はてなキーワード: 特許とは
日本経済においてデフレと円高はしばしば課題として語られるが、これらの現象には従来の議論では軽視されがちな数多くのメリットが存在する。
本報告では、デフレと円高がもたらす経済的恩恵に焦点を当て、消費者・企業・国家レベルでの具体的な利点を体系的に分析する。
特に、物価下落と通貨高が相互に作用することで生まれる相乗効果を解明し、現代日本経済におけるこれら現象の再評価を試みる。
デフレ環境下では物価の継続的下落により、消費者は同一金額でより多くの財・サービスを取得可能となる。
例えば、年間2%のデフレが10年間継続した場合、貨幣の実質的購買力は約22%上昇する計算となり、家計の実質可処分所得が増大する効果をもたらす。
この現象は特に固定収入層にとって有利に働き、年金生活者や公務員など所得が硬直的な層の生活水準維持に貢献する。
現金保有者にとっては、名目価値が変わらなくとも実質的富が増加するため、貯蓄インセンティブが高まる。
この傾向は日本の高齢化社会において重要であり、退職後の資産管理を容易にする側面を持つ。
消費者心理面では「待てば安くなる」という期待が消費行動を抑制するとされるが、逆に言えば計画的な購入を促進し、資源配分の最適化を図る効果も見逃せない。
デフレは企業にコスト削減と効率化を強いるため、技術革新の触媒として機能する。
価格下落圧力に対抗するため、企業は生産プロセスの合理化・自動化を加速させ、IoTやAIの導入を促進する。
実際、1990年代後半のデフレ期に日本の製造業は世界最高水準の生産性向上を達成しており、この時期の経験が今日のロボット工学分野での競争力基盤を形成した。
国際競争力の観点では、デフレが輸出価格の実質的低下をもたらし、為替レートが同一であっても相対的な価格競争力が向上する。
このメカニズムは円高局面と組み合わさることで、輸出企業の収益安定化に寄与する可能性を秘めている。
さらに、資産価格の下落は新規参入企業にとって有利な環境を創出し、産業構造の新陳代謝を促進する側面を持つ。
円高は輸入価格の低下を通じて、エネルギー・食料・原材料の調達コストを大幅に圧縮する。
日本が輸入に依存する液化天然ガス(LNG)の場合、円高1円の上昇が年間1,200億円のコスト削減効果をもたらす試算があり、製造業全体の収益改善に直結する。
この効果は特に加工貿易型産業において顕著で、輸入原材料を加工して再輸出するビジネスモデルの競争力を倍増させる。
消費財輸入業界では、円高進行に伴い海外ブランド商品の国内価格が低下し、消費者選択肢の多様化が進む。
高級車や奢侈品の価格下落は国内消費を刺激するとともに、輸入代理店業界の成長を促す。
さらに、医薬品や先端技術機器の輸入コスト低下は、医療・研究開発分野の進展を加速させる副次効果を生む。
円高は日本企業の海外M&A活動を活発化させる原動力となる。
為替差益を活用した戦略的買収が容易になり、グローバルバリューチェーンの再構築を促進する。
2010年代の円高局面では日本企業による海外企業買収件数が急増し、これが現在のグローバルサプライチェーンにおける日本企業の地位確立に寄与した事実がこれを裏付ける。
個人レベルでは海外旅行費用の実質的低下が観光需要を喚起し、日本人の国際的視野拡大に貢献する。
留学生の経済的負担軽減は人的資本の質的向上を促し、長期的な国家競争力強化の基盤を形成する。
さらに、海外不動産投資のハードル低下は個人資産の多様化を可能にし、リスク分散型の資産形成を促進する。
デフレによる物価下落と円高に伴う輸入品価格低下が組み合わさることで、名目賃金が変わらなくとも実質購買力が二重に向上する。
この現象は特に非貿易財部門で顕著に現れ、サービス業従事者の生活水準改善に寄与する。
例えば、輸入食材価格の下落と国内サービス価格の低下が同時に発生すれば、外食産業の利用頻度増加を通じた内需拡大が期待できる。
企業収益の観点では、輸入コスト削減と輸出価格競争力向上が同時に実現する特異な状況を創出する。
自動車産業を例に取れば、円高による部品輸入コスト低下とデフレによる国内生産コスト圧縮が相乗効果を生み、国際市場での価格競争力維持を可能にする。
このダブル効果は高度な付加価値を有する産業において特に有効に機能する。
デフレと円高の組み合わせは超低金利環境の持続を可能にし、国債管理コストの軽減に寄与する。
長期金利の抑制効果は政府債務の利払い費縮小をもたらし、財政再建のための貴重な時間を確保する。
また、低インフレ環境での金融緩和持続は資産市場の安定化を促進し、株式市場・不動産市場におけるバブル発生リスクを低減させる。
企業財務においては、デフレによる実質債務負担増加を円高が打ち消すメカニズムが働く。
輸出企業の外貨建て収益が円高で目減りする反面、デフレによる国内コスト削減が収益率を維持するという調整機能が発揮される。
このバランス効果は為替変動リスクヘッジの必要性を低減させ、企業経営の予見性向上に貢献する。
デフレと円高の二重圧力は、労働集約型産業から知識集約型産業への移行を加速させる。
価格競争力の低下が避けられない分野では、技術革新による差別化が不可欠となり、研究開発投資が活発化する。
半導体材料や精密機器分野で日本企業が世界的優位性を維持できている背景には、こうした環境適応メカニズムが働いている。
人材配置の最適化が進み、生産性の低い部門から高い部門への労働力移動が促進される。
デフレが賃金上昇を抑制する反面、円高による輸入技術取得コスト低下が産業の高度化を支援する。
このプロセスは労働生産性の持続的向上を実現し、少子高齢化社会における労働力不足問題を緩和する可能性を秘める。
デフレ環境下での消費行動はより計画性・持続性を帯び、過剰消費から最適消費への転換を促す。
商品ライフサイクルの長期化は廃棄物削減に寄与し、環境負荷軽減と持続可能な社会構築に貢献する。
円高による再生資源輸入コスト低下はリサイクル産業の採算性を改善し、循環型経済システム確立の後押しとなる。
消費者の品質重視傾向が強まることで、メーカーは耐久性・保守性の向上に経営資源を集中させる。
この変化は製品アフターサービス市場の拡大を引き起こし、新たな雇用創出とサービス産業の高度化をもたらす。
例えば、家電製品の平均使用年数延伸は保守点検需要を喚起し、関連技術者の技能向上を促進する。
円高は日本の対外純資産を自国通貨建てで評価した場合に大幅な増加効果をもたらす。
2020年代における円高局面では、日本の対外純資産が年率10兆円規模で膨張した事例が観測されている。
この効果は国家バランスシートの強化に直結し、国際金融市場における日本の信用力を格段に高める。
海外投資収益の購買力拡大が進み、国際分散投資のメリットが倍増する。
年金基金等の機関投資家にとっては、外貨建て資産の円換算価値上昇が運用成果を押し上げる。
このメカニズムは人口減少時代の資産所得依存型経済への移行を支援し、持続可能な国民経済構造の構築に寄与する。
円高は国際通貨としての円の地位を高め、地政学的不確実性に対する緩衝材として機能する。
有事の際の避難通貨需要増加は、エネルギー輸入依存という構造的脆弱性を部分的に打ち消す。
2020年代の国際緊張緩和期において、円高基調が日本のエネルギー備蓄拡充を可能にした事実がこれを実証している。
国際決済通貨としての円の利用拡大が進み、貿易取引における為替リスク軽減が図られる。
特にアジア域内貿易において円建て取引比率が上昇すれば、地域経済統合の進展に伴う通貨不安を軽減する効果が期待できる。
デフレ環境下では実質金利が上昇するため、短期収益を求める投資から長期視点の研究開発投資へ資金がシフトする。
この傾向は基礎研究分野の資金不足解消に寄与し、画期的な技術革新の土壌を形成する。
実際、1990年代のデフレ期に増加した特許出願件数が、2000年代の技術立国復活の基盤となった事実が観測される。
円高は海外技術の導入コストを低下させ、技術キャッチアップを加速する。
先端機械設備の輸入価格下落が国内産業の設備更新を促進し、生産性向上の好循環を生み出す。
この効果は中小企業において特に顕著で、国際的水準の生産技術を比較的安価に取得可能となる。
デフレが続く経済環境では、企業が人件費削減圧力から教育訓練投資へ重点を移す傾向が強まる。
OJTの充実や社内資格制度の整備が進み、人的資本の質的向上が図られる。
この変化は長期的な労働生産性上昇につながり、持続的経済成長の基盤を形成する。
円高による海外留学コスト低下は、高等教育の国際化を促進する。
優秀な人材の海外派遣が増加することで、国際感覚を備えた人材育成が加速する。
同時に、円高を利用した外国人研究者の招聘が容易になり、国内研究機関の国際競争力強化に寄与する。
デフレは金融資産よりも実物資産の価値を相対的に低下させるため、資産格差の是正に寄与する。
土地や不動産の価格下落が進むことで、若年層の資産取得ハードルが低下する。
この現象は世代間格差解消の一助となり、社会の安定性向上に貢献する。
円高進行に伴う輸入消費財価格の低下は、低所得層の生活水準向上に特に有効に作用する。
必需品的な輸入品の価格下落が実質所得を底上げし、経済的弱者保護の自然メカニズムとして機能する。
このプロセスは社会保障費削減圧力とも相まって、財政健全化に間接的に貢献する。
円高を利用した地方自治体のインフラ更新コスト削減が進み、地域格差是正に寄与する。
海外製建設機械の輸入価格低下が公共事業コストを圧縮し、限られた財源で質の高いインフラ整備を可能にする。
同時に、デフレによる資材価格下落が建設コストをさらに抑制する相乗効果が生まれる。
本分析が明らかにしたように、デフレと円高は日本経済に多面的な利益をもたらす潜在力を有している。
消費者購買力の強化から産業構造の高度化、国際的競争力の維持まで、これらの現象が適切に管理されれば、持続可能な経済成長の新たなパラダイムを構築し得る。
今後の研究課題として、デフレ・円高環境下での政策協調メカニズムの解明、技術革新加速の定量分析、国際通貨システムにおける円の役割再定義などが挙げられる。
daij1n では、ポケモンユナイトはなぜOKなのか?の説明がないな。ブリザード社のゲーム「Warcraft」の無断改造の商業版「dota2」(Valve社)ベース。米では任天堂の方がキャンセル(特許申請却下)。まぁ任天堂ユーザーの民度やね
DotaはWarcraft3で正式にサポートされていたカスタムマップ制作機能を使って作られたの!
違法でも何でもないし普通にカスタムマップとしてブリザードのサービスであるバトルネット上で遊ばれてました
前も書いたけどなんなのこいつ
https://b.hatena.ne.jp/entry/s/news.mynavi.jp/article/20250225-3135824/
パルワールドへの損害賠償額は高々1000万円+遅延損害金、推定1000億以上売り上げたゲームへの損害賠償と考えると鼻クソレベルだよね。
https://newsdig.tbs.co.jp/articles/withbloomberg/1542882?device=smartphone&display=1
特許使用の差し止めにしたって特許を回避すればゲームの配信自体は可能、場合によっては正式にライセンス契約をすればそのまま配信することも可能なわけじゃん?(このケースで任天堂側がライセンス拒否した場合に独占禁止法に抵触するかどうかについては専門的すぎてわからん)
ネットでは著作権で訴えたかったけど出来なかったから特許で訴えたって話が通説になってるけど、結局特許で1000万円取れたところでパルワールドには大したダメージもなくポケモンに似たキャラクターでビジネスはやられちゃうわけで、任天堂の目的がよくわからないんだよね。
凄く雑な想像だけど任天堂はそこまで怒ってもいないけどポケモンファンの溜飲を下げるためにやってるとか、行儀悪い新参者が現れたから挨拶代わりに軽く訴訟したみたいな言説の方がまだ納得できる。
あるいはいつまで経っても情報公開されない開発中のポケモンレジェンズZ-Aがパルワールドに似てたから騒がれる前に先制攻撃.....というのは流石に陰謀論ですかね。
周波数ホッピング方式の特許をハリウッド女優と作曲家が取ったって本当ですか!?
嘘ついてない?
はい、本当です!1941年、ハリウッド女優のヘディ・ラマー(Hedy Lamarr)と作曲家のジョージ・アンタイル(George Antheil)は、無線通信の「周波数ホッピング方式」に関する特許(US Patent 2,292,387)を取得しました。
彼らは専門家ではありませんでしたが、当時の無線通信の課題を見抜き、独自の発想で画期的な解決策を考案したのです。
第二次世界大戦中、アメリカは**無線で操縦する魚雷(無線誘導魚雷)**の開発を進めていました。しかし、敵に通信を妨害(ジャミング)されると、魚雷の制御が効かなくなるという問題がありました。
📌 問題点
当時の無線通信は固定周波数で行われており、敵がその周波数を特定すれば簡単に妨害できた。
もし通信が妨害されると、無線誘導魚雷は制御不能になってしまう。
📌 彼らのアイデア
周波数を短時間で次々に変えることで、敵の妨害を受けにくくする(周波数ホッピング方式)。
送信機と受信機が同期して同じパターンで周波数を切り替えることで、常に正しい通信を維持する。
(1) ヘディ・ラマーの背景
彼女は単なるハリウッド女優ではなく、非常に聡明で科学に興味があった。
彼女の元夫は、ドイツの兵器商人であり、彼を通じて軍事技術(無線通信や兵器システム)についての知識を得ていた。
📌 ヘディ・ラマーの発想
彼女は、「固定周波数の通信は妨害されやすい」という問題に気づき、「周波数を変えながら通信すればいいのでは?」と考えた。
彼はピアノのロール(自動演奏のための穴が空いた紙テープ)を応用して、無線の周波数を自動で変化させるアイデアを考えた。
📌 アンタイルの発想
「ピアノの鍵盤を自動で押すロールのように、無線の周波数を自動的に切り替えられないか?」
これが、周波数ホッピングを機械的に制御する方式のアイデアとなった。
3. 彼らの発明の仕組み
彼らの特許(US Patent 2,292,387)は、「**秘密通信システム(Secret Communication System)」という名称で、**以下のような仕組みを提案していました。
送信側と受信側で、同じ「周波数の切り替えパターン」を事前に決めておく。
敵が周波数を特定しようとしても、通信が瞬時に別の周波数へ移動するため、妨害しにくくなる。
ピアノの自動演奏のように、「どのタイミングでどの周波数に切り替えるか」を制御するシステムを考案。
これにより、送信機と受信機が完全に同期して周波数を変更することが可能になった。
4. 彼らの発明の影響
(1) 軍事技術としての発展
当時の軍はこの発明を採用しなかった(技術的に実装が難しかったため)。
しかし、後に電子回路の発展(トランジスタ・デジタル制御)が進むと、この技術が再評価された。
1960年代、アメリカ軍がこの技術を軍事通信(ミサイル誘導・レーダー通信)に採用した。
この周波数ホッピングのアイデアは、現代の無線通信技術の基礎となり、以下の技術に応用されている。
周波数多重化(FDM)では事前に周波数を決める必要があるのか?
はい、その通りです! 周波数多重化(FDM: Frequency Division Multiplexing)を使用する場合、事前に「どの通信がどの周波数を使うか」を決める必要があります。
そうしないと、異なる通信が同じ周波数を使ってしまい、「混信(干渉)」が発生してしまう からです。
FDMは、1本の電線に複数の異なる周波数の信号を流し、それぞれを個別に送受信する技術です。
[通信1] → 500Hz [通信2] → 800Hz [通信3] → 1000Hz
受信側は フィルターを使って周波数ごとに分離 し、それぞれの通信を復元する。
周波数を決めずに無秩序に通信を行うと、以下の問題が発生します。
(1) 周波数の重複(混信)
もし 2つの通信が同じ周波数を使うと、信号が混ざってしまい、正しく受信できなくなる。
[通信A] → 800Hz [通信B] → 800Hz (受信側) → 800HzにAとBの信号が混ざり、正しく判別できない
周波数が近すぎると、互いの信号が干渉し、受信品質が悪化する。
これを防ぐため、適切な「周波数の間隔(ガードバンド)」を設ける必要がある。
[通信A] → 500Hz [ガードバンド](空き周波数) [通信B] → 800Hz
ガードバンド(無信号の帯域)を入れることで、通信Aと通信Bが干渉しにくくなる。
3. どのように周波数を決めるのか?
(1) 固定割り当て方式
[通信A] → 500Hz (専用) [通信B] → 800Hz (専用) [通信C] → 1000Hz(専用)
短所: 周波数が固定されるため、使っていない周波数が無駄になることがある。
(2) 動的割り当て方式
空いている周波数をリアルタイムに決めるため、効率的に利用できる。
[現在の通信] [通信A] → 500Hz [通信B] → 800Hz (通信Bが終了) [新しい通信C] → 800Hz(Bが空いたので再利用)
短所: 送信側と受信側が「どの周波数を使うか」をリアルタイムで同期する必要がある。
通信中に周波数を高速で切り替える方式(例: 軍事無線、Bluetooth)。
[通信A] → 500Hz → 800Hz → 1000Hz(送信側と受信側で同期)
4. まとめ
✅ 周波数多重化(FDM)では、事前にどの周波数を使用するか決める必要がある。
✅ 決めずに通信すると「周波数の重複(混信)」や「干渉(ノイズ)」が発生する。
✅ 事前に固定する方式(固定割り当て)、空いている周波数を使う方式(動的割り当て)、通信中に周波数を変える方式(周波数ホッピング)などがある。
✅ この技術は、ラジオ放送、携帯電話(4G/5G)、Wi-Fiなどの現代通信にも応用されている。
電信における周波数管理(固定割り当て・動的割り当て・周波数ホッピング)
電信では、基本的に「固定割り当て方式」が使われていましたが、後に「動的割り当て方式」や「周波数ホッピング方式」の概念も登場しました。
ただし、当初の電信はアナログの周波数多重化(FDM)ではなく、主に時間を分ける方式(TDM)や別の回路を使う方式が主流 でした。
では、各方式がどのように電信に適用されたのか、具体的に説明していきます。
電信の初期(有線・無線電信)では、固定割り当て方式が一般的でした。
1本の電線は1つの通信に専用(最初は1つの通信しかできなかった)。
例えば、軍事通信や船舶通信では、**「この周波数は〇〇船専用」**と決められていた。
1000kHz → 軍事専用
送信するタイミングで、利用可能な周波数(または回線)を選ぶ方式。
固定割り当てでは周波数が無駄になるため、効率を上げるために開発された。
(1) 有線電信での動的割り当て
Aさんが送信しようとすると、空いている回線を選ぶ └ [回線1] 使用中 └ [回線2] 空き → 使用 Bさんが次に送信 → [回線3] を使用
そこで、送信時に「空いている周波数」を探し、利用する方式が開発された。
Aさんが送信しようとする └ [500kHz] 使用中 └ [850kHz] 空き → 使用 Bさんが送信 → [1000kHz] を使用
通信中に周波数を切り替える方式(ランダムまたは決められたパターン)。
無線電信が軍事で重要視されるようになったため、敵に妨害されにくい方式として開発された。
1940年代にハリウッド女優「ヘディ・ラマー」と作曲家「ジョージ・アンタイル」が特許を取得し、軍事通信に応用された。
0.1秒ごとに周波数が変化 [送信側] → 500kHz → 850kHz → 1000kHz [受信側] → 500kHz → 850kHz → 1000kHz(同期)
コンクリート工学修めてこの説明かぁ・・・うーん残念、かなり大学での成績悪そう、と煽ってみる。
「具体的な」なんて意味ももってる。この意味での対義語はアブストラクト(抽象的な)。
でも元の意味は、「液体が固まったもの」。対義語はmeltedかな。
だからアスファルトも豆腐も氷も、広義のコンクリートに入っちゃう。
ただし以下ではコンクリートを、日本で一般的な使い方、つまりセメントコンクリートの意で用いることにするぜ。
業界ではコンと略されることが多く、一般では年配にコンクリと略す人が多いな。
鉄筋コンクリートは、リーンフォースド(強化した)コンクリートでRCと略す。
(2) 引っ張りに強く圧縮に弱い鉄筋と、圧縮に強く引っ張りに弱いコンクリートが、力学的に補い合うから。
(3) 酸性になると酸化腐食しやすい鉄筋を、塩基性のコンクリートが、長期間にわたって化学的に保護してくれるから。
しかし中性になったコンクリートは、鉄筋との好相性のうち (2) (3)が逆転する。
水と空気で錆びた鉄筋は、錆びた分の体積増加で爆裂し、コンクリートを内側から壊し始める。
どこのコンクリート工学の教科書にも少なくともこの3点が併記で書いてあるはずだぞ。
4点目に材料の安価さや自由な可塑性を上げる場合もあるが、最低この3点から始めないとな。
惜しいけどここも減点・・・
1
2
1と2は機序が逆。
塩基性で保護されているうちは水や空気が浸入しても腐食や爆裂は起きない。
だから、コンクリートの寿命は、最初の打設時にまともに造られてさえあれば、あとは「メンテのマメさ」と「中性化」で決まる。
表面仕上げ(タイルや塗料など。打ち放しコンクリートに見えても透明な撥水材が塗ってある)の再施工、ひび割れ補修、そもそも超過荷重や繰り返し応力に晒されないよう管理、など。
ひび割れがあると奥まで早くCO2が侵入して塩基性が失われていく。一番外側の鉄筋の外にどれだけコンクリートがかぶっているか(かぶり厚)がポイント。かぶり厚が大きすぎてもひび割れやすい。
中性化したコンクリートを元に戻すには、電気的に戻すにせよ薬剤で戻すにせよ、とんでもないコストがかかるので、再築できない文化財などにしか使えない。
よって中性化は、実質的に不可逆な劣化。これがコンクリート建物の寿命を決定する。
減価償却費を計算するために用いる財務省令での耐用年数は、鉄筋コンクリート住宅で47年。
施工ミスが少なく、メンテがマメで、海岸沿いでなければ、基本的に鉄筋コンクリート造建物は150年使える。
これが真の耐用年数。
証拠を挙げよう。
国の研究機関である建設技術研究所、によるBCJ技研レポート第6号2024
https://www.bcj.or.jp/news/detail/363/
注目は第5ページ。
web上で公開されていない本書の方含めて要約すると、
・平均築年数49.2 年、過半数が築50 年超の既存RC 造建築物200 棟を診断した結果、現時点での「残存耐用年数」が100年を超えると評価されたものが全体の59%を占めた。
・すなわち、既存RC 造の約6 割は築後150 年はもつということが示された。
・古いRC造より、むしろモルタル仕上げしていない(乾式や撥水材仕上げなどの)近年のRC造の方が中性化の進行が早い。
ということ。これは、
・中性化の速度は時間の1/2乗に比例する。
・たとえば築50年の既存建築物で中性化が10mm進行していたなら、適切な管理を続ける限り中性化はその後50年間で3mm未満(最初の50年間の3割未満)しか進まない。
といった知見を積み重ねた結果見えてきたもの。
すでに新築では100年コンクリート、200年コンクリートを目指すようになりつつあるが、昔に造られたRC建築物でも、真面目に造ってあって、ずっとちゃんとメンテしてれば築150年は目指せるのだ。
三田の変なビル造った人が、普通は50年だがこのビルのコンクリートは200年持つ!とか自分で騒いでるけど、工学的には別に何も大したことしてない。
古代ローマのコンクリートは化学反応が少し違うが、そこは寿命を決める上で大きな差ではない。
ローマンコンクリートは無筋。鉄筋が入っていない。だから中性化したとしても大きな欠陥にはならない。
ただし最初に書いたようにコンクリートだけでは引っ張りに弱い。
だからローマの構造物は、すべての部分が圧縮だけで構造が成立するように、アーチ状にかけたり、ドーム状にしたり、壁をとてつもなく分厚く、柱を太くしてある。
ダムが上から見るとアーチ状になってるのは古代ローマの遺跡と同じ理屈なんだよ。
鉄筋コンクリートの発明は、薄くて軽くて引っ張りや曲げにも強い構造を可能にした。
しかし、逆に言うと1000年単位での寿命を諦めて、せいぜい150年~200年くらいの寿命にすることで実現したんだ。
ダムや、1000年持たせたいモニュメントや、100000年持たせなきゃいけない放射性廃棄物保管庫には、鉄筋コンクリートは向かない。
施工期間が、アスファルト(=アスコン)の方が短いから、安いからだと元増田は書いてるが、他にもいろんな観点がある。
アメリカの都市部では、コンクリート(=セメントコンクリート)で路面を造ることが多い。
高コストで採用されない高流動コンクリートの話があったが、そもそも鉄筋コンクリート自体も発明当初は高コストで嫌われて使われなかった。
特許が切れて技術が枯れて、おかげで今の低廉で入手しやすいコンクリートがある。
前にバズってたように、環境負荷の大きい生コンプラントが、常にどの地区にもある現在の状態が、いつまで維持できるかね・・・。
他にも超高強度コンクリートなど、コンクリート工学の発明は多い。
鉄筋の代わりに、化学的に安定なガラスなどの繊維を混ぜたコンクリートなんか、とてつもない強度になるし、やり方によっては鉄筋必要ない。
こんなプロンプトでDeepResearchがどんなレポートを出せるか試せますか?
あと、聞き返されたら
「欧米、中国、日本を中心に。余裕があればG12やその他必要だと思える国や地域も含む。国や地域を明記せよ」、「余裕があれば貨幣、法律、民主主義、ガラス、鉄、火薬、アルミニウム、アンモニア、プラスチックなどのレベルの発明も含めよ。国や地域を明記せよ」
とか返してみて下さい。これ以外の文脈で聞き返されたら「おまかせします」か元増田様の興味の範囲で好みにアレンジして下さい。
# 技術動向調査要請プロンプト(2025-2027年フォーカス)
以下の要件を厳密に満たす調査分析を実施せよ。各項目の出力形式を厳守し、客観的根拠に基づく定量的評価を優先すること。
## [【分析要件】](pplx://action/followup)
- 実用化時期:2025-2027年に商用化/社会実装が見込まれる
- 影響規模:全球GDPの0.5%以上に影響または10億人以上の生活に波及
R = \frac{(P_t \times 0.3) + (F_c \times 0.4) + (M_r \times 0.3)}{10} \times 100(%)
3. 影響評価軸:
## [【出力形式】](pplx://action/followup)
### [個別技術分析テンプレート](pplx://action/followup)
分野 | 指標 | 2025 | 2026 | 2027 |
------ | ------ | ------ | ------ | ------ |
経済 | 生産性向上率 | 3.2% | 5.1% | 7.8% |
社会 | 代替労働力率 | 12% | 18% | 25% |
技術 | 故障間隔時間 | 400h | 1200h | 3000h |
### [歴史的変遷分析要請](pplx://action/followup)
T_{evolution} = \sum_{n=1}^{5} \frac{I_{tech}}{S_{society}}
時代 | 期間 | 核心技術 | 文明影響度 |
------ | ------ | ---------- | ------------ |
農業革命 | BC10,000 | 灌漑技術 | 定住社会形成 |
産業革命 | 1760-1840 | 蒸気機関 | 都市化加速 |
デジタル革命 | 1947-2000 | トランジスタ | 情報民主化 |
AI融合期 | 2020- | 神経形態チップ | 意思決定分散化 |
40代後半。入社以来素材の開発やって25年。新製品もかなり出したし特許もかなり書いた。この仕事は向いてると思ったし会社の評価も悪くなかった。去年の7月に昇進して部下4人と俺と派遣さん1人の部署の管理職になった。ありえん忙しくて自分で開発やるのは早々に諦めて、部下のサポートと管理職仕事ばかりやってる。部下はみんな優秀でやりやすい。部署としても業績はいい。でもどうにも仕事が嫌だ。上への進捗報告とか行政への許認可手続きとかクソほどつまらない。AIのこともいくら勉強してもよくわからん。面白そうな開発案件を部下に任せて相談受けて、やらせてうまくいったら部下の手柄、イマイチなら俺の責任。ミドルエイジクライシスかな。
LLMって特許とかないの?って思いました