学の美しさっていうものがもっと深く見えてくるわけ。」
「それと、黄金比ね。もちろん、あのφ(ファイ)がどれだけ重要か、理解してる?単に無理数というだけじゃなく、数論的にも代数的にも特異な数なのよ。フィボナッチ数列との関係も美しいけど、そもそもあの比が自然界で頻繁に現れるのは、単なる偶然じゃないわ。代数的無理数としての特性と、対数螺旋やアファイン変換を通じた変換不変性が絡んでいるのよね。そういった数学的背景を理解せずに、ただ黄金比が「美しい」ってだけで済ませるのはちょっと浅はかだと思うわ。」
「あと、パルテノン神殿の話だけど、そもそも古代の建築家たちが黄金比だけでなく、より複雑なフラクタル幾何学や対称群に基づいた設計をしていたってことは、あまり知られてないのよね。建築の対称性は、単なる視覚的な美しさじゃなくて、群論や代数的トポロジーに深く結びついているわ。あなたが好きな絵画も、ただの黄金比じゃなく、もっと深い数学的な構造に従っているのよ。わかるかしら?」
まずこの主張が間違っている
それを示せそうな端的な例として群論しか「思い浮かばなかった」
だからなんとかうろ覚えで不正確でもその趣旨が伝わればいいと思って書いただけだから、内容が不正確なのことを批判するのは全く本質的じゃなくてアスペ的ですらあるわけだが。
そもそも間違っている支離滅裂な主張について「うろ覚え」とエクスキューズをしながら何も理解していない別の概念を持ち出し的外れなことを言い出す、知的な誠実性の欠片も感じられない態度を馬鹿にしているんだよ。
別に知ってることを言うことを主目的としたトラバじゃないんでね。
足し算と掛け算は定義的に依存しない独立した計算たりえることを伝えたくてそれを示せそうな端的な例として群論しか「思い浮かばなかった」
だからなんとかうろ覚えで不正確でもその趣旨が伝わればいいと思って書いただけだから、内容が不正確なのことを批判するのは全く本質的じゃなくてアスペ的ですらあるわけだが。
しかし、こういった商品は運びやすいように組み立て式になっており、しかもDIYしている気分になれるので一石二鳥なのです。
本棚を組み立て終わると、デスクの上に積んであった本の山をすっぽりと収めることができました。
というのも、私は数学愛好家なので、リファレンスとして数学書を大人買いしたいのです。
仕事柄、特に線形代数や離散最適化のような数学は使いますが、私が興味のあるのはそういった実用志向のアルゴリズムではありません。
むしろ取り組みたいのは、フェルマーの最終定理やラングランズ予想のような、一見すると実用からは遠いけれど、数学の本質を突くような深淵です。
数学には二種類の文化があり、アルゴリズム的な問題解決者と、深淵な理論を目指す者がいます。
プログラマーであればほぼ例外なく前者の立場になりますが、後者というのは「理論Aの理解のためにはBの理解が必要で、その理解にはCの理解が必要で、その理解のためには...」という階層が非常に深いものを表します。
私はいまだに、コホモロジーとはなんであるのかについてよくわからないのです。
コホモロジーをGPTに対し「小学生にもわかるように説明せよ」とやったものが以下です。
コホモロジーは、数学の中のとても難しい概念ですが、小学生にわかりやすく説明するために、一緒に想像の旅に出かけてみましょう。
まず、コホモロジーは、ある種の「形」や「パターン」を見つけるための道具と考えてみてください。例えば、あなたが宝探しをしていて、地図があるとします。この地図は、宝物がどこにあるかを示しています。しかし、この地図はただの紙切れで、宝物自体は地図にはありません。でも、地図を使って、宝物のありかを見つけることができますよね。
コホモロジーも同じようなものです。コホモロジーは、数学的な「地図」のようなもので、それを使って、数学の世界に隠された「宝物」を見つけることができます。この「宝物」は、数学の中の特定のパターンや形、構造などを指します。
しかし、コホモロジーはとても複雑で、大人でも理解するのが難しいです。だから、小学生のあなたがすぐに理解できなくても大丈夫です。大切なのは、コホモロジーのような難しい概念に挑戦する勇気と、学び続ける意欲を持つことです。これからも、色々なことに興味を持ち、学び続けてくださいね!。
これじゃあ、なにも理解していないのと同じでしょう。結局、深淵を理解するためには地道な努力が必要です。
理論構築者の観点からみると、数学は登山に似ていると思います。
コホモロジーにたどり着くためには、集合論、群論、位相幾何学、ホモロジー理論と順を追っていかなければならないのです。
これまでの私は、理論構築者ではなく、問題解決者だったので、「問題」という単位で物事を理解してきました。
アルゴリズムなので、問題を解くための前提知識はさほど必要なく、むしろ必要なのはIQです。
ところが、ラングランズプログラムや超弦理論といった深淵は、IQに加えて、山登りの体力や努力や時間が必須になります。
しかも、仮に山を登り終えたとしても、プログラマーの仕事としてなんの役にも立たないのです。
深淵に取り組むというのは、そういう廃人的な努力を必要とするので、職業的な数学者でない限り努力の誘因が失われてしまいます。
深淵な登山をして、誰にも認められることなく自己満足して、何が楽しいのでしょうか。
1+1=2なのはなぜかという問いと、一個のあるものにもう一個あるものが手に入ってそれを合わせたら2個になるのはなぜかという問いは似て非なるだと思う。
前者はペアノの公理なり群論なりからなかば定義にみたいにそうだからそうなんだと説明できる。
だが後者はそういう目で見たり手に取ってみれる直観的現象としてなぜそうなるのかという話だ。しかもどんなに巨大な個数あっても同様なことが成り立つわけだ。
しかもこれ、微積分とかの何らかの計算がなぜ成り立つのかというのと問うのはまだ掘り下げてその仕組みを理解することが意義深いものでありうる感じるの違って、やはり問うまでもでもなく当たり前のことでしかないのではないかとも感じてしまう。
しかしそうやって連立方程式がなぜ代入法で解けるのかについて理解することについては素通りして当たり前に成り立つに決まってるとして活用してたのが、実は自明でもなんでもなく理解すべきロジックがきちんとあってそれに対して当たり前と言う言葉に目を曇らせていた事実もあったから、今回その可能性があるのではないかといわゆるジレンマに陥っている。
1+1=2のような足し算しょせんそういう直観的現象に対して辻褄があるように取り決められた演算にすぎない。あくまで直観的現象が先にあってその現象が予想できるように自然数の公理なりが定義されているわけだ。
あるいは5個あったところに1個追加された全体は3人で余りなく分けられるのはなぜかというのも似たような問いだ。6÷2=3だからだというのはその説明になっていない。
実際にそうなることの計算による推論の仕方を言ってるのではなく、なぜそうなるかと聞いてるわけだ。
人間の個数に関する認識が数学の構造にうまい具合に従っているから、認識と数学の集合が同型(雰囲気で言ってる)だから、みたいなことだろうか?数学基礎論を齧ってみたがいまいちこの問いと結びついているようであまり有用な感じもしない。なんかスマートな説明ないか。