はてなキーワード: 多様体とは
群と言えば対称性みたいなの、ほんとやめるべき
ほんとそれ。
物理学科で「群とは対称性です!」という言い方で講義されたけど全然意味わからんかったわ。
ベクトル場とかテンソル場に対して「座標変換に対する変換性の違いが」とか言うのも同様。
ベクトルとかテンソルは座標系に関係なく存在するもんであって、変換性が問題になるのは適当な基底で表示した場合だけ。
「座標系に関係ない」ということが多様体(当然Lie群も多様体)の本質なんだからそこを外すのは流石にダメだろって思う。
群だって対称性とは関係なく存在していて、何か別のオブジェクトに対する群作用を考えたときに初めて対称性の話が出てくるだけなのにな。
Lie群に付随する等質空間は(よく知らんが)本質的な構造であって、それを対称性と言うんだろうけど、物理で言う「対称性」とはちょっと違うと思う。
自然界の法則の探索は、一般相対性理論と量子力学の発展の中で行われてきた。
相対性理論はアインシュタインの理論だが、これによれば、重力は時空の曲率から生じることになり、リーマン幾何学の枠組みで与えられる。
相対性理論においては、時空はアインシュタインの方程式に従って力学的に発展することになる。
すなわち初期条件が入力データとして与えられていたときに、時空がどのように発展していくかを決定することが物理学の問題になるわけである。
相対性理論が天体や宇宙全体の振る舞いの理解のために使われるのに対し、量子力学は原子や分子、原子を構成する粒子の理解のために用いられる。
粒子の量子論(非相対論的量子力学)は1925年までに現在の形が整えられ、関数解析や他の分野の発展に影響を与えた。
しかし量子論の深淵は場の量子論にあり、量子力学と特殊相対性理論を組み合わせようとする試みから生まれた。
場の量子論は、重力を除き、物理学の法則について人類が知っているほどんどの事柄を網羅している。
反物質理論に始まり、原子のより精密な記述、素粒子物理学の標準模型、加速器による検証が望まれている予言に至るまで、場の量子論の画期性は疑いの余地がない。
数学の中で研究されている多くの分野について、その自然な設定が場の量子論にあるような問題が研究されている。
その例が、4次元多様体のドナルドソン理論、結び目のジョーンズ多項式やその一般化、複素多様体のミラー対称性、楕円コホモロジー、アフィン・リー環、などが挙げられる。
超ひも理論は、光子からクォークに至るまで、すべての粒子がゼロ次元の点ではなく1次元のひもであるという理論的枠組みのこと。
もし、あらゆる文脈で成り立つ超ひも理論のバージョンが発見されれば、宇宙の性質を記述するための単一の数学的モデルとして機能することになり、重力を説明できない物理学の標準モデルに取って代わる「万物の理論」となるとされる。
超ひも理論の全貌を理解するには、広範な勉強が必要だが、超ひも理論の主要な要素を知れば、その核となる概念の基本的な理解が得られるだろう。
1. 弦とブレーン
弦は一次元のフィラメントで、開いた弦と閉じた弦の2種類がある。
開放弦は両端がつながっておらず、閉鎖弦は閉じたループを形成する。
ブレーン(「膜」という言葉に由来する)はシート状の物体で、その両端に弦を取り付けることができる。
ブレーンは量子力学のルールに従って時空を移動することができる。
物理学者は、宇宙には3つの空間次元があると認めているが、超ひも理論家は、空間の追加次元を記述するモデルを主張している。
超ひも理論では、カラビ・ヤウ多様体と呼ばれる複雑な折りたたみ形状にしっかりと圧縮されているため、少なくとも6つの追加次元は検出されない。
3. 量子重力
弦理論は量子物理学と一般相対性理論を融合させようとしているため、量子重力理論である。
量子物理学は原子や素粒子のような宇宙で最も小さな物体を研究するが、一般相対性理論は通常、宇宙でよりスケールの大きな物体に焦点を当てる。
4. 超対称性
超弦理論としても知られる超対称性は、2種類の粒子、ボソンとフェルミオンの関係を記述する。
超対称弦理論では、ボソン(または力の粒子)は常にフェルミオン(または物質の粒子)と対になるものを持ち、逆もまた同様である。
超対称性の概念はまだ理論的なもので、科学者はまだこれらの粒子を見たことがない。
一部の物理学者は、ボソンとフェルミオンを生成するには、とてつもなく高いエネルギーレベルが必要だからだと推測している。
これらの粒子は、ビッグバンが起こる前の初期の宇宙に存在していたかもしれないが、その後、現在見られるような低エネルギーの粒子に分解されたのかもしれない。
大型ハドロン衝突型加速器(世界で最も高エネルギーの粒子衝突型加速器)は、ある時点でこの理論を支持するのに十分なエネルギーを発生させるかもしれないが、今のところ超対称性の証拠は見つかっていない。
5. 統一された力
弦理論家は、相互作用する弦を使って、自然界の4つの基本的な力(重力、電磁気力、強い核力、弱い核力)がどのように万物の統一理論を作り出しているかを説明できると考えている。
人生、宇宙、そしてすべての意味とは何か?「銀河ヒッチハイク ガイド」では、答えは 42となっている。
科学の質問の範囲は、一部の分野では縮小し、他の分野では急増した。
宇宙がある意味数学的であるという考えは、少なくとも古代ギリシャのピタゴラス派にまで遡り、物理学者や哲学者の間で何世紀にもわたる議論を生み出してきた。
マックス・テグマークはこの考えを極限まで推し進め、宇宙は単に数学によって記述されるのではなく、数学自体であると主張している。
この議論の基礎は、人間とは独立した外部の物理的現実が存在するという仮定である。
これはそれほど物議を醸すものではない。物理学者の大多数はこの長年の考えを支持していると思うが、まだ議論されている。
形而上学的独我論者はそれをきっぱり拒否し、量子力学のいわゆるコペンハーゲン解釈の支持者は、観察のない現実は存在しないという理由でそれを拒否するかもしれない。
外部現実が存在すると仮定すると、物理理論はそれがどのように機能するかを説明することを目的としている。
一般相対性理論や量子力学など、最も成功した理論は、この現実の一部、たとえば重力や素粒子の挙動のみを説明している。
対照的に、理論物理学の聖杯はすべての理論、つまり現実の完全な記述である。
現実が人間とは独立して存在すると仮定する場合、記述が完全であるためには、人間の概念をまったく理解していない、人間以外の存在、つまりエイリアンやスーパーコンピューターなどに従って、現実が明確に定義されていなければならない。
言い換えれば、そのような記述は、「粒子」、「観察」、またはその他の英語の単語のような人間の負担を排除した形で表現可能でなければならない。
対照的に、教えられてきたすべての物理理論には 2 つの要素がある。
それは数式と、その方程式が私たちが観察し直観的に理解しているものとどのように関連しているかを説明する言葉である。
理論の結果を導き出すとき、陽子、分子、星などの新しい概念を導入するが、それは便利だからである。
原理的には、このようなバゲッジがなくてもすべてを計算できる。
たとえば、十分に強力なスーパーコンピューターは、何が起こっているかを人間の言葉で解釈することなく、宇宙の状態が時間の経過とともにどのように進化するかを計算できる。
もしそうなら、外部現実における物体とそれらの間の関係のそのような記述は完全に抽象的でなければならず、あらゆる言葉や記号は何の事前の意味も持たない単なるラベルにならざるを得ない。
代わりに、これらのエンティティの唯一のプロパティは、エンティティ間の関係によって具体化されるものになる。
ここで数学が登場する。
現代数学は、純粋に抽象的な方法で定義できる構造の正式な研究である。つまり、数学的構造を発明するのではなく、それらを発見し、それらを記述するための表記法を発明するだけである。
人間から独立した外部の現実を信じるなら、テグマークが数学的宇宙仮説と呼ぶもの、つまり物理的現実は数学的構造であるということも信じなければならない。
そのオブジェクトは、十二面体よりも精巧で、おそらくカラビ・ヤウ多様体、テンソル束、ヒルベルト空間などの恐ろしい名前のオブジェクトよりも複雑である。
世界のすべてのものは、あなたも含めて純粋に数学的であるはずだ。
それが本当であれば、万物の理論は純粋に抽象的で数学的でなければならない。
理論がどのようなものになるかはまだわからないが、素粒子物理学と宇宙論は、これまでに行われたすべての測定が、少なくとも原理的には、数ページに収まり、わずか 32 個の未説明の数値定数を含む方程式で説明できる段階に達している。
したがって、すべての正しい理論は、T シャツに書ける程度の方程式で説明できるほど単純であることが判明する可能性さえある。
しかし、数学的宇宙仮説が正しいかどうかを議論する前に、外部の物理的現実を見る 2 つの方法を区別することができる。
1 つは、上空から風景を観察する鳥のような、数学的構造を研究する物理学者の外側の概要。
もう一つは、鳥によって見渡される風景の中に住むカエルのように、構造によって記述される世界に住む観察者の内面の視点。
これら 2 つの視点を関連付ける際の 1 つの問題は時間に関係する。
数学的構造は、定義上、空間と時間の外側に存在する抽象的で不変の存在である。
宇宙の歴史を映画に例えると、その構造は 1 コマではなく DVD 全体に相当する。
したがって、鳥の視点から見ると、4 次元時空内を移動する物体の軌跡は、スパゲッティのもつれに似ている。
カエルには一定の速度で動く何かが見えますが、鳥には調理されていないスパゲッティのまっすぐな束が見える。
カエルが地球の周りを回る月を見ると、鳥は絡み合った2本のスパゲッティが見える。
カエルにとって、世界はニュートンの運動と重力の法則によって記述される。
2 つの視点を関連付ける際のさらなる微妙な点には、観察者がどのようにして純粋に数学的になることができるかを説明することが含まれる。
この例では、カエル自体は厚いパスタの束で構成されている必要がある。
その非常に複雑な構造は、おなじみの自己認識の感覚を引き起こす方法で情報を保存および処理する粒子に対応している。
まず、自然界ではさらなる数学的規則性がまだ発見されていないことが予測される。
ガリレオが数学的宇宙の考えを広めて以来、素粒子の小宇宙と初期宇宙の大宇宙における驚くべき数学的秩序を捉える素粒子物理学の標準モデルなど、その系譜に沿った発見が着実に進歩してきた。
長年にわたって多くのタイプの「多元世界」が提案されてきましたが、それらを 4 つのレベルの階層に分類することが役立つ。
最初の 3 つのレベルは、同じ数学的構造内の非通信の並行世界に対応します。レベル I は単に、光がまだ到達していない遠い領域を意味する。
レベル II は、介在する宇宙の宇宙論的膨張により永遠に到達できない領域をカバーする。
レベル III は「多世界」と呼ばれることが多く、特定の量子事象中に宇宙が「分裂」する可能性がある、量子力学のいわゆるヒルベルト空間の非通信部分が含まれる。
レベル IV は、根本的に異なる物理法則を持つ可能性がある、異なる数学的構造の並行世界を指す。
現在の最良の推定では、膨大な量の情報、おそらく Googolビットを使用して、観測可能な宇宙に対するカエルの視点を、すべての星や砂粒の位置に至るまで完全に記述する。
ほとんどの物理学者は、これよりもはるかに単純で、T シャツには収まらないとしても、本に収まる程度のビット数で特定できるすべての理論を望んでいる。
数学的宇宙仮説は、そのような単純な理論が多元宇宙を予測するに違いないことを示唆している。
なぜなら、この理論は定義上、現実の完全な記述であるからである。
宇宙を完全に特定するのに十分なビットが不足している場合、星や砂粒などの考えられるすべての組み合わせを記述しなければならない。
そのため、宇宙を記述する追加のビットは単にエンコードするだけである。
多世界の電話番号のように、私たちがどの宇宙にいるのか。このように、複数の宇宙を記述することは、単一の宇宙を記述するよりも簡単になる可能性がある。
極限まで突き詰めると、数学的宇宙仮説はレベル IV の多元宇宙を意味し、その中に他のすべてのレベルが含まれる。
宇宙である特定の数学的構造があり、その特性が物理法則に対応している場合、異なる特性を持つそれぞれの数学的構造は、異なる法則を持つ独自の宇宙である。
実際、数学的構造は「作成」されるものではなく、「どこか」に存在するものではなく、ただ存在するだけであるため、レベル IV の多元宇宙は必須である。
スティーヴン・ホーキング博士はかつてこう尋ねた。
「方程式に火を吹き込み、それらが記述できる宇宙を作り出すものは何でしょうか?」
数学的宇宙の場合、重要なのは数学的構造が宇宙を記述することではなく、それが宇宙であるということであるため、火を噴く必要はない。
レベル IV の多元宇宙の存在は、物理学者のジョン・ウィーラーが強調した混乱する疑問にも答える。
たとえ宇宙を完全に記述する方程式が見つかったとしても、なぜ他の方程式ではなく、これらの特定の方程式が使われるのか?
他の方程式が並行宇宙を支配しており、観察者をサポートできる数学的構造の分布を考慮すると、統計的に可能性が高いため、宇宙にはこれらの特定の方程式があるということだ。
並行世界が科学の範囲内なのか、それとも単なる推測に過ぎないのかを問うことは重要である。
並行宇宙はそれ自体が理論ではなく、特定の理論によってなされた予測である。
理論が反証可能であるためには、そのすべての予測を観察および検証できる必要はなく、少なくともそのうちの 1 つだけを検証できれば十分である。
たとえば、一般相対性理論は、重力レンズなど、私たちが観察できる多くのことを予測することに成功しているため、ブラックホールの内部構造など、私たちが観察できないことについての予測も真剣に受け止めている。
多くの並行宇宙に存在するのであれば、我々は典型的な宇宙にいると予想されるはずです。
ある量、たとえば、この量が定義されている多元宇宙の一部の典型的な観測者によって測定された暗黒エネルギー密度や空間の次元の確率分布を計算することに成功したと仮定する。
この分布により、我々自身の宇宙で測定された値が非常に非典型的なものになることが判明した場合、多宇宙、したがって数学的宇宙仮説が除外されることになる。
生命の要件を理解するまでにはまだ程遠いが、暗黒物質、暗黒エネルギー、ニュートリノに関して私たちの宇宙がどの程度典型的であるかを評価することで、多元宇宙の予測のテストを始めることができる。
なぜなら、これらの物質は銀河形成など、よりよく理解されているプロセスにのみ影響を与えるからである。
これらの物質の存在量は、多元宇宙のランダムな銀河から測定されるものとかなり典型的なものであると測定されている。
しかし、より正確な計算と測定では、そのような多元宇宙は依然として除外される可能性がある。
おそらく最も説得力のある反対意見は、直感に反して不安を感じるということである。
数学的宇宙仮説が真実であれば、科学にとって素晴らしいニュースであり、物理学と数学の洗練された統合により、深い現実を理解できるようになる可能性がある。
実際、多元宇宙をもつ数学的宇宙は、期待できるすべての理論の中で最良のものであるかもしれない。
なぜなら、規則性を明らかにし、定量的な予測を行うという科学的探求から現実のいかなる側面も立ち入れないことを意味するからである。
どの特定の数式が現実のすべてを記述するのかという問題は見当違いであるとして放棄し、その代わりに、鳥の視点からカエルの宇宙観、つまり観察をどのように計算するかを問うことになる。
それは、宇宙の真の構造を明らかにしたかどうかを決定し、数学的宇宙のどの隅が私たちの故郷であるかを理解するのに役立つ。
激レアさんにてモテたくて猛勉強して東大に入ったがモテなくて通学しながらホストになった話をやっていた。
この手のテレビの企画で定番なのが、いかにも頭のいいことやらせてスタッフには全然理解してない合いの手を入れさせることだが、今回は複素関数の積分で、東大生が定理の適用の仕方を語ってるところにスタッフが「なるほど…」と理解してなさそうなトーンで言っていた。
しかし東京大学の学生にしては簡単なことやってるなーと違和感があった。
計算用紙も見たがもろ
https://eman-physics.net/math/imaginary11.html
のあたり扱ってる内容で、このサイトを複素関数論から読み始めれば理系マーチに入れる学力なら複素平面終えたての高校生でも数日で計算できるようになる内容だろう。
なんだろう、むしろスタッフがわからないふりをしてるというよりも、むしろスタッフ側が複素関数の積分ぐらい知っててこれ東大生に言わせたらいかにもって感じじゃねって考えてて、むしろスタッフの方から東大生に何を言わせるか提案してると考えた方が自然に思えた。東大生におまかせしちゃうとそれこそゲージ理論と多様体の話とか難しさに際限がなくなっちゃうから…ってそれでも問題なく思えるんだど、とにかく東大生が勉強してると言ってる内容にしては簡単すぎて不自然に感じたのだ。
俺がすごいと思ったのは仕事中に他のホストが今どれぐらい売り上げてるか頭の中で計算して記憶してるって話。自分のワーキングメモリじゃ不可能だわ…
間違いやら何やらいっぱい入ってて改善しないといけないところは無数にあるけど、普通にそこらの学生よりまともな作文をしてくるGPTに俺は衝撃を受けたし、多少の改善はまだ必要とはいえあれで仕事を肩代わりされてしまう人はそこそこいるだろうと思う まぁ実用に落とし込めるかどうかは別の話だけど
研究レベルで革新的かと言われるとそりゃまだChatGPTから直接的に革新的なものは出てこないだろうな
単なる言語モデル走らせてるだけなんだし現状で人類の知らない新しい何かを生成できるかって言うとできないけど、GPTの改良の先にそこそこ革新的なものが普通に出力される未来が見えるのが凄いんだよ 今まではそんなことできるとさえ思わなかったしな 人間の応答が単純な言語モデルだけで模倣できることが分かってきてしまって、結局人間の知性なんて大したことじゃなかったと判明した手前、人間の閃きは言語モデルの中にあるのか先にあるのかは今のところ誰にも分からん 俺はまだしばらく人間の特権であってほしいけど明日とかに急に何かできましたとか出てくるかもしれんしな
例に上がってるUMAPだって主成分分析しかなかったところに一足飛びに出てきたわけじゃないし、実際にはその途中で多様体学習の長い歴史がある 革新と思ってるなら単に間の歴史を知らんだけだよ
キャッチーなこと書いてるからミスリーディングだけど単に既存法のチューニング変えただけで、研究者なら多かれ少なかれ現場でやってたチューニングを仰々しく書き直して実装ちゃんとやったってだけだし、革新と思ってるものも実際にはそういう歴史と膨大な試行の上に地続きになってる そういう意味でChatGPTはゴールじゃなくて筋の良い試行の第一歩
現状のGPTでできないことは無数にあるけど、例えば入力方式が違うとかそんな瑣末な問題なら俺みたいな末端でさえ改善策が無数に思いつくようなレベルだし、今何ができないとか議論しても意味ないんだよな 数週間ごとか数日後、もしくは数時間後に修正かかって何かを組み合わせると科学論文が大量生産されるとかもできるようになるかもしれないんだから
ビッグバンを模式するために使われる風船のたとえをもって「全てが中心だ」と言い張る人がいる。
膨張の基点は風船のゴム膜の中にではなくそれによって包まれている空気に満たされた空間の内部に一点だけ見出すのがまっとうな考えだろう。
たとえばこの宇宙が三次元多様体の膜のようなものだと仮定するならその中心は四次元以上の座標系のある一点から放射状に膜が広がっていったと見ることができるだろう。
宇宙の全ての点で点同士が離れあっているというのはいわばコリオリみたいな見かけの現象だ。
高次元の真空のゆらぎから宇宙の構成する一点ができたという仮説に基づくなら、その宇宙の一点が三次元に収まっているのあえていうなら最初の瞬間だけであり、それ以降は一点に収まってたものは、各々一点から四次元以上の意味での距離において等距離だけ遠ざかっているということである。見かけ各点同士が遠ざかっているのは、一点に対する離れ方が等距離だからであり、実際の我々は絶えず高次元上の一点からまっすぐにどこかへと移動しているのだ。いきなり真空のゆらぎに無限次元を仮定するのはオッカムの剃刀からしても妥当ではなかろうが、とにかく、最低でも膨張の基点に原点をおいたときその座標を構成する変数のうち4つ以上の変数の絶対値が絶えず増加するような高次元旅行を我々はしているのだと思う。
知恵袋の数学者気取りには数学用語以外の言葉についてはいちいち定義を求めて来る奴がいる。
察しようという発想は皆無らしい。
「クラインの壺は二次元多様体なのですがそれを四次元というのはどういうことですか」などとあろうことか抜かしてきた。クラインの壺は四次元で普通の数学者でも通じるので、そこに食って掛かる奴はそうそうおらんだろ。
人として欠陥があるとしか思えない。
あんなんじゃ人に教授したり人の上に立つ仕事は任されないこと請け合いだな。
高校の野球部のノリでいつまで立っても草野球してる奴と同じで、数学の分野で重職につけなかった輩が知恵袋にくすぶって人を馬鹿にするというしょうもない人生送ってるんだろう
小説だって何巻というのを無視して途中の巻から読めば作中特有の概念や人物を示す固有名詞でつまづくのは普通で、そうならないように何巻とか上下巻みたいな目印がある。
しかし数学書はそういうのがなく仕方なく手に取ってみても行単位で見知らぬ固有名詞がぼんぼん出て来る。予備知識を手に入れようにも「前の巻」という概念自体がどうにもならない。
岩波基礎(!?)数学叢書だかいうのに微分多様体の本があったと思うけどはしがきには基本的な解析数学と代数学と微積分学を既知のものとして扱っていると書いてあったと思う。
しかしたとえばお前の言う基本的な代数学とは具体的にどこまでの範囲を指しているんだ?ていうか何の本を読めばいい?てかお前が大学生時代読んできた本のなかでその範囲に属するものを列挙すりゃそれで済むし確実なのになぜそうしない?という言葉がつい漏れる。
だって同じ岩波基礎の本でもアフィン代数みたいな本があってこれが大学数学に代数のスタートラインにあたるものなのは確実だろうがそこのはしがきにはその応用は標準形は別の本にまとめられてると書いてあって確かにジョルダン標準形とか二次形式は別の本になっている。
しかしこれらもそれなりのボリュームがあるわけで読んでやっとのことで理解した後に「実はそこまで代数を掘り下げて学ぶ必要はなかった」と言われたんじゃ遅いわけ。
興味ある分野へ最短経路で学べるようになりたい人も当然多いわけで、実は不必要なのに無駄な学習に時間注ぎたくないわな。そわそわしてもこれは必要な学習だということだから頑張れるわけで。
高校みたいに数1とか数2とかなってて高校行ってなくて道筋が明瞭でどうとでも独学できるのとはわけが違う。しかも全てのはしがきに予備知識として学ぶべきものが書いてあるわけじゃなくこのはしがきを頼りとした芋づる式で学ぶべき順番に見当をつける方法をもってしても袋小路に入ることもあるという…。んでどうでもいいことだが俺の学びたいものにベクトル解析が必要なのかいまだに判断がつかない。
日本語に一家言ある人や政治的な思想がある人は検索してるうち日本語学や法律学の論文に当たることもあるだろうけど、そもそも興味があるのもあって字面は難しそうでもじっくり読めば理解できなかったということはなかったはず。でも数学は知識が無い人を門前払いです…。
ドラクエだかでファルスでコクーンなんていうスラングに象徴されてる現象もプレイすればゲーム展開に沿って難なく解消されるわけで要するにそんなのよりずっとタチが悪いのが大学数学の現状
劣等感ほどは無いんだけど、
高校の同級生の天才が東大理1から東大数学科博士を出て、旧帝大で数学のポストについている。
僕は普通に社会人になって、でもコツコツと数学自体は勉強している。
数学のレベルだが、自分は一応は大学レベルの数学は理解している。
代数学は雪江先生とかハーツホーン、幾何学は多様体と数え上げ幾何学、解析はルベーグ、関数解析とか。
佐藤幹夫先生の数学が好き。工学の微妙な数学を数学に昇華してくれてて溜飲が下がるっていうか。
適当な修士とか博士論文をコツコツ読んでるけど、それすら難しい。
普通は数学科の人は25くらいには研究レベルには到達してるんでしょうね。
僕は人より時間がかかるみたいです。
でも言葉を洗練したものが数式だとして、数式という道具を発明したからこそ扱える領域があるのでは?多様体とかエキゾチックな球面とか言葉を持ってなかったころの人類が扱えたとはとうてい思えないんだけど。
そもそもAIやら気象予報の技術たらだって1人の人間だけの思考では完成するものじゃなくて、研究結果を複数人で共有していって考えを出し合うことによって生まれたものじゃないの?そして思考の共有には言語が必要。
AIや気象予報自体が生存に必須ではない便利なものという意味では意味では「言葉は必要じゃない」「なぜなら言葉によって派生したものも必要じゃないからだ」と、むしろあなたの考えを補強することになりかねないけど。
しかしそれでも文体の問題じゃないし、言葉だけでの問題じゃなくて、言葉を操ってそういう学問的に高度な領域に至ることができるような知性も必要で、そこには才能の比重が大きいと思う、俺なんか多様体の本どころか松坂の集合位相論で20ページでつまづくような数学の才能皆無な人間だったけど、こういう本によって人類は着実に深遠な方向へと思考を到達させていることは感じられるよ。
そもそも数式なんかは「写経」したところでその数式の言わんとすることを自分自身が分かったうえで出力できるようになるわけじゃないからなあ。門前の小僧習わぬ経を読むからの論語読みの論語知らずよ。写経することによって得られた数式の暗記や受け売り的な出力は記憶力はともかく知性については何も保証しないよ。