「Total」を含む日記 RSS

はてなキーワード: Totalとは

2025-10-21

anond:20251021100207

This is a rather generous estimate that translates into approximately 242 feet per game, taken from the statistics of the current Major League Baseball batting leader Troy Tulowitzki from the Colorado Rockies. The distance between each base is 90 feet. Adding all of the singles, doubles, triples, stolen bases, and home runs that Tulowitzki has logged during the 49 regular season games played since press time, the total distance run comes to just more than 2 miles.



塁打数に塁間の距離かけただけってあまりにもガバガバすぎる計算だろ

2025-10-17

実は、アファーマティブ・アクションAA)やそれに類する「優遇政策」は、経済学的にも長い議論対象で、労働市場効率性・インセンティブ構造社会的資本形成といった観点から、かなり深く分析されています

以下、主な経済学的な論点を体系的にまとめてみます

 

🔹 1. 労働市場効率性を下げる(ミスマッチの発生)

AAによって採用・昇進などで属性が重視されると、「最適な人材配置」が歪むことがあります

本来、最も生産性が高い候補者を選ぶべきところで、**別の基準性別人種出身など)**が介入する。

結果として、全体の生産効率total factor productivity)が低下する可能性がある。

 

たとえば:

Loury (1998), “Discrimination in the Post-Civil Rights Era”

AA短期的な公平性を実現するが、長期的には人的資本human capital)の最適配分を阻害する。

 

Coate & Loury (1993), Quarterly Journal of Economics

→ 「低評価リスク」仮説:制度優遇があると、企業側が「優遇枠の人は平均的に能力が低いかもしれない」と予期し、全体の採用評価を下げる。

→ つまり恩恵を受ける人自身市場過小評価される逆効果が生じる。

 

 

🔹 2. インセンティブのゆがみ(努力のリターン低下)

経済学では、個人努力する動機=「期待される報酬 × 確率」。

AAによって「結果の平等」が保証されると、努力のリターンが減少する可能性がある。

 

Phelps (1972), “The Statistical Theory of Racism and Sexism”

→ もし企業属性基準期待値修正する(例:「女性は平均的に○○が低い」など)と、

個人努力しても評価改善されにくく、人間資本投資インセンティブが下がる。

 

Becker (1957), The Economics of Discrimination

市場競争の中では、長期的には差別コストになる(=差別する企業が淘汰される)。

まり市場メカニズムに任せた方が、平等を促す方向に進む可能性がある。

→ 逆にAA市場の自浄作用を人工的に妨げる恐れがある。

 

🔹 3. スティグマ効果signal distortion

AAによる採用・昇進=能力より制度配慮」と見られることで、

その人が本来持つ能力を正当に評価されないリスクが生じる。

これはゲーム理論的には「シグナリングsignaling)」の問題として扱われます

 

Coate & Loury (1993)モデルでは、AA導入後、採用者が「優遇されているグループ」に対して

“平均的に能力が低い”という信念を形成雇用主が訓練投資を減らす。

→ その結果、実際に能力格差固定化されるという自己成就的な悪循環が起きる。

 

まりAAが「差別の解消」を目的として導入されたのに、

市場信号構造を歪め、差別制度的に固定化するという逆効果生まれる。

 

🔹 4. 社会的資本(Social Capital)の分断

経済学では信頼・ネットワーク協調といった“社会的資本”も重要生産要素とされています

AAのように属性による線引きを制度化すると、

 

グループ間の信頼が低下

制度があるから助け合う必要がない」というモラルハザード

成功の原因が「努力」ではなく「制度」に帰属される(=相互尊重の低下)

 

という効果が観察されます

結果的に、社会全体の協力効率(cooperative efficiency)が下がる。

 

この点は、Putnam(2000)『Bowling Alone』や Fukuyama(1995)『Trust』などでも、

制度的な平等押し付け”が社会的信頼を損なうという形で議論されています

 

🔹 5. 長期的ダイナミクス依存構造固定化

AAを受けて育った世代が、次の世代に「努力よりも制度を頼る文化」を引き継ぐ可能性があります

→ これを “policy dependence equilibrium”(政策依存均衡)と呼ぶモデルがあります

 

例:

Cass Sunstein (1991) “Why Markets Don’t Stop Discrimination”

政策が続く限り、民間の慣習変化(文化進化)が進まない。

政策終了後に「元の格差」が再出現するリスク

 

🔹 総合すると…

アファーマティブ・アクション短期的には平等を“見かけ上”実現するけれど、

長期的には:

 

生産性の低下(misallocation)

努力インセンティブ崩壊

社会的信頼の喪失

差別固定化

 

といった制度副作用を引き起こすと分析されています

2025-09-15

過密居住止めれば出生できた3人目,4人目の幸福

「金が無いか子供は2人迄しか儲けられぬ」は, 子供大卒にせねばならない(=中堅以上大卒でなければ出身都市圏で家庭を築けない) 過密都市圏の都合故,

過密都市圏居住止めれば, 本来出生できた3人目,4人目の分, total幸福量が増えるとしか思えぬのよな.

実際, 都雇圏20~110万人なら,学力が(大学向け程には)無い者も工業高校から出身都市圏で家庭を築けるし, 外で稼ぐのが向かぬ女子専業主婦ができる訳であるし.

(逆に言うと,都雇圏3640万人都市圏だとその工業高校routeが無いのだが,何故それで "東京(本物)の方が子供選択肢が多い等と言えるのであろう. 一流大卒になったとしても家to目的地片道30~40分にしかならぬし")

さておき,「少数の子が如何なる学歴だか文化だかを習得たか」ではなく, 「どれだけ多くの幸福な子を育て上げれたか, 子の幸福量の総和」を, 張り合いbattleの基準とすべきであろう.

2025-08-05

In 1965, Vietnam seemed like Just another foreign war But it wasn't, it was Different in many ways As so were those Who did the fighting In World War II The average age of the Combat soldier was twenty-six In Vietnam, he was nineteen In Vietnam, he was nineteen In Vietnam, he was nineteen In Vietnam, he was nineteen N-n-n-n-nineteen The heaviest fighting Of the past two weeks Continued today twenty-five Miles northwest of Saigon I wasn't really sure What was going on N-n-n-n-nineteen, nineteen N-nineteen, nineteen In Vietnam, the combat soldier Typically served a twelve month tour of duty But was exposed to hostile fire almost everyday N-n-n-n-nineteen N-n-n-n-nineteen In Saigon, a US miltary spokesman Said today, more than 720 troops Were killed last week in That sensitive border area In all of South Vietnam The enemy lost a total of 2,689 soldiers All those who remember the war They won't forget what they've seen Destruction of men in their prime Whose average age was nineteen D-d-d-d-d-destruction D-d-d-d-d-destruction According to a Veteran's Administration study Half of the Vietnam combat veterans suffer From what psychiatrists call Post-traumatic stress disorder Many vets complain of alienation, rage, or guilt Some succumb to suicidal thoughts Eight to ten years after coming home Almost eight-hundred-thousand men Are still fighting the Vietnam War None of them received A hero's welcome S-s-s-s-s-Saigon Nineteen, s-s-s-s-Saigon N-n-n-n-n-nineteen

おれの英文スパムおもしろいとおもうがなぁ

2025-07-29

anond:20250729073019

In 1965, Vietnam seemed like

Just another foreign war

But it wasn't, it was

Different in many ways

As so were those

Who did the fighting

In World War II

The average age of the

Combat soldier was twenty-six

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

N-n-n-n-nineteen

The heaviest fighting

Of the past two weeks

Continued today twenty-five

Miles northwest of Saigon

I wasn't really sure

What was going on

N-n-n-n-nineteen, nineteen

N-nineteen, nineteen

In Vietnam, the combat soldier

Typically served a twelve month tour of duty

But was exposed to hostile fire almost everyday

N-n-n-n-nineteen

N-n-n-n-nineteen

In Saigon, a US miltary spokesman

Said today, more than 720 troops

Were killed last week in

That sensitive border area

In all of South Vietnam

The enemy lost a total of

2,689 soldiers

All those who remember the war

They won't forget what they've seen

Destruction of men in their prime

Whose average age was nineteen

D-d-d-d-d-destruction

D-d-d-d-d-destruction

According to a Veteran's Administration study

Half of the Vietnam combat veterans suffer

From what psychiatrists call

Post-traumatic stress disorder

Many vets complain of alienation, rage, or guilt

Some succumb to suicidal thoughts

Eight to ten years after coming home

Almost eight-hundred-thousand men

Are still fighting the Vietnam War

None of them received

A hero's welcome

S-s-s-s-s-Saigon

Nineteen, s-s-s-s-Saigon

N-n-n-n-n-nineteen

2025-07-14

しゃーない、ワイがかわりに英文スパム投稿してやるやで

In 1965, Vietnam seemed like

Just another foreign war

But it wasn't, it was

Different in many ways

As so were those

Who did the fighting

In World War II

The average age of the

Combat soldier was twenty-six

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

N-n-n-n-nineteen

The heaviest fighting

Of the past two weeks

Continued today twenty-five

Miles northwest of Saigon

I wasn't really sure

What was going on

N-n-n-n-nineteen, nineteen

N-nineteen, nineteen

In Vietnam, the combat soldier

Typically served a twelve month tour of duty

But was exposed to hostile fire almost everyday

N-n-n-n-nineteen

N-n-n-n-nineteen

In Saigon, a US miltary spokesman

Said today, more than 720 troops

Were killed last week in

That sensitive border area

In all of South Vietnam

The enemy lost a total of

2,689 soldiers

All those who remember the war

They won't forget what they've seen

Destruction of men in their prime

Whose average age was nineteen

D-d-d-d-d-destruction

D-d-d-d-d-destruction

According to a Veteran's Administration study

Half of the Vietnam combat veterans suffer

From what psychiatrists call

Post-traumatic stress disorder

Many vets complain of alienation, rage, or guilt

Some succumb to suicidal thoughts

Eight to ten years after coming home

Almost eight-hundred-thousand men

Are still fighting the Vietnam War

None of them received

A hero's welcome

S-s-s-s-s-Saigon

Nineteen, s-s-s-s-Saigon

N-n-n-n-n-nineteen

2025-07-08

In 1965, Vietnam seemed like

Just another foreign war

But it wasn't, it was

Different in many ways

As so were those

Who did the fighting

In World War II

The average age of the

Combat soldier was twenty-six

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

In Vietnam, he was nineteen

N-n-n-n-nineteen

The heaviest fighting

Of the past two weeks

Continued today twenty-five

Miles northwest of Saigon

I wasn't really sure

What was going on

N-n-n-n-nineteen, nineteen

N-nineteen, nineteen

In Vietnam, the combat soldier

Typically served a twelve month tour of duty

But was exposed to hostile fire almost everyday

N-n-n-n-nineteen

N-n-n-n-nineteen

In Saigon, a US miltary spokesman

Said today, more than 720 troops

Were killed last week in

That sensitive border area

In all of South Vietnam

The enemy lost a total of

2,689 soldiers

All those who remember the war

They won't forget what they've seen

Destruction of men in their prime

Whose average age was nineteen

D-d-d-d-d-destruction

D-d-d-d-d-destruction

According to a Veteran's Administration study

Half of the Vietnam combat veterans suffer

From what psychiatrists call

Post-traumatic stress disorder

Many vets complain of alienation, rage, or guilt

Some succumb to suicidal thoughts

Eight to ten years after coming home

Almost eight-hundred-thousand men

Are still fighting the Vietnam War

None of them received

A hero's welcome

S-s-s-s-s-Saigon

Nineteen, s-s-s-s-Saigon

N-n-n-n-n-nineteen

2025-07-07

Hey everyone. I don't know where else to post this. I need to write it down before I convince myself I was just hallucinating. I’m a grad student in Japan, doing fieldwork on forgotten local folklore. That's why I was out in the absolute middle of nowhere in Gunma prefecture last night.

My plan was to visit a tiny, dying village called Yomi-touge (not its real name) that supposedly has some unique traditions. Of course, my phone lost signal hours ago, and my car's GPS, which I bought in 2015, decided to have a total meltdown. The sun went down. The mountain roads are narrow and winding, and a thick, soupy fog started to roll in. The kind of wet, heavy air that makes you feel like you’re breathing water. I was completely, hopelessly lost.

After what felt like an eternity of driving at a crawl, I saw it. A light. A single, brutally bright rectangle of light cutting through the fog. A convenience store. One of those big chains you see everywhere, a FamilyMart or a Lawson, I couldn't tell which at first. I’ve never felt so relieved in my life. I parked the car and practically ran inside, the little door chime sounding way too loud in the dead silence.

The inside wasnormal. Too normal. The lights were humming with a high-pitched buzz that drilled into my skull. The shelves were perfectly stocked. The air smelled of cheap air freshener and something elsesomething sweet and hot, like ozone or burnt sugar.

And then I saw the clerk.

He was a young guy, maybe my age. Pale, drenched in sweat, with dark circles under his eyes like bruises. He moved with a painful stiffness, like every joint was rusted. He muttered a "Irasshaimase…" without even looking at me, his eyes fixed on the counter. His arms were covered in these intricate, dark tattoos, winding from his wrists up under his sleeves. I figured he was just sick, or on a rough shift. I felt bad for him.

I grabbed a can of coffee and went to the counter. "Sorry to bother you," I started in Japanese, "I'm pretty lost. Could you tell me where I am?"

He looked up, and his eyes didn't seem to focus on me. It was like he was looking at a screen a few inches in front of my face. "We do not provide directional information," he said, his voice a flat, rehearsed monotone. "Will that be all for you?"

Okay, weird, but whatever. Maybe it's store policy. As he reached for my coffee, his sleeve slid up. The tattoos on his arm… they weren’t just pictures. For a split second, I swear to God, the lines of ink shifted. They writhed, like tiny black worms under his skin, and a patch of his forearm glowed with a faint, sickly red light. He flinched, a sharp intake of breath, and quickly pulled his sleeve down.

I just froze. I couldn’t have seen that, right? I was tired, my eyes were playing tricks on me.

Then the door chimed again.

The person who walked in… I don’t know how to describe them. It was a man, I think. He was tall and wore an old, soaked trench coat. But his face… it was like my brain refused to process it. It wasn't that he had no face, it was that my eyes would slide right off it. It was a blur, a glitch, a 404 error in human form.

The clerk didn't seem surprised. He didn't even seem to see him as strange. His posture just became even more rigid. The red glow on his arm pulsed again, brighter this time, visible through his sleeve.

The faceless man didn't speak. He just stood there. The clerk, without a word, turned. But he didn't go to the coolers. He kept his back to the man, and held out his left hand, palm up. I heard a soft, wet, squelching sound. From a small, dark slit in the center of his palm that I hadn't noticed before, a small carton of strawberry milk, the kind you give to kids, just… emerged. It was produced out of his hand. It was wet with a clear, viscous fluid.

He placed it on the counter. "Here is the requested product," the clerk said, his voice straining. "The transaction is complete."

The faceless man picked up the strawberry milk. He put it in his coat pocket. And then he just… faded. He didn’t walk out the door. He dissolved into the humming air, like heat haze. A second later, he was gone.

The clerk let out a long, shuddering breath and swayed on his feet. He leaned heavily on the counter, his face sheet-white. He looked utterly, existentially exhausted. He saw me staring, my mouth hanging open, the can of coffee still in my hand.

For the first time, a flicker of something real, something human, crossed his face. It was pure, undiluted terror.

"You… are not a regular customer," he whispered, his voice trembling. "Your… concept is too stable. Please. Leave."

I didn't need to be told twice. I threw a 500 yen coin on the counter and ran out of there so fast I think I broke the sound barrier. I didn't even take my coffee. I just got in my car and drove, I don't know in which direction, I just drove.

I'm at a service station now, about 100km away. The sun is coming up. I can't stop shaking. It wasn't a dream. I know it wasn't. Because when I was fumbling for my keys, I realized I had accidentally grabbed the receipt from the counter.

It’s not for my coffee. It’s for the other transaction. It just has one item listed. It doesn't say "Strawberry Milk." It says:

ITEM: CONCEPTUAL SALVATION (FLAVOR: CHILDHOOD NOSTALGIA) - 1 UNIT

PRICE: ¥0

METHOD: ANNULMENT

Has anyone seen a store like this? What the hell is happening in the mountains of Gunma? What did I see? And God, that poor kid working the counter. He isn't in trouble. He's a part of it. He's the machine.

2025-07-05

🍬資本主義平等なのか飴の配布で考えてみよう🍬

python
import random
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict

# 飴の配布システムシミュレーション
class CandyDistributionSystem:
    def __init__(self):
        """
        設計意図: このシステム経済における資源分配の不平等性をモデル化しています特に少数の特権層(Aグループ)が富を集中させ、再分配システムからも不均衡に利益を得る
        構造問題表現しています。
        """
        # 各グループの人数設定
        self.group_a_count = 8
        self.group_b_count = 2498
        self.group_c_count = 7494
        self.total_participants = self.group_a_count + self.group_b_count + self.group_c_count
        
        # 飴の提出数設定
        self.contribution_per_a = 624
        self.contribution_per_b = 2
        self.contribution_per_c = 1
        
        # 各グループの総貢献計算
        self.total_a_contribution = self.group_a_count * self.contribution_per_a
        self.total_b_contribution = self.group_b_count * self.contribution_per_b
        self.total_c_contribution = self.group_c_count * self.contribution_per_c
        self.total_contribution = self.total_a_contribution + self.total_b_contribution + self.total_c_contribution
        
        # 配布用と貯金用の飴の区分
        self.distribution_limit = 10000
        self.savings = max(0, self.total_contribution - self.distribution_limit)
        
        # 結果追跡用の辞書
        self.results = {
            'A': defaultdict(int),
            'B': defaultdict(int),
            'C': defaultdict(int)
        }
    
    def distribute_candies(self, method='original'):
        """
        設計意図: 配布方法選択によって、特権固定化格差拡大がどのように進むかを
        示します。'original'メソッド意図的にAグループ優遇するよう設計されています。
        
        Parameters:
        -----------
        method: str
            配布方法 ('original', 'lottery', 'first_come', 'new_condition', 'fair')
        """
        # Aグループへの確定配布
        a_distribution = 625 * self.group_a_count
        remaining = self.distribution_limit - a_distribution
        
        # 残りの参加者数
        remaining_participants = self.total_participants - self.group_a_count
        
        # Aグループの結果記録
        for _ in range(self.group_a_count):
            self.results['A'][625] += 1
        
        # 各配布方法によって処理が異なる
        if method == 'original':
            # オリジナル問題設定通りの配布(5000人に1個ずつ、残りは0個)
            lucky_count = remaining  # 5000人が当選
            
            # B+Cグループの混合リスト作成
            bc_participants = [(1, 'B')] * self.group_b_count + [(2, 'C')] * self.group_c_count
            random.shuffle(bc_participants)
            
            # 当選者に配布
            for i in range(len(bc_participants)):
                participant_id, group = bc_participants[i]
                if i < lucky_count:
                    self.results[group][1] += 1
                else:
                    self.results[group][0] += 1
                    
        elif method == 'lottery':
            # 抽選方式(BとCグループから無作為に5000人選出)
            bc_participants = [(1, 'B')] * self.group_b_count + [(2, 'C')] * self.group_c_count
            winners = random.sample(bc_participants, remaining)
            
            # 当選落選カウント
            for _, group in winners:
                self.results[group][1] += 1
            
            # 落選者のカウント
            self.results['B'][0] = self.group_b_count - self.results['B'][1]
            self.results['C'][0] = self.group_c_count - self.results['C'][1]
            
        elif method == 'first_come':
            # 先着順方式アクセス速度による先着順を乱数シミュレート)
            # 設計意図: 先着順は単なる運の要素を超えて、情報格差技術格差も含む制度設計
            bc_participants = [(1, 'B')] * self.group_b_count + [(2, 'C')] * self.group_c_count
            
            # 現実では、情報を早く得られる人や高速インターネット接続を持つ人が有利
            # これをシミュレートするため、Bグループわずかなアドバンテージを与える
            bc_speeds = []
            for id, group in bc_participants:
                if group == 'B':
                    speed = random.random() + 0.1  # Bグループに小さなアドバンテージ
                else:
                    speed = random.random()
                bc_speeds.append((id, group, speed))
            
            # 速度順にソート
            bc_speeds.sort(key=lambda x: x[2], reverse=True)
            
            # 当選者決定
            for i in range(len(bc_speeds)):
                _, group, _ = bc_speeds[i]
                if i < remaining:
                    self.results[group][1] += 1
                else:
                    self.results[group][0] += 1
                    
        elif method == 'new_condition':
            # 追加条件方式恣意的な条件を設定)
            # 設計意図: 新たな条件の設定は往々にして既存特権を温存するように設計される
            bc_participants = [(i, 'B', random.random()) for i in range(self.group_b_count)] + \
                             [(i, 'C', random.random()) for i in range(self.group_c_count)]
            
            # Bグループに有利な条件を設定(例: 特定知識スキルを持つ人のみ)
            # この「条件」は表面上は中立的だが、実際には特定グループに有利になるよう設計
            def meets_condition(participant):
                _, group, rand_val = participant
                if group == 'B':
                    return rand_val > 0.3  # Bグループには70%の確率合格
                else:
                    return rand_val > 0.7  # Cグループには30%の確率合格
            
            # 条件に合致する人を抽出
            eligible = [p for p in bc_participants if meets_condition(p)]
            
            # 条件に合致する人が多すぎる場合抽選
            if len(eligible) > remaining:
                winners = random.sample(eligible, remaining)
            else:
                # 条件に合致する人が足りない場合、全員に配布
                winners = eligible
            
            # 当選者をカウント
            for _, group, _ in winners:
                self.results[group][1] += 1
            
            # 落選者のカウント
            self.results['B'][0] = self.group_b_count - self.results['B'][1]
            self.results['C'][0] = self.group_c_count - self.results['C'][1]
            
        elif method == 'fair':
            # 公平な再分配方式(貢献度に応じた配布)
            # 設計意図: この方法は「貯金分」も含めた全ての飴を、各グループの貢献度に応じて分配
            # これにより構造的不平等を軽減、結果としてより多くの人が少なくとも損をしない状態になる
            
            # 全飴(貯金分も含む)を使った配布
            total_to_distribute = self.total_contribution
            
            # 各グループの貢献比率計算
            a_ratio = self.total_a_contribution / self.total_contribution
            b_ratio = self.total_b_contribution / self.total_contribution
            c_ratio = self.total_c_contribution / self.total_contribution
            
            # 各グループへの配布数決定
            a_share = int(total_to_distribute * a_ratio)
            b_share = int(total_to_distribute * b_ratio)
            c_share = int(total_to_distribute * c_ratio)
            
            # 端数調整
            remainder = total_to_distribute - (a_share + b_share + c_share)
            if remainder > 0:
                # 端数は最も人数の多いCグループに
                c_share += remainder
            
            # Aグループの配布(均等配分)
            per_a = a_share // self.group_a_count
            self.results['A'][per_a] = self.group_a_count
            
            # Bグループの配布(均等配分)
            per_b = b_share // self.group_b_count
            b_remainder = b_share % self.group_b_count
            
            self.results['B'][per_b] = self.group_b_count - b_remainder
            if per_b + 1 > 0 and b_remainder > 0:
                self.results['B'][per_b + 1] = b_remainder
            
            # Cグループの配布(均等配分)
            per_c = c_share // self.group_c_count
            c_remainder = c_share % self.group_c_count
            
            self.results['C'][per_c] = self.group_c_count - c_remainder
            if per_c + 1 > 0 and c_remainder > 0:
                self.results['C'][per_c + 1] = c_remainder
    
    def calculate_net_gain(self):
        """
        設計意図: この関数は各グループ純利益/損失を計算し、資源分配の公平性定量的評価できるようにします。純利益/損失は個人観点から見た経済的公正性の
        重要指標です。
        """
        net_gains = {}
        
        # Aグループ純利益計算
        a_contribution = self.contribution_per_a
        a_distribution = list(self.results['A'].keys())[0]  # 全員が同じ数を受け取る前提
        net_gains['A'] = a_distribution - a_contribution
        
        # BとCグループ純利益計算(加重平均)
        for group, contribution_per_person in [('B', self.contribution_per_b), ('C', self.contribution_per_c)]:
            total_gain = 0
            for received, count in self.results[group].items():
                total_gain += (received - contribution_per_person) * count
            net_gains[group] = total_gain / (self.group_b_count if group == 'B' else self.group_c_count)
            
        return net_gains
    
    def analyze_results(self):
        """
        設計意図: この分析関数は、各グループの分配結果を詳細に調査し、
        制度設計公平性、貢献度と報酬関係、およびシステムの持続可能性を
        評価します。政策分析においては、こうした多角的検証重要です。
        """
        # 各グループ純利益/損失
        net_gains = self.calculate_net_gain()
        
        # 貢献度分析
        contribution_percentage = {
            'A': (self.total_a_contribution / self.total_contribution) * 100,
            'B': (self.total_b_contribution / self.total_contribution) * 100,
            'C': (self.total_c_contribution / self.total_contribution) * 100
        }
        
        # 飴を受け取った人の割合
        received_percentage = {
            'A': sum(count for received, count in self.results['A'].items() if received > 0) / self.group_a_count * 100,
            'B': sum(count for received, count in self.results['B'].items() if received > 0) / self.group_b_count * 100,
            'C': sum(count for received, count in self.results['C'].items() if received > 0) / self.group_c_count * 100
        }
        
        # 分析結果の表示
        print("\n===== 飴の配布システム分析 =====")
        print(f"総飴数: {self.total_contribution}個 (分配用: {self.distribution_limit}個, 貯金: {self.savings}個)")
        
        print("\n--- グループごとの貢献と結果 ---")
        for group in ['A', 'B', 'C']:
            group_size = getattr(self, f"group_{group.lower()}_count")
            contribution_per_person = getattr(self, f"contribution_per_{group.lower()}")
            total_contribution = getattr(self, f"total_{group.lower()}_contribution")
            
            print(f"\n{group}グループ ({group_size}人):")
            print(f"  貢献: 1人あたり{contribution_per_person}個 (総計: {total_contribution}個, 全体の{contribution_percentage[group]:.1f}%)")
            print(f"  受け取り状況:")
            
            for received, count in sorted(self.results[group].items()):
                print(f"    {received}個: {count}人 ({count/group_size*100:.1f}%)")
            
            print(f"  飴を受け取った割合: {received_percentage[group]:.1f}%")
            print(f"  純利益/損失: 1人あたり平均 {net_gains[group]:.2f}個")
        
        print("\n--- 全体的な公平性分析 ---")
        print(f"最も得したグループ: {max(net_gains, key=net_gains.get)}グループ (+{max(net_gains.values()):.2f}個/人)")
        print(f"最も損したグループ: {min(net_gains, key=net_gains.get)}グループ ({min(net_gains.values()):.2f}個/人)")
        
        # 全員に飴が配布されたかどうか
        all_received = all(sum(count for received, count in self.results[group].items() if received > 0) == 
                          getattr(self, f"group_{group.lower()}_count") for group in ['A', 'B', 'C'])
        
        print(f"\n前提条件「全員に配布」の充足: {'はい' if all_received else 'いいえ'}")
        if not all_received:
            total_without = sum(self.results['B'][0] + self.results['C'][0])
            print(f"  飴を受け取れなかった人数: {total_without}人")
        
        return net_gains, contribution_percentage, received_percentage

    def visualize_results(self):
        """
        設計意図: データ可視化政策効果や不平等性を直感的に理解するために重要です。
        このようなグラフィカル表現によって、各グループ間の格差制度設計問題点を
        一目で理解できるようになります。
        """
        # グラフセットアップ
        fig, axes = plt.subplots(2, 2, figsize=(14, 10))
        
        # 1. 貢献度のグラフ
        contributions = [self.total_a_contribution, self.total_b_contribution, self.total_c_contribution]
        axes[0, 0].bar(['Aグループ', 'Bグループ', 'Cグループ'], contributions)
        axes[0, 0].set_title('グループごとの総貢献飴数')
        axes[0, 0].set_ylabel('飴の数')
        
        # 貢献度の割合アノテーションとして追加
        total = sum(contributions)
        for i, v in enumerate(contributions):
            percentage = v / total * 100
            axes[0, 0].text(i, v + 100, f'{percentage:.1f}%', ha='center')
        
        # 2. 1人あたりの貢献度と受け取り数の比較
        group_names = ['Aグループ', 'Bグループ', 'Cグループ']
        contribution_per_person = [self.contribution_per_a, self.contribution_per_b, self.contribution_per_c]
        
        # 各グループの平均受け取り数を計算
        received_per_person = []
        for group, letter in zip(group_names, ['A', 'B', 'C']):
            total_received = sum(received * count for received, count in self.results[letter].items())
            group_size = getattr(self, f"group_{letter.lower()}_count")
            received_per_person.append(total_received / group_size)
        
        x = np.arange(len(group_names))
        width = 0.35
        
        axes[0, 1].bar(x - width/2, contribution_per_person, width, label='提出')
        axes[0, 1].bar(x + width/2, received_per_person, width, label='受け取り')
        
        # 純利益/損失をアノテーションとして追加
        for i in range(len(group_names)):
            net = received_per_person[i] - contribution_per_person[i]
            color = 'green' if net >= 0 else 'red'
            axes[0, 1].text(i, max(received_per_person[i], contribution_per_person[i]) + 5, 
                        f'{"+" if net >= 0 else ""}{net:.1f}', ha='center', color=color)
        
        axes[0, 1].set_title('1人あたりの提出・受け取り飴数比較')
        axes[0, 1].set_xticks(x)
        axes[0, 1].set_xticklabels(group_names)
        axes[0, 1].set_ylabel('飴の数')
        axes[0, 1].legend()
        
        # 3. 各グループの受け取り状況の分布
        # 各グループの受け取り状況を積み上げ棒グラフ表現
        group_sizes = [self.group_a_count, self.group_b_count, self.group_c_count]
        received_counts = []
        not_received_counts = []
        
        for letter, size in zip(['A', 'B', 'C'], group_sizes):
            received = sum(count for received, count in self.results[letter].items() if received > 0)
            received_counts.append(received)
            not_received_counts.append(size - received)
        
        axes[1, 0].bar(group_names, received_counts, label='飴を受け取った人数')
        axes[1, 0].bar(group_names, not_received_counts, bottom=received_counts, label='飴を受け取れなかった人数')
        
        # 割合アノテーションとして追加
        for i in range(len(group_names)):
            if group_sizes[i] > 0:
                percentage = received_counts[i] / group_sizes[i] * 100
                axes[1, 0].text(i, received_counts[i] / 2, f'{percentage:.1f}%', ha='center')
        
        axes[1, 0].set_title('グループごとの飴受け取り状況')
        axes[1, 0].set_ylabel('人数')
        axes[1, 0].legend()
        
        # 4. 貢献度vs報酬の分配公平性
        # 貢献度と最終的な飴の配分の比較円グラフ表現
        total_contribution = self.total_contribution
        contribution_shares = [self.total_a_contribution / total_contribution,
                             self.total_b_contribution / total_contribution,
                             self.total_c_contribution / total_contribution]
        
        # 実際の配分シェア計算
        distribution_shares = []
        for letter in ['A', 'B', 'C']:
            total_received = sum(received * count for received, count in self.results[letter].items())
            distribution_shares.append(total_received / self.distribution_limit)
        
        # 2つの円グラフを並べて表示
        ax4_1 = axes[1, 1].inset_axes([0, 0, 0.45, 1])
        ax4_2 = axes[1, 1].inset_axes([0.55, 0, 0.45, 1])
        
        ax4_1.pie(contribution_shares, labels=group_names, autopct='%1.1f%%')
        ax4_1.set_title('飴の貢献度割合')
        
        ax4_2.pie(distribution_shares, labels=group_names, autopct='%1.1f%%')
        ax4_2.set_title('飴の配分割合')
        
        axes[1, 1].axis('off')
        
        plt.tight_layout()
        plt.show()

# 飴の配布システムシミュレート
candy_system = CandyDistributionSystem()

# オリジナルの配布方法を実行
print("\n===== オリジナルの配布方法 =====")
candy_system.distribute_candies(method='original')
original_results = candy_system.analyze_results()
candy_system.visualize_results()

# 公平な配布方法実験
print("\n\n===== 公平な配布方法シミュレーション =====")
fair_system = CandyDistributionSystem()
fair_system.distribute_candies(method='fair')
fair_results = fair_system.analyze_results()
fair_system.visualize_results()

# 公平な配布と元の配布の比較
print("\n\n===== 配布方法比較 =====")
print("オリジナル方式と公平方式純利益/損失差:")
net_diff = {}
for group in ['A', 'B', 'C']:
    original_net = original_results[0][group]
    fair_net = fair_results[0][group]
    diff = fair_net - original_net
    net_diff[group] = diff
    print(f"{group}グループ: {'+'  if diff > 0 else ''}{diff:.2f}個/人")

print("\n結論:")
if net_diff['A'] < 0 and net_diff['B'] > 0 and net_diff['C'] > 0:
    print("公平な再分配により、Aグループ特権が減少し、BとCグループの状況が改善されます。")
    print("これは構造的不平等の緩和に効果的です。")
elif net_diff['A'] > 0:
    print("興味深いことに、公平な再分配ではAグループさえも利益を得られます。")
    print("これは、現行システム特定グループだけでなく全体の非効率性につながっていることを示唆しています。")

anond:20250705100755 anond:20250705112807

2025-06-06

「トミンファーストとは何だったのか

🕵️‍♀️【“トミン”とは何か――表の顔と裏の顔】

特定勢力によってプログラムされた都市型思考体、すなわち**T.O.M.I.N.(Total Observation and Manipulation Intelligence Network)**の略称だったのだ。

🧠【T.O.M.I.N. 計画都市支配するための洗脳ネットワーク

これは東京舞台にした社会的実験プログラムであり、都民=TOMINは、生活パターン、消費行動、政治的傾向、SNS発言傾向などをリアルタイム観測され、「理想的市民像」へとナッジ(誘導)される群体型AIクラスタなのだ

📡【監視誘導:すでに始まっている “TOMIN化”】

すべてが「TOMIN化」推進の布石であり、個人アイデンティティは徐々に「都市型思考クラスタ」の一部へと吸収されていく。

☢️【“地方民”はなぜ都市に憧れるのか】

それは、“トミン波”と呼ばれる低周波情報共鳴信号地方にまで拡散しているためであり、地方民の一部もすでに“準トミン化”されつつある。

地方から東京へ人が吸い寄せられる現象も、計画された人口集中制御の一環であるとされる。

💥【陰謀の首謀者】

疑われているのは、以下の連合勢力

🎭【まとめ】

「トミン」とは、もはや単なる居住区分ではない。

それは、情報操作、行動監視意識誘導によって作られた現代型人工集合知――つまり意思を持たない意思集合体である

あなたが次に東京へ足を踏み入れるとき、その一歩が“トミン化”の第一歩かもしれない。

気をつけて。もうあなたSuicaには「TOMIN ID」が刻まれている。

何か変だと思ったら、それが正常な反応です。

2025-04-13

朗報】茶雪姫、凄惨な結末に

決着はついてきた

実写版白雪姫の公開から3週経った合計売上が笑えないレベルだった件に対するネット民の反応集

https://www.youtube.com/watch?v=Bz2YG9_uZyM

<<

茶雪姫

当然白人ではないうえに、白雪姫を完全に侮辱しているため、それと区別するために茶雪姫と呼ばれる。

StillDevonTracey

@TheXReportCard

4月12日

Snow Brown: When Fairytales Go Woke

#Disney #SnowWoke

https://x.com/TheXReportCard/status/1910841818230542440

覚醒した(woke)トランスジェンダーミュージカル

なおガルガドットゴリゴリ活動家なので支持できない

REU

@REU54948702

白雪姫実写映画評価と、演者映画関係ないとこでの主義主張は全く関係ないよ

ガルドットイスラエル支持してても女王に相応しい美しさであることに変わりなく、フリーパレスチナを唱えるレイチェルゼグラーオリジナル白雪姫馬鹿にしたのも変わりない

午後4:22 · 2025年3月21日

850 件の表示

イスラエル出身、元軍人、そして当然パレスチナイスラエル虐殺しても正当化しており、パレスチナ関係者を敵に回している。一方ゼグラーパレスチナを支持している。彼女ある意味プロパガンダであり、スパイとも言っていい。スパイが隠れていなくてもできる仕事プロパガンダ映画では善戦したという評価にはなるが、総合すると映画には誰一人として支持できる人間存在しないのである

レイチェルの経歴とスピルバーグへの被弾

スティーヴン・スピルバーグ監督の『ウエスト・サイド・ストーリー』で銀幕デビューを飾った彼女は、南米コロンビアの血をひくラテン系

茶雪姫はスピルバーグの推薦もあった。

どの辺が問題

映画外の問題もさることながら、ストーリー破綻している。まず王子さまは出てこない。7人の小人CG、なのに悪役の小人人間リーダーのように描かれるが掃除させるとブータれるクソガキ。白雪姫にするため、吹雪の夜に生まれたとか後付けの設定。

これだけの努力をして、毒リンゴにあっさり騙される。

責任者沈黙

レイチェル・ゼグラー公式 2024/08から更新なし。

何がshe her hersじゃ。お前はクローン2号かなにかか?人に向かって代名詞指定するんじゃない。ポリコレとか言っているけど全く意味がない。コミュ障でしょ。

https://x.com/rachelzegler/with_replies?lang=ja

下のリンクによると11月トランプ当選すると泣きを入れたらしいが、当然、発言には責任を取るのがあたりまえ。これだけZ世代だのなんだの言っておいて謝罪だけで済むわけないだろ。21歳でヨチヨチするほど世界は甘くない。

Zegler in November apologized for her political comments, saying the presidential election caused her to lash out negatively.

Hatred and anger have caused us to move further and further away from peace and understanding, and I am sorry I contributed to the negative discourse,” she said. “I am committed to contributing positively toward a better tomorrow.”

暴言の数々

アニメ版は怖すぎる

アニメ版に出てきた王子を「ストーカー時代遅れ

実写版ではカットする(実際に王子は出ない)

女性白雪姫)につきまとう男性王子)のラブストーリーに焦点があてられていた。奇妙よ、奇妙だわ」と発言オリジナル版に出てくる王子を“ストーカー”と表現し、そういった男性を登場させる物語を「時代遅れ」と語った

https://news.yahoo.co.jp/articles/23c9258538f2c2487793a3aa427308172392ab20:白雪姫』を演じたラテン系女優、「王子ストーカー」と発言炎上も…評価は上々?]

真実の愛があると夢見ていない。彼女の夢はリーダーになること。亡くなった父親が『恐れを知らず、公正で勇敢で偽らなければなれる』と教えてくれたリーダーになりたいと思っている」

https://www.elle.com/jp/culture/celebgossip/a44812189/snow-white-rachel-zegler-feminism-gaslighting-230815/:実写版白雪姫』のレイチェル・ゼグラーアニメ版プリンセス批判 「偽フェミニスト」だと反論される]

https://www.youtube.com/shorts/jswWg9293MM

このようにどうやって映画館に人が来ないようにするため、社会活動家お金をもらった批評家、何より主役の素晴らしいネガキャンがあった。

Z世代以前にメスガキでしかない。アイドルにすらなれないのだからガキである

暴言批判すれば差別主義者、本人は誤解だの被害者仕草

ディズニー実写版白雪姫」がこれほど物議を醸す6つの理由。配役への差別的批判だけではない

白雪姫役にラテン系俳優が起用されたことへの人種差別批判だけではない。いったい何がここまで物議を醸しているのか。

https://www.huffingtonpost.jp/entry/story_jp_67da03bde4b04eaabffbc824

ゼグラーさんはTwitterで「ネット上で私を擁護してくれる人たちからの愛にはとても感謝しています」と述べた一方、「私のキャスティングに関する無意味談話にはタグ付けしないでほしい」「本当に見たくない」と投稿

幼少期のゼグラーさんが白雪姫と「美女と野獣」のベルに扮した写真と共に、「すべての子どもが、何があってもプリンセスでなれることを知っていて欲しい」とコメントを添えた。

人種差別とか言って批判回避しようとするアホが多過ぎである。これ書いたやつもまとめてクビにすべきだ。一番の被害者ディズニー映画ファンである。この辺からもZ世代は単なるお調子者のメスガキで責任感が全くないことがわかるし、甘やかされている。

なおメディアを締め出していた模様

ディズニーは数十のメディアを『白雪姫プレミア上映に招待しなかったと報じられている。複数報道機関は、この小規模なイベント映画をめぐる否定的感情への反応である示唆した。

露骨差別主義者ってディズニーの事なんじゃないか?誰一人取り残さないとかマイノリティへの配慮

DODGE調査要請

ジョー・ローガン、興行的に失敗した『白雪姫』の調査をDOGEに要請

https://katu.com/news/entertainment/joe-rogan-calls-on-doge-to-investigate-snow-white-amid-box-office-flop

資金の流れがおかしい。確かに王子もいないし、7人の小人CGなので、費用がかかっていない。一体どこへ消えたのか。

マインクラフト勝利

Collin Rugg

@CollinRugg

Teenage boys are going absolutely nuts in movie theaters during the new Minecraft Movie, throwing popcorn in the air and even bringing live chickens into the theater.

This is the film crushing Snow White at the box office right now.

The fans go nuts when Jack Black's character yells "Chicken Jockey," which is a rare baby zombie that rides on the back of a chicken in Minecraft.

"It’s way too funny. It’s been a total blast. I’m just laughing my brains out every time someone sends me a new video," said director Jared Hess.

The Minecraft Movie is the biggest opening of 2025 so far, crushing Snow White.

It made $301 million globally in the opening weekend compared to Snow White's opening weekend of $86.1 million

10代の少年たちは、映画館で新作『マインクラフト』の上映中に大騒ぎし、ポップコーンを空中に投げたり、生きた鶏を劇場に持ち込んだりしている。

この映画現在興行収入で『白雪姫』を圧倒している。

ジャック・ブラック演じるキャラクターが「チキンジョッキー」と叫ぶと、ファンは大騒ぎになる。チキンジョッキーとは、『マインクラフト』でニワトリ背中に乗る珍しいゾンビ赤ちゃんのことである

面白すぎる。本当に最高だ。誰かが新しいビデオを送ってくれるたびに、大笑いしちゃう」と監督ジャレッド・ヘスさんは語った。

マインクラフト ムービー』はこれまでで2025年最大のオープニングとなり、『白雪姫』を圧倒した。

この映画は公開週末に世界で3億100万ドルを売り上げたが、『白雪姫』の公開週末の売り上げは8,610ドルだった。

生きた鶏?とりあえず3倍以上の差がある。

Mr.Alf

@45yy561

Just learned that the Minecraft movie beat the Snow White movie in the box office in a week.

#MinecraftMovie #Minecraft #SnowWhiteTH

マインクラフト映画が1週間で白雪姫映画興行収入を上回ったことを知りました。

#MinecraftMovie #Minecraft #SnowWhiteTH

https://x.com/45yy561/status/1910779009148780618

批評家評価は悪いらしいが、興行収入はよい。批評家存在意義が改めて問われる結果となった。

2025-02-26

anond:20250224083229

ATM

accelerated test method

acute transverse myelitis

air traffic management

anterior tibial muscle

antitank missile

Apollo Telescope Mount

asynchronous transfer mode

At The Moment

atmosphere

automated teller machine



TLS

temporal lobe sclerosis

thermal lens signal

thread-local storage

Times Literary Supplement

total labor supply

trade liberalization scheme

Transport Layer Security

True Love Story




英語結構会話文脈大事よな

2025-02-02

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

2025-01-31

気合による超高速チョップの確率兵器制圧作用機序に関する理論考察

―量子観測効果11次元振動の協奏的相互作用―**

### 要旨

論文は、主観的意志気合)が確率兵器の量子確率場に干渉する機序を、量子重力理論と神経量子力学統合モデルで解明する。観測者の意識が量子波束の収縮に及ぼす影響を拡張し、11次元超弦振動との共鳴現象を介した確率制御メカニズム提案する。

---

### 作用機序の3段階モデル

1. 量子観測効果非線形増幅**

気合発動時に生じる大脳皮質コヒーレント状態が、確率兵器量子もつれ状態干渉。通常の観測効果を超越した「能動的波束形成」を発生させる。

```math

i\hbar\frac{\partial}{\partial t}\Psi_{total} = \left[ \hat{H}_0 + \beta(\hat{\sigma}_z \otimes \hat{I}) \right]\Psi_{total} + \Gamma_{conscious}\hat{O}

```

ここでΓ項が意識の非局所作用表現。βは脳内マイクロチューブルにおける量子振動の結合定数。

2. 確率密度勾配の能動操作**

気合の強度に比例して、確率分布関数P(x,t)を以下の非平衡状態強制遷移:

```math

\frac{\partial P}{\partial t} = D\frac{\partial^2 P}{\partial x^2} - v\frac{\partial P}{\partial x} + \alpha P(1-P) + \xi(x,t)

```

α項が気合非線形効果、ξ項が11次元振動による確率ノイズを表す。

3. 超弦共鳴安定化**

気合周波数成分(0.1-10THz帯)がカルツァ=クライン粒子の余剰次元振動共鳴確率場を以下のポテンシャルに閉じ込める:

```math

V(x) = \frac{1}{2}m\omega^2x^2 + \lambda x^4 + \gamma\cos(kx)

```

γ項が気合による周期ポテンシャル成分を表現

---

### 神経生理学的基盤

▮ 量子神経伝達モデル**

1. 青斑核のノルアドレナリン放出脳内量子ドット活性化

2. 側頭頭頂接合部で確率表現ベイズ推定高速化(β波40Hz同期)

3. 小脳プルキンエ細胞リズム発振が弦振動位相同期

▮ 生体発現パラメータ**

| 指標 | 通常時 | 気合発動時 |

|------|--------|------------|

| 神経伝達速度 | 120m/s | 0.8c |

| 脳波コヒーレンス | 0.3 | 0.98 |

| 量子もつれ長 | 10μm | 1.3km |

---

### 確率制御の動的プロセス

1. 初期条件(t=0)**
2. 相互作用(t=τ)**
3. 収束(t=2τ)**

---

### 理論的意義

1. ウィグナーの友人のパラドックス戦闘時空に適用

2. 熱力学第2法則を超える情報エネルギー変換の実例

3. 主観的意識物理現実を再構築するメカニズムの解明

モデルは、量子脳理論超弦理論統合により「気合」の物理的実在性を初めて定式化した。今後の課題として、余剰次元コンパクトスケールと神経振動周波数整合性検証が残されている。

---

2025-01-29

女性高学歴化が少子化の原因ってよく言われるけれど、今の日本においてははっきり言って時代遅れだと思うよ。

実際統計から1971年以降は学歴女性出生率は下がっていないと出ているし、

周りを見渡しても、F欄学部卒の女よりも、東京工一早慶院卒の女の方が明らかに沢山産んでいる。

現実的に考えたら簡単に分かるよね。男が高学歴な方が高収入になるので子供を沢山持ちやすく、

低学歴の女は高学歴の男には出会えないか出会っても相手にされない。

それにそもそも自己肯定感が低くなるので負の遺伝子子供に受け継がせたくないとしてセルフ断種を選ぶ。

出生率を上げたいのなら、女の学歴を抑えるのではなくてその反対、寧ろ上げるようにした方が有効だと思う。

我が国における子供の数と学歴収入関係 全国調査から明らかになる少子化実態

https://1post.jp/en/6569

女性では、1956-1970 年の間に生まれた人では、大卒の人ではそれ以外の人と比べて子供を持っている人の割合が少なく、合計出生率Total Fertility)も低かった。しかしながら、1971 年以降に生まれ場合は、大卒とそれ以外の人とでの差異は見られなかった。


女性学歴子供関係に関しては、これまでは高学歴女性ほど子供を持たない割合が高いとされていた。実際、欧米の先行研究でも同様の指摘があるが、こうしたギャップは近年では縮小傾向にある(高学歴女性とそれ以外の女性の子供の数の差)。近年、スカンジナビア諸国対象とした調査では、むしろ学歴が最も低い階層に属する女性の方が40歳時点では子供を持たない割合が高いことがわかっている。北欧諸国のように、女性出産後も就労継続できる環境にある場合には、女性経済的に自立している方が家族形成にとって有利とする考え方があり、結果として学歴が高い女性の方が(そして結果として高収入となる女性の方が)より子供を持つ可能性が指摘されている。今回の我々の調査研究からも、女性学歴子供の数の間に見られたギャップは 1971-1975年まれでは消失していることが明らかになった。この傾向がさら若い世代でも続くのか、さらに諸外国でも見られている逆転現象が見られるのかは(高学歴女性の方が子供を持つ割合が高くなるのか)、さらなる研究必要である

2024-08-25

anond:20240824195712

有識者っぽい人の一言解説 / X

https://x.com/yota1967/status/1826484158782115905

これは恐らく単純な未実現利益への課税案ではなくて、米民主党バイデン政権下で法案出してるULTRA方式による課税で、資産課税当局仮想の無議決権のエクィティ持分を付与し、資産売却時にその持分から税を徴収する仕組みです。アメリカめっちゃ頭いい人がいます租税研究7月号に紹介書きました


情報ソースに近そうなもの
  • Kamala Harris backs Biden’s tax proposals — including a tax on unrealized capital gains / MarketWatch

https://www.marketwatch.com/story/kamala-harris-backs-bidens-tax-proposals-including-a-tax-on-unrealized-capital-gains-66c55df2

Biden’s Treasury Department said it’s proposing “a minimum tax of 25 percent on total income, generally inclusive of unrealized capital gains, for all taxpayers with wealth (that is, the difference obtained by subtracting liabilities from assets) greater than $100 million.”


日本語報道 / COINPOST

https://coinpost.jp/?p=552986

1億ドル(145億円)以上の資産を持つ富裕層に対しては、換金されていない投資の含み益に対しても、キャピタルゲインとして25%の税を課す提案がなされている。

2024-07-09

anond:20240709153533

GTはGrand Total(グランドトータル)機能のことをいい、直前に計算した数値の合計額を出す機能のことをいい、AC(All Clear)ボタンを押すまで記憶してくれます

例えば、200×2、100×5を計算した後にGTボタンを押すと合計額の900を算出してくれます

anond:20240709153533

Great Total 総合ボタン

オールクリア以降に=で出てきた答えを全部足した数が出るはず

2024-04-09

支払いが停止されました。

三菱UFJニコスカードをご利用のお客さま

利用いただきありがとうございます

このたび、ご本人様のご利用かどうかを確認させていただきたいお取引がありましたので、誠に勝手ながら、カードのご利用を一部制限させていただき、ご連絡させていただきました。

つきましては、以下へアクセスの上、カードのご利用確認にご協力をお願い致します。

お客様にはご迷惑、ご心配をお掛けし、誠に申し訳ございません。

何卒ご理解いただきたくお願い申しあげます

ご回答をいただけない場合カードのご利用制限継続されることもございますので、予めご了承下さい

ご了承も何も、ワイそもそもその手のカードは作れないんだがwwwwww?

まあ、詐欺メールやね

「▼ご利用確認こちら」ってカードの種類別URL一覧が載せてあるけど、そのURLドメインwww2.cr.mufg.jp

本物の方はwww.cr.mufg.jpである

うわっ、怖っ!

でも、せっかくの機会なのでそのURLVirus Totalにでもかけてみようと思い、右クリックからリンクコピーしたらクリップボードに全く違うURL・・・・・・

うわっ、怖っ!(二回目)

それはそれとしてクリップボード上のURLVirus Totalにかけてみたところ、CRDF、CyRadar、Qutteraの3つだけがこれを悪意あるサイトという判定をした

普段使いアンチウィルスソフトの開発元のやつがクリーン判定を出してて地味にショックだわ

2024-03-21

20代オルカンを勧めるのはボラティリティの小鬼対策やで

anond:20240318140204


パッと見、ボラティリティの小鬼に言及している人がいなさそうなので書いとく。

長期投資(※ここ重要!)オルカンやS&P500を勧められる理由は、ボラティリティの小鬼を調子づかせない範囲でそれなりのリターンを得られる可能性が高いかなんやで。

あの連中、たかだかNASDAQ100ぐらいでも小鬼じゃなくて中鬼になるからなあ。


ボラティリティの小鬼について、ネット上で分かりやすいのは↓のページの「リスク資産をむしばむの図」かなあ。

http://nightwalker.cocolog-nifty.com/money/2017/01/post-ddd0.html

リスク資産って、原理的にはボラティリティリスク分の価格上下変動を繰り返すことで資産が目減りするのよ。

例えば、インフレ考慮しないと仮定すると、平均期待リターンが0%の無リスク資産は目減りしないけど、平均期待リターンが0%のリスク資産は目減りしていく。

で、ボラティリティリスクが大きいリスク資産であるほど、目減りする分量が大きくなっちゃうわけ。


この、価格上下変動の繰り返しによって資産が目減りする現象を、「バイ・アンド・ホールド時代終焉」という本ではボラティリティの小鬼と呼んでいる。

加えてワイは、ボラティリティリスクが大きくなるほど目減りする分量が大きくなることを「中鬼になった」とか「大鬼に化けた」と言っている。


現実リスク資産が増えていく(ことが多い)理由は、目減りする分量を上回る期待リターンが得られるからだ。

とはいえ信託報酬率や総経費率は低い方が良いのと同じく、ボラティリティの小鬼の影響だって小さい方が良いわけだ。


じゃあどうすればよいのか?

アセットアロケーションポートフォリオを工夫して、ボラティリティリスクを小さくしつつもそれなりにリターンが得られるようにすればOK


ボラティリティリスクを小さくする唯一の方法分散投資やね。

「ここ100年ぐらいは金や債券よりも株式のリターンが高かった。今しばらく(今後20~30年ぐらい)はこの傾向が続くのではないだろうか?」という立場をとるならば、例えば株式100%でいくなら「株式の中で分散させる」ことでボラティリティリスクが小さくなる。もう少し安全に行きたいなら、株式債券REIT・金などを加えて「アセットクラス分散させる」ことでボラティリティリスクがより小さくなる。


いわゆる「教科書的なインデックス投資」は両方を組み合わせている。

株式については全世界株式分散させるし、アセットクラスも最低でも「株式債券」に分散している。

(「株式債券」は主にアメリカ国内向けのアイデア米国債低リスクなのにインフレをしのげる程度のリターンが得られるからね。日本では低金利すぎてインカムゲインとしての国内債券が息をしていない上に、今後の金利上昇見込みでキャピタルゲインとしての国内債券ダメダメで、加えて外国債券は為替リスクが高くてリターンに見合ってないので、泣く泣く債券の代わりに預貯金個人向け国債選択する人が多い)


株式分散」という文脈では、オルカンのような全世界株式が本流で、実のところS&P500やCRSP US Total Market Indexは傍流。

オルカンに比べればS&P500は集中投資の側で、そこには「なんやかんや言うても、ワイが資産運用し続けるだろう今後20~30年ぐらいは、アメリカはんも好調ちゃいます?」という暗黙の市場判断がある。

たぱぞう氏のように、市場を読んで判断していることになる。


それで、「アメリカはんも好調ちゃいます?」というインデックス投資家でも、十中八九S&P500やCRSP US Total Market Indexを勧めるのは、やっぱりボラティリティの小鬼がちらつくからなのよ。

たかだかNASDAQ100でも、長期投資ではボラティリティリスクが大きすぎて小鬼から中鬼になっちゃう。


NASDAQ100やFANG+のようなおやんちゃインデックスは、短~中期ぐらいの視点で売買して市場うねり取りに使うのが正しい。長期投資向けにガチホするのはNG


から、長期投資前提のインデックス投資家の場合、NASDAQ100やFANG+を持ち出す際にはコア・サテライト戦略みたいに「最低でも2階建て」の方針を打ち出すはずだ。

1階ではS&P500やCRSP US Total Market IndexETFガチホしつつ、2階以上の部分でセクターETFやおやんちゃETFで短~中期投資する――みたいな感じだよね。


ところでインデックス投資による長期投資における期待リターンは「20~30年ぐらいかけて、運用資産を1.5~2.0倍にする」ぐらいのマターリ進行なので、なんやかんや言うても必要な種銭が多いのは事実

から1020代ぐらいの時期は、貯蓄やインデックス投資は少額にとどめつつ、人的資本投資して稼げるようになった方がよいと、おっちゃんは思うよ。

人的資本への投資時間を集中させるためにも株式投資するならほったらかし投資可能オルカンないしS&P500でのインデックス投資にとどめておくのが無難やね。

2023-12-14

架空言語、という事にしておいてほしいんだが

    List<Record> rows = DBから持ってくる();

    // 合計金額を求める
    String total = "0";
    for (Record r : rows) {
        BigDecimal temp = BigDecimal.parse( カンマを削除する関数(total) ); 
        BigDecimal temp2 = temp + r.金額;
        total = カン区切り文字列にする関数(temp2); 
    }

    // やったー合計金額計算してカン区切り文字列にできたよー
    return total;

とか

    // async await は非同期処理を同期してくれる魔法言葉だって!よく知らんけど
    await axios.get('/foo')
        .then(function(result) {
             // やったー結果が得られたよー
        });

とか

正直なところ、こういうコードのお守りするの、そろそろキツい。。。

2023-10-30

Justdialcallgirl offers Chandigarh Call Girls Services with Luxury Hotel

Chandigarh call lady services are provided by JustdialCallgirl in a luxurious hotel. Renowned for its vibrant nightlife, Chandigarh is one of the most popular tourist destinations in India. There are lots of luxurious hotels in Chandigarh, several of which give excellent Call Girls Chandigarh. In Chandigarh, call girls come in a variety of forms, such as young housewives, models, and college students. They are all competent and informed in providing their clients with excellent services. The bulk of Chandigarh's call girl services are provided by large hotels. In these luxurious hotels, call girls and their patrons can feel safe and at ease. The hotel personnel can help to ensure that everyone enjoys a comfortable stay. The Call Girls offer private rooms and suites with all the necessary conveniences. This ensures that the customers may spend their time with the Call Girls Chandigarh in total privacy. The Chandigarh call girls are competent and skillful in providing a range of services to their clients. Among other things, they provide companionship, discussion, and sensual massage. In addition, they provide a wide range of other services, such as companionship at business meetings and social events like parties. The Call Girls Chandigarh can help its customers plan a range of events. Every call girl in Chandigarh is professional and discreet. They are always willing to listen to what their clients have to say and to help in any manner that they can. Because they are aware of the significance of first impressions, the Call Girls Chandigarh also maintain a neat appearance and attire.

Call Girls Amritsar Call Girls Agra Call Girls Ahmedabad Call Girls Ajmer Call Girls Ambala Call Girls Aerocity Call Girls Bangalore Call Girls Chennai Call Girls Coimbatore Call Girls Delhi Call Girls Dwarka Call Girls Dehradun Call Girls Goa Call Girls Guwahati Call Girls Gurgaon Call Girls Ghaziabad Call Girls Haridwar Call Girls Hyderabad Call Girls Faridabad Call Girls Indore Call Girls Jalandhar Call Girls Jaipur Call Girls Jaisalmer Call Girls Jodhpur Call Girls Kolkata Call Girls Kharar Call Girls Ludhiana Call Girls Lucknow Call Girls Mumbai Call Girls Manali Call Girls Mussoorie Call Girls Mahipalpur Call Girls Mohali Call Girls Mysore Call Girls Noida Call Girls Nagpur Call Girls Panchkula Call Girls Patiala Call Girls Patna Call Girls Pune Call Girls Rishikesh Call Girls Rohini Call Girls Surat Call Girls Udaipur Call Girls Varanasi Call Girls Vadodara Call Girls Zirakpur

ログイン ユーザー登録
ようこそ ゲスト さん