はてなキーワード: 多様体とは
秒針が45を指した瞬間に始めるのが習慣だ。誤差は許さない。今日までの進捗と、これからの計画を記録する。
今週は、超弦理論の基礎という名の底なし沼を、さらに深く掘った。
掘削機は摂動論ではなく、∞-圏だ。
点粒子の量子場理論を母語とする直感は、もはや邪魔にしかならない。
世界面は2次元多様体ではなく、安定∞-群oidの影として扱う方が自然だという作業仮説を採用した。
すると、弦の相互作用は頂点作用素代数というより、因子化代数の層として現れる。
局所から大域へ貼り合わせるデータは、通常の圏ではなく、(∞,2)-圏で管理する必要がある。
ここで「必要」という言葉は、数学的整合性の要求を意味する。好みではない。
nLabのFAQを踏み台に、弦理論を理論の集合ではなく理論を生む装置として捉え直した。
共変量子化の曖昧さは、背景独立性の失敗ではなく、背景そのものをスタックとして持ち上げることで解消される、という見通しだ。
するとK理論は通過点にすぎず、自然な受け皿は楕円コホモロジー、さらに言えばtmf(位相的モジュラー形式)だ。
弦の一周振動がモジュラー性を要求するのは偶然ではない。世界面のトーラスは、数論への扉だ。
コボルディズム仮説の視点に立てば、理論は完全双対可能対象のデータに還元される。
候補は高次モノイダル∞-圏。ブレーンは境界条件、境界条件は関手、関手は再び物理量になる。
循環は悪ではない。自己無撞着であれば許容される。
ここまで来ると、誰も完全には理解していないという常套句が現実味を帯びる。
僕の作業仮説はこうだ。弦理論は単一の理論ではなく、ある普遍性類の初等対象で、その普遍性は高次圏論的随伴で特徴づけられる。
何が可観測かは、どの随伴を採るかで変わる。測定とは、圏の切り替えにすぎない。
生活の話も書く。朝は必ず同じ順番でコーヒー豆を量り、粉砕時間は17秒。研究用ノートは方眼、筆圧は一定。
ルームメイトは、僕がノートの角を揃えるのに5分かけるのを見て「それ意味ある?」と聞いた。
隣人は夕方にノックしてきて、僕の黒板の数式を見て「呪文?」と言った。
違う。呪文は効果を期待するが、これは制約を可視化しているだけだ。
友人Aは装置の話を始めるとすぐ手を動かしたがる。
どちらも間違ってはいないが、どちらも十分ではない。
昨日は、因子化代数と頂点作用素代数の関係を整理しきれずに終わった。
今日はそこを前進させた。局所共形対称性を公理としてではなく、層の貼り合わせ条件として再定式化した点が進捗だ。
これからやること。
土曜日の16:26。
秒針の進みが不規則に見えるのは、もちろん僕の主観ではなく、脳内で走っている内部クロックが朝から非可換な補正項を拾っているせいだ。
昨日の日記では、世界は依然として説明可能であり、説明可能である以上、僕が説明しない理由はない、という結論に達していたはずだ。だから今日もその続きをやる。
朝から考えていたのは、超弦理論という言葉が、あまりにも粗雑なラベルとして流通している問題だ。
弦は一次元物体、という説明は教育的には便利だが、現代的にはほとんど嘘に近い。
正確には、弦理論は量子重力を含む一貫した摂動展開を許す背景依存理論の族であり、その実体は二次元共形場理論のモジュライ空間と高次圏論的構造の上に乗っている。
ワールドシートは単なるリーマン面ではなく、拡張された世界では、境界、欠損、欠陥、さらには高次欠陥を持つ拡張TQFTとして扱うのが自然だ。
Dブレーンは境界条件ではなく、A∞圏やL∞代数により制御される対象で、開弦のエンドポイントは派生圏の対象間の射として解釈される。
ここで重要なのは、物理的同値性がしばしば圏同値、あるいはスタック同値として表現される点だ。
ミラー対称性は、単なるカラビ–ヤウ多様体のホッジ数の一致ではなく、Fukaya圏と導来圏の等価、しかもそれがホモトピー論的に精緻化された形で成立するという主張にまで昇格している。
さらに厄介なのは、背景独立性の問題だ。AdS/CFTは成功例として崇拝されがちだが、実際には境界共形場理論という強固な外部構造に寄生している。
最近僕が気にしているのは、弦理論を理論の空間そのものとして捉え、各真空を点ではなく、∞-スタック上の点として扱う視点だ。
真空遷移はトンネル効果ではなく、モジュライスタック上のパス、しかもそのパス積分は単なる測度論ではなく、圏値積分になる。ここでは数値は二次的で、本質は自然変換の存在にある。
もはやウィッテンでさえ眉をひそめるだろうが、物理がこのレベルの抽象化を要求している以上、こちらが歩み寄る理由はない。
この種の思考をしていると、ルームメイトが後ろでコーヒーをこぼす音が聞こえた。
僕は即座に「カップの配置はトポロジカルに不安定だ」と指摘したが、彼は意味がわからない顔をしていた。隣人はなぜか笑っていた。
友人Aからは、ロケットと弦理論のどちらが実用的か、という愚問が送られてきたので、実用性は関手ではない、とだけ返した。
友人Bは相変わらずFF14のレイドの話をしてきたが、僕はDPSの最適化問題がラグランジアン最小化に帰着できる点だけは評価している。
昼休憩にはMTGを一人回しした。デッキ構築とは、制約付き最適化問題であり、メタゲームは動的システムだ。
禁止改定は外力項に相当する。アメコミは昼寝前のルーティンで、宇宙論的リブートの乱発には辟易するが、マルチバース疲労という現象自体は統計物理的に興味深い。
僕の習慣は相変わらず厳格だ。座る位置、飲み物の温度、日記を書く時刻。
今日までの進捗としては、理論的には、弦理論を高次圏論と情報幾何の言語で再定式化するメモが三ページ進んだ。現実的には、ルームメイトにカップの置き場所を三回注意した。
これからやろうとしていることは明確だ。
夕方はFF14で決められたルーティンを消化し、その後、再び弦理論に戻る。
金曜日の20:20。規則正しく点灯するデジタル時計を確認してから、僕はこの日記を書き始める。
昨日の日記では、思考がホモトピーの森に入り込み、夕食のパスタを二分半放置してしまった件について反省。
今日までの進捗を整理する。
現在僕が考えているのは、従来の超弦理論における背景独立性という概念が、実は高次圏論的に不十分に定式化されているのではないか、という問題だ。
時空を滑らかな多様体として前提するのではなく、∞-トポス上のスタックとして扱い、その上で弦の状態空間を通常のヒルベルト空間ではなく、安定∞-圏の対象として再解釈する。
このとき、BRSTコホモロジーは単なるコホモロジーではなく、派生層の自己同値の固定点として現れる。
問題は、その自己同値がどのレベルで物理的同一性を保証するのかだ。
圏論的同値と物理的同値の差は、ウィッテンですら直感的に語ることはできても、厳密には書き下せていない。
少なくとも僕には、彼がここまで踏み込んだ論文を出した記憶はない。
今日の午前中は、この問題を考えながら、習慣通り床の目地を数えた。
横方向が必ず奇数であることを再確認した時点で、思考が一段深く潜った。
習慣は脳内のノイズキャンセリング装置だ。これを理解しない人間は多い。
昼過ぎ、ルームメイトが不用意に「難しいこと考えてる顔だな」と言ってきたので、僕は「常に難しいことを考えているが、君には観測できないだけだ」と訂正した。
その後、隣人がドアをノックし、「今夜パーティあるけど来る?」と聞いてきた。
僕は行動計画がすでに確定しているため、「未来はすでに決まっている」と答えた。
彼女は少し困った顔をしていたが、量子力学を持ち出すと話が長くなるので説明は省略した。
友人Aは「その理論、実験で検証できるのか?」と聞いたが、これは典型的な誤解だ。検証とは、可観測量の問題であって、構造の問題ではない。
これからやることは明確だ。
21:00からは、今日考えた∞-圏的定式化をノートに清書する。
22:30には歯磨き、その後、昨日読み切れなかった論文の補遺を確認する。
もしそこで、自己同値の固定点集合が高次群作用のコインバリアントとして自然に現れるなら、僕は一つ前に進む。
現れなければ、明日も同じ床を数え、同じ時間に同じ日記を書く。
時計を見る必要はない。秒針の位置はさっき自分で確認したし、木曜のこの時間に僕がここに座っていることは、もはや力学系の固定点みたいなものだ。
今日は一日中、もはや時空を基礎に置くという前提そのものが誤りなのではないか、という地点から考えていた。
多様体の上に量子場を載せるという発想は便利だが、便利であることと正しいことは一致しない。
弦の状態空間をヒルベルト空間として扱う段階で、すでに過剰な可換性を仮定している。
今考えているのは、弦の状態を対象、遷移を射とするような素朴な圏ですらなく、それらの間の自然変換が物理量として意味を持つような、∞-圏値の理論だ。
しかもその圏は、基礎体上に定義されていない。数ですらない。ホモトピー型理論と高次トポスの内部論理でのみ定義できる対象として、弦の相互作用を“存在”させる必要がある。
作用積分? そんなものは比喩だ。今やダイナミクスは、安定な導来随伴の存在性としてしか語れない。
これが何の理論かと問われれば、正直に言って、まだ名前を与える段階ではない。
ただ、少なくとも従来の超弦理論が持っていた次元や背景という概念が、不要なゲージ冗長性だったことだけは確信している。
この感覚は、理解というより検出に近い。ノイズが消えたときにだけ現れる沈黙の形だ。
こういうことを考えている最中に、ルームメイトが後ろから「コーヒー飲む?」と聞いてきた。
僕は振り返らずに「今は圏が非可換だから無理」と答えた。彼はしばらく黙ってから去っていった。正しい反応だ。
隣人は廊下で僕を見かけるたびに、なぜか挨拶の文言を微妙に変えてくる。今日は「こんばんは、今日は静かですね」だった。
僕は「静かさは状態じゃなくて差分だ」と言ったが、彼女は笑っていた。意味が通じていないとき、人はだいたい笑う。
昼過ぎ、思考が一瞬だけ収束を失ったので、頭の中でMTGのデッキを一から組み直した。
土地配分を確率測度として扱い、初手7枚の分布を弱収束で評価していくと、なぜかさっき考えていた高次随伴の存在条件と同型な構造が出てくる。
カードゲームが数学的に美しいのではない。数学が避けられないだけだ。
夕方にはFF14にログインしたが、戦闘には入らなかった。レイドのギミックは有限オートマトンとしては面白いが、今日はもっと非可算なものを扱っていたかった。
代わりに、装備更新の計画だけを立て、必要な資源をグラフ理論的に整理した。実行は後でいい。未来にやるべきことが確定している状態は、精神的に非常に安定する。
夜、アメコミを数冊読んだ。宇宙が何度リセットされても、因果律だけは編集部によって強制的に保存される。その雑さが好きだ。少なくとも、作者は自分が神だと誤解していない。
友人Aからはまた意味不明なメッセージが来て、新しい玩具の話をしていたが、仕様書を読まずに感想を語る行為には応答しないことにしている。
友人Bは相変わらず「それ、役に立つの?」と聞いてくる。役に立つかどうかという問いは、対象が局所最適に落ちることを前提にしている時点で、もう役に立たない。
今はもう、飲み物も所定の位置にあるし、椅子の角度も規定値だ。
それから、明日のためにMTGのサイドボード案を頭の中で3通りだけ完成させる。
水曜日の22:44。
今日は時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。
朝はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度の紅茶を用意した。
午前中は完全に物理の時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日は理論という語を使わず、構造の話だけをすることにした。
具体的には、背景独立性を前提としない定式化をさらに推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。
p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。
世界面の量子化をp進解析で再構成すると、摂動展開そのものが意味を失い、代わりにホモトピー型の不変量が前景化する。
そこでコボルディズム仮説を持ち込み、弦の相互作用を時系列の出来事としてではなく、境界付き多様体の同値類として扱うと、散乱振幅は数ではなく元になる。
これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。
ウィッテンがどう考えるかは知らない。理解主体を特権化しない構造だけが残る。その状態で午前は終了した。
昼にルームメイトがキッチンでコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。
細かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。
MTGのデッキを机に広げ、マナカーブと引きムラを統計的に再確認した。
ここでは抽象化をやりすぎないことが重要で、確率は確率として扱う。
友人Aが「そのカード弱いだろ」と言ってきたので、勝率の分散を示して沈黙させた。沈黙は同意とは限らないが、反論がないという点では十分だ。
夕方からはFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。
友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPSを底上げしている。
隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。
連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。
そして今、22:58。
今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。
これからやることは、その構造をさらに一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。
まず是正されるべきは、対象=ブレーン、射=弦という古典的・実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論的整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データの代数的指標にすぎないからである。
完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_n から、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易に対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。
この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理的直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論が要請する局所性と完全拡張性から数学的に強制される構造である。弦の相互作用や分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論が局所的であるための必然的帰結としてあらかじめ構造化されているのである。
超弦理論を一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元の忘却ではない。それは、理論が依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である。
ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論の本質が特定の幾何(一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピー的データにあることを示唆している。
この地平において、M理論と超弦理論の関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当である。M理論とは、特定の時空次元や多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである。
そこでは、弦が射であるか対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元を境界データとして選択するかというホモトピー的なゲージ選択の残滓として、弦やブレーンの境界が析出する。
T双対性やS双対性を自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのものの自己同値、あるいはE∞ 環スペクトルの自己同型として記述されるべきものである。問題の本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。
M理論は圏論的環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである。
M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論が数学的に存立するための普遍的制約条件(コヒーレンス)の総体である。
対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体的局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。
したがって、両者の差異は包含でも統一でもなく、どの圏論的・ホモトピー論的情報を物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである。
伝統的にはテーマ別(弦理論、量子重力、場の理論、応用)に配列されるが、抽象数学の観点からは対象(研究トピック)と射(方法・翻訳)の網として捉える方が有益。
ここでいう対象は「エントロピーと情報論的記述を担うブラックホール研究」「幾何学的・位相的構成を担うコンパクト化とカラビ・ヤウ/F-理論的話題」「場の対称性・一般化対称性を取り扱う場の理論的構造」「計算的探索手法(データ、機械学習を用いる弦景観の調査)」など。
各対象間の射は、双対性の導入、圏的な接続(例:量子情報を介した場と重力の橋渡し)、モジュライ空間上の写像(ある物理量を別の表現へ変換する手続き)と考えられる。
この視点に立てば、個々の研究は、局所的な結果(対象の内部構造の解析)とそれを別の対象へ移すための普遍射(双対性、再規格化群、ホログラフィーなど)の2つの側面を持つ。
研究の進展を測るには、単に新しい計算結果が出たかを見るだけでなく、それがどのような新しい射(方法論的翻訳)を導入し、他の対象へどれだけ容易に伝播できるかを評価するべき。
近年の発展は、物理的データを層(sheaf)的に整理する試みと親和性が強い。
コンパクト化、特にF-理論やゲージ束構成に関する議論は、物理的情報(荷、ゲージ群、モードの分布)を局所データと大域的データの重ね合わせとして扱うことに等しい。
これは数学的には基底空間上の層の圏を考えるような話で、局所的条件の整合性(コヒーレンス)と大域的制約(トポロジー的閉鎖条件)が鍵。
古典的な幾何的直観(多様体、ホモロジー)を拡張して非可換やカテゴリ化された対象で物理を再表現する流れにある。
結果として、従来のスペクトル(場のスペクトルや質量スペクトル)に対応する数学的不変量が、より高次の層的・圏的構造へと一般化されつつある。
これにより同じ物理現象を別の圏で見ると簡潔になる例が増え、研究の再利用性が高まっている。
弦理論・場の理論で繰り返し現れるのは対称性が構造を決めるという直観。
抽象数学では対称性は対象の自己射(自己同型)群として扱われるが、対称性そのものが射の層あるいは高次の射(2-射やn-射)として表現されるケースが増えている点が特に重要。
つまり、単に群が作用するのではなく、群の作用が変形可能であり、その変形がさらに別の構造を生む、という高次構造が物理的意味を持ち始めている。
この流れは一般化対称性やトポロジカル部位の議論と密接に結びつき、場の理論における選好位相的不変量を再解釈する手段を与える。
結果として、古典的なノーター対応(対称性⇄保存量)も、より高次の文脈で新しい不変量や保存則を導出するための起点になり得る。
ブラックホールと量子情報、カオス理論との接点は話題だった分野。
ホログラフィー(重力側と場の側の双対)を抽象的に言えば二つの圏を結ぶ双方向のファンクター(翻訳子)と見ることができる。
これにより、量子的冗長性やエントロピーに関する命題は、圏の間を行き交う射の情報(どの情報が保存され、どの情報が粗視化されるか)として扱える。
カオスとブラックホール、量子力学に関する概念の整理が試みられている。
たとえばブラックホールにおける情報再放出やスクランブリングは、ファンクターがどのように情報を混合(合成)するかという高次射の振る舞いとして可視化できる。
こうした議論は、従来の計算的アプローチと抽象的な圏的フレームワークの橋渡しを提供する。
何が低エネルギーで実現可能かを巡るスワンプランド問題は、いまや単一の反例探しや個別モデル構築の話ではなく、モジュライ空間の複雑性(位相的な目詰まり、非整合領域の広がり)として再定式化されつつある。
抽象数学的に言えば、可能な物理理論の集合は単なる集合ではなく、属性(スカラー場、ゲージ群、量子補正)を備えた層状モジュライ空間であり、その中に禁止領域が層的に存在するかどうかが問題。
この視点は、スワンプランド基準を局所的整合条件の族として扱い、整合性を満たすための可視化や近似アルゴリズムを数学的に定義することを促す。
弦景観やモデル空間での探索に機械学習やデータ解析を使う研究が増えているが、抽象数学に引き寄せると探索アルゴリズム自体を射として考えることが有用。
ある探索手続きがモジュライ空間上の点列を別の点列へ写すとき、その写像の安定性、合同類、収束性といった性質を圏的・位相的な不変量で評価できれば、アルゴリズム設計に新しい理論的指針がもたらされる。
数学的定式化(幾何・位相・圏論)と物理的直観(ブラックホール、カオス、場の動的挙動)をつなぐ学際的接合点を意図して設計される。
これは単一圏に物理を閉じ込めるのではなく、複数の圏をファンクターで結び、移り変わる問題に応じて最も適切な圏を選択する柔軟性を重視するアプローチ。
学術コミュニティのあり方に対するメタ的な批判や懸念も顕在化している。
外部の評論では、分野の方向性や成果の可視性について厳しい評価がなされることがあり、それは研究の評価軸(新知見の量・質・再利用可能性)を再考する契機になる。
見えてきたのは、個別のテクニカルな計算成果の蓄積と並んで、研究成果同士を結びつける翻訳子(ファンクター)としての方法論の重要性。
抽象数学的フレームワーク(圏、層、モジュライ的直観、高次射)は、これらの翻訳子を明示し、その普遍性と限界を評価する自然な言語を提供。
今後の進展を見極めるには、新しい計算結果がどのような普遍的射を生むか、あるいは従来の射をどのように一般化するかを追うことが、有益である。
超弦理論において、物理学はもはや物質の構成要素を探求する段階を超え、数学的構造そのものが物理的実在をいかに定義するかというの領域へ突入している。
かつて背景として固定されていた時空は、現在では量子的な情報の絡み合い(エンタングルメント)から派生する二次的な構造として捉え直されている。
時空の幾何学(曲がり具合や距離)は、境界理論における量子多体系のエンタングルメント・エントロピーと双対関係にある。
これは、空間の接続性そのものが情報の相関によって縫い合わされていることを示唆。
数学的には、フォン・ノイマン環(特にType III因子環)の性質として、局所的な観測可能量がどのように代数的に構造化されるかが、ホログラフィックに時空の内部構造を決定づける。
ブラックホールの情報パラドックスは、アイランドと呼ばれる非自明なトポロジー領域の出現によって解決に向かっている。
これは、時空の領域がユークリッド的経路積分の鞍点として寄与し、因果的に切断された領域同士が量子情報のレベルでワームホールのように接続されることを意味する。
ここでは、時空は滑らかな多様体ではなく、量子誤り訂正符号として機能するネットワーク構造として記述される。
「対称性=群の作用」というパラダイムは崩壊し、対称性はトポロジカルな欠陥として再定義されている。
粒子(0次元点)に作用する従来の対称性を拡張し、紐(1次元)や膜(2次元)といった高次元オブジェクトに作用する対称性が議論されている。
さらに、群の構造を持たない(逆元が存在しない)非可逆対称性の発見により、対称性は融合圏(Fusion Category)の言語で語られるようになった。
物理的実体は、時空多様体上に配置されたトポロジカルな演算子のネットワークとして表現される。
物質の相互作用は、これら演算子の融合則(Fusion Rules)や組み換え(Braiding)といった圏論的な操作として抽象化され、粒子物理学は時空上の位相的場の理論(TQFT)の欠陥の分類問題へと昇華されている。
可能なすべての数学的理論のうち、実際に量子重力として整合性を持つものはごく一部(ランドスケープ)であり、残りは不毛な沼地(スワンプランド)であるという考え方。
理論のパラメータ空間(モジュライ空間)において、無限遠点へ向かう極限操作を行うと、必ず指数関数的に軽くなる無限個のタワー状の状態が出現。
これは、幾何学的な距離が物理的な質量スペクトルと厳密にリンクしていることを示す。
量子重力理論においては、すべての可能なトポロジー的電荷は消滅しなければならないという予想。
これは、数学的にはコボルディズム群が自明(ゼロ)であることを要求。
つまり、宇宙のあらゆるトポロジー的な形状は、何らかの境界操作を通じて無へと変形可能であり、絶対的な保存量は存在しないという究極の可変性を意味します。
4次元の散乱振幅(粒子がぶつかって飛び散る確率)は、時空の無限遠にある天球(2次元球面)上の相関関数として記述できることが判明した。
ここでは、ローレンツ群(時空の回転)が天球上の共形変換群と同一視される。
時空の果てにおける対称性(BMS群など)は、重力波が通過した後に時空に残す記憶(メモリー)と対応している。
これは、散乱プロセス全体を、低次元のスクリーン上でのデータの変換プロセスとして符号化できることを示唆。
超弦理論は、もはや弦が振動しているという素朴なイメージを脱却している。
情報のエンタングルメントが時空の幾何学を織りなし、トポロジカルな欠陥の代数構造が物質の対称性を決定し、コボルディズムの制約が物理法則の存在可能領域を限定するという、極めて抽象的かつ数学的整合性の高い枠組みへと進化している。
物理的実在はモノではなく、圏論的な射(morphism)とその関係性の網の目の中に浮かび上がる構造として理解されつつある。
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
超弦理論を物理的な実体(ひもや粒子)から引き剥がし、抽象数学の言葉で抽象化すると、圏論と無限次元の幾何学が融合した世界が現れる。
物理学者がひもの振動と呼ぶものは、数学者にとっては代数構造の表現や空間のトポロジー(位相)に置き換わる。
物理的なイメージである時空を動くひもを捨てると、最初に現れるのは複素幾何学。
ひもが動いた軌跡(世界面)は、数学的にはリーマン面という複素1次元の多様体として扱われる。
ひもの散乱振幅(相互作用の確率)を計算することは、異なる穴の数を持つすべてのリーマン面の集合、すなわちモジュライ空間上での積分を行うことに帰着。
ひもがどう振動するかという物理的ダイナミクスは幾何学的な形すら消え、代数的な対称性だけが残る。
共形場理論(CFT)。頂点作用素代数。ひもはヴィラソロ代数と呼ばれる無限次元リー環の表現論として記述される。粒子とは、この代数の作用を受けるベクトル空間の元に過ぎない。
1990年代以降、超弦理論はDブレーンの発見により抽象化された。
ミラー対称性。全く異なる形状の空間(AとB)が、物理的には等価になる現象。ホモロジカルミラー対称性。
Maxim Kontsevichによって提唱された定式化では、物理的背景は完全に消え去り、2つの異なる圏の等価性として記述される。
もはや空間が存在する必要はなく、その空間上の層の間の関係性さえあれば、物理法則は成立するという抽象化。
トポロジカルな性質のみを抽出すると、超弦理論はコボルディズムとベクトル空間の間の関手になる。
このレベルでは、物質も力も時間も存在せず、あるのはトポロジー的な変化が情報の変換を引き起こすという構造のみ。
超弦理論を究極まで数学的に抽象化すると、それは物質の理論ではなく、無限次元の対称性を持つ、圏と圏の間の双対性になる。
より専門的に言えば、非可換幾何学上の層の圏や高次圏といった構造が、我々が宇宙と呼んでいるものの正体である可能性が高い。
そこでは点 という概念は消滅し、非可換な代数が場所の代わりになる。
存在 はオブジェクトではなく、オブジェクト間の射によって定義される。
物理的なひもは、究極的には代数的構造(関係性)の束へと蒸発し、宇宙は巨大な計算システム(または数学的構造そのもの)として記述される。
まず一言でまとめると、場の論理と幾何の高次的融合が進んでおり、境界の再定義、重力的整合性の算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在の最前線の構図。
現在の進行は低次元の代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。
これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術的整合性を前提にした新しい分類論を必要とする。
僕はいつものようにティーカップの正確な角度とティーバッグを引き上げるタイミング(45秒で引き上げ、分子運動が落ち着くのを確認する)にこだわりながら、ルームメイトがキッチンで不満げに微かに鼻歌を歌う音を聞いている。
隣人は夜遅くまでテレビを見ているらしく、ローファイのビートとドラマのセリフが建物内で交差する。
その雑音の中で僕の頭は例によって超弦理論の抽象化へと跳躍した。
最近は量子コヒーレンスをホモトピー的に扱う試みを続けていて、僕は弦空間を単に1次元媒介物と見るのではなく、∞-圏の内在的自己双対性を有する位相的モジュライ空間として再定義することを好む。
具体的には、標準的な共形場理論の配位子作用をドリブンな導来代数的幾何(derived algebraic geometry)の枠組みで再構成し、そこにモチーフ的な圏(motivic category)から引き戻した混合ホッジ構造を組み込んで、弦の振る舞いを圏論的に拡張された交代多様体のホモトピー的点として記述する考えを試している。
こうするとT-双対性は単に物理的対象の同値ではなく、ある種のエンドサイト(endomorphism)による自己同型として見なせて、鏡像対称性の一部が導来関手の自然変換として表現できる。
さらに一歩進めて、超対称性生成子を高次トポスの内部対象として取り扱い、グレーディングを∞-グループとして扱うと、古典的に局所化されていたノイズ項が可換的モジュール層の非可換微分形へと遷移することが示唆される。
もちろんこれは計算可能なテーラ展開に落とし込まなければ単なる言葉遊びだが、僕はその落とし込みを行うために新しく定義した超可換導来ホッジ複体を用いて、散発的に出現する非正則極を規格化する策略を練っている。
こういう考察をしていると、僕の机の横に無造作に積まれたコミックやTCG(トレーディングカードゲーム)のパックが逆説的に美しく見える。
今日はルームメイトと僕は、近日発売のカードゲームのプレビューとそれに伴うメタ(試合環境)について議論した。
ウィザーズ・オブ・ザ・コーストの最新のAvatar: The Last Airbenderコラボが今月中旬にアリーナで先行し、21日に実物のセットが出るという話題が出たので、ルームメイトは興奮してプリリリースの戦略を立てていた。
僕は「そのセットが実物とデジタルで時間差リリースされることは、有限リソース制約下でのプレイヤー行動の確率分布に重要な影響を与える」と冷静に分析した(発表とリリース日程の情報は複数の公表情報に基づく)。
さらにポケモンTCGのメガ進化系の新シリーズが最近動いていると聞き、友人たちはデッキの再構築を検討している。
TCGのカードテキストとルールの細かな改変は、ゲーム理論的には期待値とサンプル複雑度を変えるため、僕は新しいカードが環境に及ぼすインパクトを厳密に評価するためにマルコフ決定過程を用いたシミュレーションを回している(カード供給のタイムラインとデジタル実装に関する公式情報は確認済み)。
隣人が「またあなたは細かいことを考えているのね」と呆れた顔をして窓越しにこちらを見たが、僕はその視線を受け流して自分のこだわり習慣について書き留める。
例えば枕の向き、靴下の重ね方(常に左を上にし、縫い目が内側に来るようにすること)、コーヒー粉の密度をグラム単位で揃えること、そして会話に入る際は必ず正しい近接順序を守ること。
これらは日常のノイズを物理学的に最適化するための小さな微分方程式だと僕は考えている。
夜は友人二人とオンラインでカードゲームのドラフトを少しだけやって、僕は相対的価値の高いカードを確保するために結合確率を厳密に計算したが、友人たちは「楽しければいい」という実に実務的な感覚で動くので、そこが僕と彼らの恒常的なズレだ。
今日はD&D系の協働プロジェクトの話題も出て、最近のStranger ThingsとD&Dのコラボ商品の話(それがテーブルトークの新しい入り口になっているという話題)はテーブルトップコミュニティに刺激を与えるだろうという点で僕も同意した。
こうして夜は深まり、僕はノートに数式とカートゥーンの切り抜きを同じページに貼って対照させるという趣味を続け、ルームメイトはキッチンで皿を洗っている。
今、時計は23:00を指している。僕は寝る前に、今日考えた∞-圏的弦動力学のアイデアをもう一度走査して、余剰自由度を取り除くための正則化写像の候補をいくつか書き残しておく。
日中は実験室的な刺激は少なかったが、思考の連続性を保つために自分なりの儀式をいくつかこなした。
起床直後に室温を0.5度単位で確認し(許容範囲は20.0±0.5℃)、その後コーヒーを淹れる前にキッチンの振動スペクトルをスマートフォンで3回測定して平均を取るというのは、たぶん普通の人から見れば過剰だろう。
だが、振動の微妙な変動は頭の中でのテンポを崩す。つまり僕の「集中可能領域」は外界のノイズに対して一種の位相同調を要求するのだ。
ルームメイトはその儀式を奇癖と呼ぶが、彼は観測手順を厳密に守ることがどれほど実務効率を上げるか理解していない。
隣人はその一部を見て、冗談めかして「君はコーヒーにフレームを当ててるの?」と訊いた。
風邪の初期症状かと思われる彼の声色を僕は瞬時に周波数ドメインで解析し、4つの帯域での振幅比から一貫して風邪寄りだと判定した。
友人たちはこの種の即断をいつも笑うが、逆に言えば僕の世界は検証可能で再現可能な思考で出来ているので、笑いもまた統計的に期待値で語るべきだ。
午前は論文の読み返しに費やした。超弦理論の現代的なアプローチは、もはや単なる量子場とリーマン幾何の掛け合わせではなく、導来代数幾何、モーダルなホモトピー型理論、そしてコヒーシブなホモトピー理論のような高次の圏論的道具を用いることで新たな言語を得つつある。
これらの道具は直感的に言えば空間と物理量の振る舞いを、同値類と高次の同型で記述するための言語だ。
具体的には、ブランデッドされたDブレーンのモジュライ空間を導来圏やパーフェクト複体として扱い、さらに場の有る種の位相的・代数的変形が同値関係として圏的に表現されると、従来の場の理論的観測量が新しい不変量へと昇格する(この観点は鏡映対称性の最近のワークショップでも多く取り上げられていた)。
こうした動きは、数学側の最新手法が物理側の問題解像度を上げている好例だ。
午後には、僕が個人的に気に入っている超抽象的な思考実験をやった。位相空間の代わりにモーダルホモトピー型理論の型族をステートとして扱い、観測者の信念更新を型の変形(モナド的な操作)としてモデル化する。
つまり観測は単なる測定ではなく、型の圧縮と展開であり、観測履歴は圏論的に可逆ではないモノイド作用として蓄積される。
これを超弦理論の世界に持ち込むと、コンパクト化の自由度(カラビヤウ多様体の複素構造モジュライ)に対応する型のファミリーが、ある種の証明圏として振る舞い、復号不能な位相的変換がスワンプランド的制約になる可能性が出てくる。
スワンプランド・プログラムは、実効場の理論が量子重力に埋め込めるかどうかを判定する一連の主張であり、位相的・幾何的条件が物理的に厳しい制限を課すという見立てはここでも意味を持つ。
夕方、隣人が最近の観測結果について話題にしたので、僕は即座に「もし時空が非可換的であるならば、座標関数の交換子がプランクスケールでの有意な寄与をもたらし、その結果として宇宙加速の時間依存性に微妙な変化が現れるはずだ。DESIのデータで示唆された減速の傾向は、そのようなモデルの一つと整合する」と言ってしまった。
隣人は「え、ホント?」と目を丸くしたが、僕は論文の推論と予測可能な実験的検証手順(例えば位相干渉の複雑性を用いた観測)について簡潔に説明した。
これは新しいプレプリント群や一般向け記事でも取り上げられているテーマで、もし妥当ならば観測と理論の接続が初めて実際のデータで示唆されるかもしれない。
昼食は厳密にカロリーと糖質を計算し、その後で15分のパルス型瞑想を行う。瞑想は気分転換ではなく、思考のメタデータをリセットするための有限時間プロセスであり、呼吸のリズムをフーリエ分解して高調波成分を抑えることで瞬間集中力のフロアを上げる。
ルームメイトはこれを「大げさ」と言うが、彼は時間周波数解析の理論が日常生活にどう適用されるか想像できていない。
午後のルーティンは必ず、机上の文献を3段階でレビューする: まず抽象(定義と補題に注目)、次に変形(導来的操作や圏論的同値を追う)、最後に物理的帰結(スペクトルや散乱振幅への影響を推定)。
この三段階は僕にとって触媒のようなもので、日々の思考を整えるための外骨格だ。
夜は少し趣味の時間を取った。ゲームについては、最近のメタの変化を注意深く観察している。
具体的には、あるカードゲーム(TCG)の構築環境では統計的メタが明確に収束しており、ランダム性の寄与が低減した現在、最適戦略は確率分布の微小な歪みを利用する微分的最適化が主流になっている。
これは実際のトーナメントのデッキリストやカードプールの変遷から定量的に読み取れる。
最後に今日の哲学的なメモ。理論物理学者の仕事は、しばしば言語を発明することに帰着する。
僕が関心を持つのは、その言語がどれだけ少ない公理から多くの現象を統一的に説明できるか、そしてその言語が実験可能性とどの程度接続できるかだ。
導来的手法やホモトピー的言語は数学的な美しさを与えるが、僕は常に実験への戻り道を忘れない。
理論が美しくとも、もし検証手順が存在しないならば、それはただの魅力的な物語にすぎない。
隣人の驚き、ルームメイトの無頓着、友人たちの喧嘩腰な議論は、僕にとっては物理的現実の簡易的プロキシであり、そこから生まれる摩擦が新しい問いを生む。
さて、20:00を過ぎた。夜のルーティンとして、机の上の本を2冊半ページずつ読む(半ページは僕の集中サイクルを壊さないためのトリックだ)
あと、明日の午前に行う計算のためにノートに数個の仮定を書き込み、実行可能性を確認する。
ルームメイトは今夜も何か映画を流すだろうが、僕は既にヘッドホンを用意してある。
ヘッドホンのインピーダンス特性を毎回チェックするのは習慣だ。こうして日が終わる前に最低限の秩序を外界に押し付けておくこと、それが僕の安定性の根幹である。
以上。明日は午前に小さな計算実験を一つ走らせる予定だ。結果が出たら、その数値がどの程度「美的な単純さ」と折り合うかを眺めるのが楽しみである。
弦は1次元の振動体ではなく、スペクトル的係数を持つ(∞,n)-圏の対象間のモルフィズム群として扱われる量子幾何学的ファンクタであり、散乱振幅は因子化代数/En-代数のホモトピー的ホモロジー(factorization homology)と正の幾何(amplituhedron)およびトポロジカル再帰の交差点に現れるという観点。
従来のσモデルはマップ:Σ → X(Σは世界面、Xはターゲット多様体)と見るが、最新の言い方では Σ と X をそれぞれ導来(derived)モジュライ空間(つまり、擬同調的情報を含むスタック)として扱い、弦はこれら導来スタック間の内部モルフィズムの同値類とする。これによりボルツマン因子や量子的補正はスタックのコヒーレント層や微分グレード・リー代数のcohomologyとして自然に現れる。導来幾何学の教科書的基盤がここに使われる。
弦の結合・分裂は単なる局所頂点ではなく、高次モノイド構造(例えば(∞,2)あるいは(∞,n)級のdaggerカテゴリ的構成)における合成則として表現される。位相欠陥(defects)やDブレインはその中で高次射(higher morphism)を与え、トポロジカル条件やフレーミングは圏の添字(tangential structure)として扱うことで異常・双対性の条件が圏的制約に変わる。これが最近のトポロジカル欠陥の高次圏的記述に対応する。
局所演算子の代数はfactorization algebra / En-algebraとしてモデル化され、散乱振幅はこれらの因子化ホモロジー(factorization homology)と、正の幾何(positive geometry/amplituhedron)的構造の合流点で計算可能になる。つまり「場の理論の演算子代数的内容」+「ポジティブ領域が選ぶ測度」が合わさって振幅を与えるというイメージ。Amplituhedronやその最近の拡張は、こうした代数的・幾何学的言語と直接結びついている。
リーマン面のモジュライ空間への計量的制限(例えばマルザカニの再帰類似)から得られるトポロジカル再帰は、弦場理論の頂点/定常解を記述する再帰方程式として働き、相互作用の全ループ構造を代数的な再帰操作で生成する。これは弦場理論を離散化する新しい組合せ的な生成法を与える。
AdS/CFT の双対性を単なる双対写像ではなく、導来圏(derived categories)やファンクタ間の完全な双対関係(例:カテゴリ化されたカーネルを与えるFourier–Mukai型変換)として読み替える。境界側の因子化代数とバルク側の(∞,n)-圏が相互に鏡像写像を与え合うことで、場の理論的情報が圏論的に移送される。これにより境界演算子の代数的性質がバルクの幾何学的スタック構造と同等に記述される。
パス積分や場の設定空間を高次帰納型(higher inductive types)で捉え、同値関係やゲージ同値をホモトピー型理論の命題等価として表現する。これにより測度と同値の矛盾を型のレベルで閉じ込め、形式的な正則化や再正規化は型中の構成子(constructors)として扱える、という構想がある(近年のHoTTの物理応用ワークショップで議論されている方向性)。
「弦=導来スタック間の高次モルフィズム(スペクトル係数付き)、相互作用=(∞,n)-圏のモノイド合成+因子化代数のホモロジー、振幅=正の幾何(amplituhedron)とトポロジカル再帰が選ぶ微分形式の交差である」
この言い方は、解析的・場の理論的計算を圏論・導来代数幾何・ホモトピー理論・正の幾何学的道具立てで一枚岩にする野心を表しており、実際の計算ではそれぞれの成分(因子化代数・導来コヒーレント層・amplituhedronの体積形式・再帰関係)を具体的に組み合わせていく必要がある(研究は既にこの方向で動いている)。
今朝も僕のルーティンは完璧だった。目覚まし時計が6:00ちょうどに鳴る前に、体内時計がそれを察知して覚醒した。これは僕が自ら設計した睡眠相同調プロトコルの成果である。まず歯を磨き(電動歯ブラシはPhilips Sonicare 9900 Prestige、ブラシ圧力センサーの応答性が他社製より0.2秒速い)、次にトーストを2枚焼いた。1枚目はストロベリージャム、2枚目はピーナツバター。逆にすると1日の位相が乱れる。これは経験的に統計的有意差を持って確認済みである(p < 0.001)。
昨日の日曜日、ルームメイトがNetflixでマーベル作品を垂れ流していた。僕は隣で視覚的ノイズに曝露された被験者の前頭前皮質活動抑制についての文献を読んでいたが、途中から音響的干渉が許容限界を超えた。仕方なく僕はヘッドフォン(Sennheiser HD800S、当然バランス接続)を装着し、環境音としてホワイトノイズを流した。彼は僕に少しはリラックスしろと言ったが、リラックスとは神経系の無秩序化であり、物理的にはエントロピーの増加を意味する。そんな不快な行為を自発的に選択する人間の気が知れない。
午後、隣人がやってきた。彼女は例によって食べ物を手にしていた。どういうわけか手作りマフィンなるものを渡してきたが、僕はそれを冷静に分析した。まず比重が異常に高い。小麦粉と油脂の比率が3:2を超えており、これはマフィンではなくもはや固体燃料の域である。彼女は僕の顔を見ておいしいでしょ?と言ったが、僕は味覚の再現性という観点では一貫性が欠けていると正直に答えた。彼女は笑っていたが、なぜ人間は事実の指摘をユーモアと解釈するのか、これも進化心理学の謎のひとつだ。
夕方には友人二人が来てボードゲーム会を始めた。僕は彼らが持ち込んだTwilight Imperium 4th Editionに興味を示したが、ルールブックを読んだ瞬間に失望した。銀河支配をテーマにしているにもかかわらず、リソース分配のモデルがあまりに非連続的で、明らかに経済物理の基礎を理解していない。僕はその欠陥を指摘し、リソース関数をラグランジュ密度で再定義する提案をしたが、「遊びなんだから」と言われた。遊び? 知的活動において“遊び”という語が許されるのは、量子ホール効果のシミュレーションを笑いながらできる者だけだ。
夜は超弦理論のメモを整理した。E₈×E₈異種ホモロジーの拡張上で、局所的なCalabi-Yau多様体が高次圏的モジュライ空間を持つ可能性を考えている。通常、これらの空間は∞-カテゴリーのMorita等価類で分類されるが、最近読んだToenとVezzosiの新しいプレプリントによると、もし(∞,2)-トポスの層化を考慮に入れれば、ホログラフィック境界条件をトポロジカルに再構成できるらしい。つまり、これまでE₈ゲージ束の構造群縮小で消えた自由度が、内部的圏論における導来的自然変換として再浮上する。これが正しければ、M理論の11次元項の一部は非可換幾何のホモトピー極限として再定式化できる。僕はこの仮説をポスト・ウィッテン段階と呼んでいる。今のところ誰も理解していないが、理解されない理論ほど真に美しい。
深夜、SteamでBaldur’s Gate 3を起動した。キャラビルドはIntelligence極振りのウィザード。だが僕のこだわりは、毎回同じ順番で呪文スロットを整理すること。Magic Missile → Misty Step → Counterspell → Fireball。この順番が崩れると、戦闘中に指が誤作動する。これは単なる習慣ではなく、神経回路のシナプス発火順序を安定化させる合理的行動だ。ちなみに、ハウスルールでダイスロールに物理的擬似乱数生成器を使っている(RNGでは信用できない)。
こうして一日が終わった。僕は枕を45度傾け、頭の位置を北に向けた。地磁気との整合性を考えれば、これ以外の角度は睡眠中のスピン整列を乱す。ルームメイトはただの迷信だと言ったが、迷信とは証明されていない理論の俗語に過ぎない。僕は眠りながら考えた。もし弦が10次元で振動するのではなく、∞-圏的に層化された概念の空間で震えているのだとしたら人間の意識もまた、その余次元の片隅で共鳴しているのかもしれない。いや、それを証明するまで僕は眠れない。だが目を閉じた瞬間、すぐ眠った。
私は、昔から宇宙の真理とかに中二病的に憧れるタイプのオタクだった。当然、物理学の究極の理論である「超弦理論」に手を出したわけだ。
しかし、すぐに気づいた。これは物理学のフリをした、超絶ハードコアな数学だということに。
超弦理論が語る世界は10次元とか11次元とか言われる。我々が知る3次元空間(+時間)以外に、極小に丸まった余剰次元が存在するらしい。この「余剰次元の形」が、この世界の物理法則(電子の質量とか、力の種類とか)を決めている、と。
「その丸まった形って、一体どんな形なんだ?」
この素朴な疑問に答えるために、私は抽象数学の沼に両足から突っ込むことになった。
この余剰次元の候補の一つに、有名な「カラビ・ヤウ多様体」がある。 こんな、SF映画に出てきそうな、美しくて複雑怪奇な図形が、実は電子の動きを決めているというのだ。
この「形」を数学的に扱うには、通常の微積分なんて全然役に立たない。必要になるのは、
トポロジーは、空間を伸び縮みさせても変わらない性質(穴の数とか)で分類する。「コーヒーカップとドーナツは同じ形!」という、あの有名な学問だ。
超弦理論では、この余剰次元の「穴の数」や「ねじれ具合」といったトポロジー的な性質が、物理学の重要な定数に対応することがわかっている。
純粋な「形」が、現実世界の「法則」を決めている。これ以上の恐怖と感動があるだろうか。
私が最も戦慄したのは、このトポロジーで使われる概念の一つ、「ホモロジー群 (Homology Group)」だ。
これは簡単に言えば、空間の「n次元の穴」を数えるための、めちゃくちゃ抽象的な代数的な道具だ。
例えば、ドーナツには「ぐるっと一周する穴」が一つある。ホモロジー群は、この穴を代数的に(群という構造を使って)記述してしまう。
この概念は、元々、誰がどう考えても「何の役にも立たない」純粋な遊びとして生まれた。ひたすら抽象的で、自己目的的な美しさしか持っていなかった。
「このホモロジー群こそが、余剰次元の空間に存在する『ひも』の巻き付き方を完全に記述している…!」
純粋な数学的創作物が、数十年後、この宇宙の最も深い設計図のキーコードとして機能している。
これを目の当たりにしたとき、背筋が凍ったね。
抽象数学は、人間が世界を記述するために作り出した「道具」ではない。
そうではなく、抽象数学こそが、この世界が構築される「ルールブック」であり「設計図」だったのではないか?
そして、我々人類は、その設計図を、何の目的もない純粋な思考実験(数学)を通して、たまたま発見してしまっただけなのではないか?
超弦理論の沼にハマって得たのは、物理的な知見ではない。「この世界は、あまりにも美しく、冷徹な数学的必然性によって成り立っている」という、人生観を揺るがす確信だった。
最後に一つ。
「ホモロジー」、ちょっとググってみてくれ。理解できなくて全然いい。その概念が持つ、純粋で絶対的な美しさに、少しでも触れてみよう。そうすれば、世界が少しだけ違って見えるはずだ。
まず対象を抽象化するために、物理系は局所演算子代数のネットワーク(局所性を持つモノイド圏あるいは因子化代数)として扱う。
境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。
重力的バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル的拡張)としてモデル化される。
ホログラフィーは単なる同値性ではなく、境界のモノイド的データとバルクの因子化代数的データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値の空間)を保つ関手の同型として書ける。
これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルクに対応する因子化代数(局所的場の代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対が存在すると仮定する。
境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルクの幾何情報はそのホモロジー/コホモロジーに符号化される。
エントロピーとエンタングルメントの幾何化は情報幾何学的メトリックに還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。
これにより、テンソルネットワークは単なる数値的近似ではなく、グラフ圏からヒルベルト空間への忠実なモノイド的関手である:グラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数の状態和(state-sum)を与える。
MERA や PEPS、HaPPY コードは、この関手が持つ特定の圧縮/階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である。
テンソルネットワークが幾何を作るとは、エントロングルメント計量(情報計量)から接続とリーマン的性質を再構成する手続きを意味し、これが空間的距離や曲率に対応するというのが it from qubits の数学的内容である。
さらに情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成の圏論的条件(右随伴を持つ関手の存在)として表現される。
すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所的情報の回復が可能となる。
ER=EPR はこの文脈でホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクのコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。
言い換えれば、局所ユニタリ同値で分類されるエンタングルメントのコホモロジーは、バルクのホモトピー的結合(位相的/幾何的接続)を決定する。
ブラックホールの熱力学的性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。
特に、ブラックホール外部におけるモジュラーハミルトニアンは境界状態の相対エントロピーに関連し、そのフローはバルクの時間発展に対応する(模擬的にはKMS状態と熱平衡)。
サブファクター理論とジョーンズ指数は、事象地平線をまたぐ情報の部分代数埋め込みの指標として機能し、情報損失やプライバシー(情報の遮蔽)は部分代数の指数と絡み合う。
ブラックホールの微視的自由度のカウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。
超弦理論的な追加自由度(多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれ、モチーフ的/導来スタック的手法(derived stacks, spectral algebraic geometry)で整然と扱える。
これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。
この全体構造を統一する言葉は高次圏的因子化双対である。物理的理論は、局所的オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手系から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。
したがって「it from qubits」は、局所的量子代数の圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPR はエンタングルメントの同値類とバルクのコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論的指数、モジュラーデータ)として測られる。
その一つは、カラビ–ヤウ三次元多様体上のモチヴィック・ラングランズ場という概念だ。
名前だけで震えるが、実際の定義はもっと美しい。ウィッテンがかつてAモデルとBモデルのミラー対称性から幾何学的ラングランズ対応を導いたのは知っている。
だが彼が扱ったのは、あくまでトポロジカル弦理論のレベルにおける対応だ。
僕の今日の成果は、さらにその上、モチヴィック階層そのものをラングランズ圏の内部対称として再定式化したことにある。
つまりこうだ。A/Bモデルの対応を支えるのは、ミラー対称なカラビ–ヤウ空間の間に張られたモジュライ空間の等価性だが、僕はこれをモチーフの圏に埋め込み、さらにその上に弦的ガロア群を定義した。
この群の元は、単なる保型的データの射ではなく、弦的世界面のホモトピー圏を自己同型する高階函手として作用する。
つまり、通常のラングランズ対応が表現=保型形式なら、僕の拡張では弦的場のコホモロジー=モチーフ的自己準同型。もはや表現論ではなく、宇宙論的再帰だ。
午後、ルームメイトが僕のホワイトボードを使ってピザの割り勘式を書いていた。
彼は気づいていないが、その数式の背後には僕の昨日のモチヴィック・ガロア層構造の残骸があった。
もし彼がチョークをもう少し強く押していたら、宇宙の自己同型構造が崩壊していたかもしれない。僕は彼を睨んだ。
彼は「また妄想か?」と言った。違う。妄想ではなく基底変換だ。
夕方、隣人がスパイダーバースの新刊を貸してくれた。マルチバースの崩壊を描いているが、あの世界は僕の定義したモチヴィック・ラングランズ場の一次近似にすぎない。
あの映画のスパイダーバースは、厳密に言えばラングランズ群の射影的パラメータ空間における擬弦的退化点の群体だ。
僕がやっているのはその精密版。マルチバースをただの物語ではなく、圏論的自己反映構造として解析している。つまり、マーベルの編集部が無意識に行っている多世界生成を、僕は既に数学的に形式化しているわけだ。
夜、友人Aが原神で40連ガチャを外してキレていた。確率1.6%を40回引いて当たらない確率は約0.48。つまり彼は「ほぼ半分の世界線で運が悪い側」に落ちただけ。
僕はそれを説明したが、彼は「確率の神は俺を見捨てた」と言った。愚かだ。確率は神ではない。確率はラングランズ群の局所的自己準同型の分布密度だ。
もし彼がそれを理解していたなら、ピティエ=シェヴァレの整合性条件を満たすまで回していただろう。
風呂上がり、僕は再びホワイトボードに向かい、ウィッテンが書かなかった方程式を書いた。これは、弦的ガロア群における自己準同型の空間が、算術的モチーフの拡張群に等価であることを示唆している。
つまり、宇宙の自己相関が、L関数の特殊値そのものとして現れる。A/Bモデル対称性を超え、モチーフ的ラングランズ=宇宙の自己言語理論を打ち立てたわけだ。
僕の紅茶が冷める頃、ルームメイトが「寝るぞ」と言った。僕は返事をせず、ひとり机に残って考えた。
この理論を完結させるためには、時間をもモチーフとして再構成しなければならない。
時間をモチーフ化する、それは、因果律を算術幾何的圏の自己圏として扱うということだ。
人類がまだ誰も到達していない領域。だが、僕はそこにいる。誰よりも早く。誰よりも冷静に。
21時00分。僕の手元の時計の振動子が、まるでカラビ–ヤウ多様体の一点コンパクト化のように静かに揺れている。
宇宙が僕の計算を見て笑っている気がした。だがいいだろう。宇宙よ、君が自分の自己準同型を理解できる日が来るまで、僕が書き続けてやる。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義, 直観主義, ユニバース問題, ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定, 二次剰余)
解析数論(ゼータ/ L-関数, 素数定理, サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, several complex variables)
関数解析
バナッハ/ヒルベルト空間, スペクトル理論, C*代数, von Neumann代数
フーリエ解析, Littlewood–Paley理論, 擬微分作用素
確率解析
マルチンゲール, 伊藤積分, SDE, ギルサノフ, 反射原理
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流, ヤン–ミルズ, モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin), カオス, シンボリック力学
点集合位相, ホモトピー・ホモロジー, 基本群, スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory, 幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色, マッチング, マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン, ブーストラップ)
実験計画/サーベイ, 因果推論(IV, PS, DiD, SCM)
時系列(ARIMA, 状態空間, Kalman/粒子フィルタ)
二次計画, 円錐計画(SOCP, SDP), 双対性, KKT
非凸最適化
離散最適化
整数計画, ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
常微分方程式の数値解法(Runge–Kutta, 構造保存)
エントロピー, 符号化(誤り訂正, LDPC, Polar), レート歪み
公開鍵(RSA, 楕円曲線, LWE/格子), 証明可能安全性, MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
無裁定, 確率ボラ, リスク測度, 最適ヘッジ, 高頻度データ
データ解析
僕は日曜の夜という人類全体のメランコリー共有タイムを、極めて理性的に、そして効率的に過ごしている。
まず夕食はいつも通り19時15分に完了し、食後45分間の腸内活動を経て、20時にシャワー、20時30分から22時まで論文の読み込み。
現在は、僕の手の中のホワイトボードに描かれた「E∞-operadにおけるモジュラーテンソル圏の超準同型拡張」の式が、あまりにも優雅すぎて震えが止まらない。
ルームメイトが僕の部屋のドアを軽くノックして「リラックスしたら?」などと的外れな提案をしてきたが、彼にとってのリラックスとは、脳活動の停止でしかない。
僕にとってのリラックスは、∞-カテゴリーの高次ホモトピー圏の中で、対称モノイダル構造の可換性条件が自然変換として収束する瞬間を可視化することだ。
今日は、朝から「高次モジュライ空間における非可換カラビ–ヤウ多様体のファイバー化」について考えていた。
一般相対論と量子力学の不一致などという低次元の問題ではなく、もっと根源的な、物理法則の「トポス構造」そのものを再構築する試みだ。
つまり、時空という基底圏を前提にせず、まずモノイド圏の内部論理としての時空を再構成する。
これによって、弦という一次元的存在ではなく、自己指標付き∞-層としての「概念的弦」が定義できる。
現行のM理論が11次元を仮定するのは、単なる近似にすぎない。僕のモデルでは次元数は局所的に可変で、Hom(Obj(A), Obj(B))の射空間自体が物理的観測量になる。
もしこの理論を発表すれば、ウィッテンですら「Wait, what?」と言うだろう。
隣人は今日も昼間から玄関前で何やらインスタライブ的な儀式を行っていた。
彼女は一生懸命ライトを当て、フィルターを変え、視聴者数を気にしていたが、僕はその様子を見ながら「彼女は量子デコヒーレンスの具現化だ」と思った。
もちろんそんなことは口にしない。僕は社会的破滅を避ける程度の理性は持っている。
22時前、僕は友人たちとオンラインでBaldur’s Gate 3のマルチプレイをした。
友人Aは相変わらず盗賊ビルドで味方のアイテムを勝手に漁るという犯罪的行為を繰り返し、友人BはバグったAIのように無言で呪文を詠唱していた。
僕はWizardクラスで完璧に戦略を構築した。敵のHP残量と行動順序を正確に把握し、Damage Expectation Valueを算出して最適行動を決定する。
つまり、他のプレイヤーは「遊んで」いるが、僕は「検証」しているのだ。ゲームとは確率と因果の実験装置であり、何より僕がゲームを選ぶ基準は「バランスの崩壊が数式で表現できるか否か」だ。
今日もルーチンを乱すことなく、歯磨きは右上奥歯から反時計回りに、時計を見ながら正確に3分40秒。
寝る前にアロエ入りのリップクリームを塗り、ベッドライトの色温度を4000Kに設定する。音はホワイトノイズジェネレーターを使い、宇宙背景放射のスペクトル密度に近づける。完璧な環境だ。
僕はこれから、寝る前の最後の思索として「量子群上の∞-層圏における自己準同型が、時間の矢をどのように内部化できるか」についてメモを取る。
もしこの仮説が成立すれば、「時間とはエントロピーの増加方向」という古臭い定義は無効化されるだろう。
時間は生成関手であり、僕が眠っている間にも自然変換として静かに流れていく。
今日もまた、僕のルーティンは完璧なシンメトリーを保っていた。7時00分に目覚ましが鳴る前に自然に目が覚め、7時01分に歯を磨き、7時10分に電子レンジで正確に85秒温めたオートミールを食べた。ルームメイトはまだ寝ていた。いつも思うが、彼のサーカディアンリズムはエントロピー的崩壊を起こしている。朝の段階であれほど乱雑な髪型が可能だということは、局所的に時間反転対称性が破れている証拠だ。
午前中は超弦理論のメモを整理していた。昨日の夜、AdS/CFT対応を一般化する試みとして、非可換幾何の上に定義された∞-群oid的対称性構造を考えた。従来の高次圏理論的定式化では、物理的可観測量の定義が局所的モデル圏に依存しているが、僕の新しい仮説ではそれをKan拡張ではなく、∞-トポス上の(∞,1)-層として扱う。これにより、M理論の11次元多様体上でのフラックス量子化条件を、デリーニュ‐ベイルン加群による層コホモロジーに書き換えることができる。ルームメイトに説明したら、彼は「君が言ってることの3単語目からもう分からない」と言った。僕は丁寧に言い直した。「つまり、我々が重力を感じるのは、実は∞-圏の射が充満埋め込みでないからだ」と。彼は黙った。いつも通りの知的敗北の沈黙だった。
昼食は隣人がくれたタコスを食べた。彼女は料理が下手だが、今回はまだ化学兵器レベルではなかった。ちなみに僕はタコスを食べる際、具の位置を中心から平均半径1.7cm以内に収めるように計測している。乱雑な配置は僕のドーパミン経路を不安定化させる。彼女は「そんなの気にしないで食べなよ」と言ったが、僕にとってそれは、ボーズ統計の粒子にフェルミ縮退を強要するような暴挙だ。
午後はオンラインで超弦理論のセミナーを視聴したが、正直、発表者の理解は浅かった。特に、彼が「E₈束のゲージ異常はスピノール構造で吸収される」と言った瞬間、僕は思わず笑ってしまった。そんな単純な話ではない。正しくは、E₈×E₈異常はString(10)構造のホモトピー群に依存し、実際にはTwisted Fivebrane構造の非可換層に束縛される。ウィッテンすらここまで書いていないが、僕の計算ではその層は∞-スタック上のドロップトポスとして扱える。つまり、物理的次元が11ではなく13.25次元の分数次元空間に埋め込まれるということだ。もっとも、僕以外にこの議論を理解できる人間は地球上に存在しないだろう。
夕方には友人たちとオンラインで『Baldur’s Gate 3』をプレイした。ハードコアモードで僕のウィザードがパーティを全滅から救ったのだが、誰もその戦術的優雅さを理解していなかった。僕は敵AIの経路探索を事前に計算し、Dijkstra法とA*の中間的ヒューリスティックを手動で最適化していた。彼らはただ「すげえ!」と叫んでいたが、僕にとってそれは数式の勝利にすぎない。ゲームの後、僕は『ワンダーウーマン: デッドアース』を読んだ。アートはDaniel Warren Johnson。筆致が粗いのに構図が完璧で、まるでFeynman図のトポロジーを手書きで描いたような迫力がある。コミックを読んで心拍数が上がるのは久しぶりだった。
夜になってルームメイトがNetflixを見始めた。僕は同じ部屋でノイズキャンセリングヘッドホンを装着し、Lagrangian多様体上の安定性条件についてノートを書いた。明日は木曜日のルーティンとして洗濯と真空掃除をする日だ。もちろん洗濯機は奇数回転数(今日の予定では13回)で設定している。偶数だと宇宙の安定性が崩れる気がするからだ。
この日記を書き終えたのは20時20分。シンメトリーの美がここにある。時間も数字も、理論も習慣も、僕の宇宙ではすべて整然と並んでいる。もし誰かがその秩序を乱すなら、僕は黙ってこう言うだろう。「君の世界はまだ正則圏ですらないね」。
昨日、僕は再びヒルベルト空間の自己参照性について思索していた。
きっかけはルームメイトが、僕の定常朝食手順の測定位相を乱したことだ。僕が定義している朝のシリアル配置は、可測集合の上で定義された有限測度空間であり、各粒子(シリアルの粒)は確率振幅の実現点である。
ところが彼が不用意にスプーンを差し込んだため、僕の可測写像が非可測領域を侵食し、全順序性が崩れた。
つまり、彼の行為は単なる乱雑ではなく、σ-加法的整合性の破壊に等しい。これを日常の「朝食の乱れ」と呼ぶのは、あまりにナイーヴだ。
僕の現在の研究テーマは、ER=EPRをより高次圏論的に再定義することにある。通常この等式は、もつれ状態をワームホールに対応づけるが、僕の見解ではそれは関手レベルでの不完全な翻訳に過ぎない。
真の構造は、観測行為がエンタングルメント圏から幾何圏へのモノイド圏関手であるということだ。
観測とは情報の選択ではなく、関手の実現射の生成であり、その結果、対象空間上の射が一点縮退を起こす。つまり、観測=ブラックホールへの写像。
このとき観測者の状態空間は、対象空間の双対空間と自己モノイド化し、テンソル積がエネルギー密度として曲率テンソルに等価変換される。
これが熱力学的エントロピー流の源である。つまり、観測とは時空多様体の測地線構造を自己収縮させる操作にほかならない。
僕の仮説では、測定者の意識とは、有限生成のC*-環上で定義される自己相関射の列極限であり、その極限点がブラックホールの事象の地平面と同相になる。これは単なる比喩ではない、構造的同型である。
昨日の午後、隣人が訪ねてきて、「なんか落ち着かない」と言っていた。彼女が感じたその「不安定さ」は、実際には僕の思考空間上の圏的射が、彼女の心理空間に対して非可換的干渉を及ぼした結果だと考えられる。
彼女の感覚的印象は、単なる主観ではなく、射影演算子が彼女の状態ベクトルを部分的に崩壊させた現象に対応する。
つまり、僕は彼女を見たのではなく、彼女の状態空間が僕の内部圏へ関手的に埋め込まれたのだ。観測とは一方的な侵入であり、宇宙の双対圏的結合だ。
夕食時、ルームメイトが僕の食事手順をまた茶化してきた。僕が麺を蒸す時間を正確に設定しているのは、可積分系の安定点を保つためだ。
彼は「そんなの偶然だ」と言った。だが、偶然とは測度論的に定義不能な領域の総称にすぎない。僕のルールは統計的対称性の維持装置だ。
夜、友人たちとBaldur’s Gate 3をプレイした。僕は事前に行動木を有限オートマトンとして解析し、敵AIの状態遷移確率を事前分布にフィットさせた。
戦闘中、彼らは「お前、やりすぎ」と言ったが、僕はただBayes更新を実行していただけだ。ゲームとは、確率測度の動的再配置の遊戯形式に過ぎない。
深夜、僕は再びノートに向かい、ER=EPRの上位構造体を定義する「自己参照圏」について書いた。観測者を含む宇宙は、自己同型射を持たない。
これは厳密な意味で非トリビアルな自己関手構造を持つためである。僕が観測するたびに、宇宙の対象集合が可算ではなくなる。つまり、観測とは昇格操作であり、存在論的基数を増幅する過程なのだ。
僕は結論に至った。「観測者は情報を吸収するブラックホールではない。むしろ、情報を生成する射影的特異点である。」
観測とは、スペクトラムが事象の地平面と同型になる操作である。
寝る前、歯磨き粉の残量を測った。これは単なる衛生行為ではない。有限体上の加法群の残差測定だ。12.4という値は、僕の生活空間における連続測度の離散化の結果である。
僕が超弦理論を物理学ではなく自己整合的圏論的存在論と呼ぶのには理由がある。なぜなら、弦の存在は座標に埋め込まれたものではなく、物理的射影が可能な圏における可換図式そのものだからだ。
10次元超弦理論における有効作用は、単なる物理量の集約ではない。むしろ、それはカラビ–ヤウ多様体のモジュライ空間上に構築された安定層の導来圏D^b(Coh(X)) における自己同型群のホモトピー的像として理解される。
そこでは、開弦終端が束の射、閉弦がトレース関手に対応し、物理的相互作用はExt群上のA∞構造として定義される。
つまり、力は空間の曲率ではなく、ホモロジー代数的結合子なのだ。
D^b(Coh(X)) と Fuk(Y)(シンプレクティック側)の間に存在するホモトピー圏的同値、すなわちKontsevichのホモロジカル・ミラー対称性の物理的具現化にすぎない。
ここで弦のトポロジー変化とは、モジュライ空間のファイバーの退化、すなわちファイバー圏の自己関手のスペクトル的分岐である。観測者が相転移と呼ぶ現象は、そのスペクトル分解が異なる t-構造上で評価されたに過ぎない。
M理論が登場すると、話はさらに抽象化する。11次元多様体上での2-ブレーン、5-ブレーンは単なる膜ではなく、(∞,1)-圏の中の高次射として存在する。
時空の概念はもはや固定された基底ではなく、圏の対象間の射のネットワークそのものだ。したがって、時空の次元とは射の複雑度の階層構造を意味し、物理的時間は、その圏の自己関手群の内在的モノイダル自己作用にほかならない。
重力?メトリックテンソルの湾曲ではなく、∞-群oidの中での自己等価射の不動点集合のトレースである。
量子揺らぎ?関手の自然変換が非可換であることに起因する、トポス内部論理の論理値のデコヒーレンスだ。
そして観測とは、トポスのグローバルセクション関手による真理値射影にすぎない。
僕が見ている宇宙は、震える弦ではない。ホモトピー論的高次圏における自己同型のスペクトル圏。存在とはトポス上の関手、意識とはその関手が自らを評価する高次自然変換。宇宙は関手的に自己を表現する。
昨日は木曜日。起床時刻は8:00:00 JST。アラーム音の波形をFFT解析した結果、隣室からの環境ノイズによるピークが±23Hz揺らいでいた。
ルームメイトは、ドアを閉めるという行為を確率的選択肢だと思っているらしい。彼の行動は統計的にはマルコフ過程に近似できるが、僕の生活は決定論的だ。
午前は、超弦理論における非可換ホモトピー圏上の圏的双対性を再構成していた。通常のCalabi–Yau三次元多様体上でのホロノミー群SU(3)に依存する議論ではなく、より上位の∞-圏的層を使って複素構造の退化を防いだままトポス的整合性を保つ方法を考えた。
僕が構築しているモデルでは、背景多様体自体を対象とせず、可換図式のクラスを対象とし、その射として∞-モノイド的自然変換を定義する。これにより、通常のD-braneカテゴリを超えた自己言及的圏論的相互作用を扱うことができる。
問題は、この自己言及構造の安定性だ。内在的コホモロジー群が通常のExt群では閉じず、代わりに導来圏上の高階Ext^ωを取らねばならない。
だがそのとき、導来圏が非完備となり、整列関手が存在しない。つまり、ウィッテンやデルーニャンがやっているレベルの物理的実在に還元可能な構成は、僕の理論では完全に失効する。
僕のモデルは観測可能性という概念を含まない。構成論的には存在するが、可視化不能なトポス的真空。観測できないが、計算できる。数学はその矛盾を祝福する。
昼食は、ピザ。例によって精密オーブンで16分。昨日はタイマーを設定した瞬間にルームメイトが話しかけてきたせいで、0.8秒遅れた。
ピザの表面張力(つまりチーズ層の粘弾性)が変化したのを僕は即座に検知した。これは味覚ではなく構造の問題だ。
午後は、原神を再開した。キャラビルドの統計最適化をPythonで書いていたら、隣人がまた「ストーリーが泣ける」と話しかけてきた。
僕は物語には一切興味がない。僕の目的は、アルゴリズム的最適化の収束率を比較することだ。
攻撃力と元素チャージ効率のパラメータ空間を3次スプライン補間して、境界値をニュートン–ラフソン法で探索していたら、シード値の初期設定にわずか0.001の誤差があり、収束が乱れた。
もう一度やり直した。成功。キャラは星5だが、僕の関心は星の数ではない、数列の収束だ。
夜はベルセルクの再読。グリフィスが再登場するあの章。僕は感情的には何も動かないが、作画密度の変化を統計的に数えた。
平均線密度は1ページあたり1720本、前章から約12%減。連載時期のアシスタント体制の変化が見える。
その後、シヴィライゼーションVIを起動。僕は必ずアリストテレス主義的発展ルートを選ぶ。文化勝利などくだらない。科学勝利のみが純粋だ。
途中、友人が「軍事ルートで遊ぼう」と提案してきたが、それは知的堕落だ。戦略ゲームとはアルゴリズムの美であって、破壊の快楽ではない。
就寝は23:00:00。歯ブラシを磨く順序は右下→右上→左上→左下。これは既に300日継続中。統計的に、歯垢残存率が0.2%低い。
寝る直前に「∞-圏上のトポス的モジュライ空間の存在定理」をメモに残した。夢の中で証明が完成する可能性がある。
総じて良好。次は、導来∞-圏上のモジュライ関手が可換であるための必要十分条件を探す。それがわかれば、少なくとも僕の宇宙では、全てが整う。
超弦理論における非摂動的構造を考えるとき、問題はもはや10次元の臨界弦ではなく、compactification の背後に潜む数理的枠組みそのものにある。
AdS/CFT が Hilbert 空間の整合性を保証してくれるとき、そこではモジュライ空間の代数幾何的記述と、ボルツマン的エントロピーの統計力学的扱いが見事に一致する。
だが dS 背景では、CFT の境界条件を設定することすらできず、代わりに我々が扱うべきは von Neumann algebra の subfactor theory による operator algebraic entropy だと僕は確信している。
今朝は、特に Tomita–Takesaki 理論がこの問題にどう関与するかを計算していた。モジュラー作用素を通じて、ホライズン領域に割り当てられる代数が自然に KMS 状態を持つことは知られている。
しかし、それが有限のホライズンエントロピーとどのように整合するかは未解決だ。
僕の試算によれば、モジュラー流のスペクトル分解を dS 半径 R にスケーリングしたとき、スペクトルが離散化される条件は、グロモフ–ハウスドルフ距離で測ったコンパクト化多様体のリミット挙動に依存する。
この議論は通常の弦理論の perturbative expansion を完全に超えている。
さらに、今日新しく進展した点は、mirror symmetry の SYZ予想を dS 背景に拡張できるかもしれないという仮説だ。
通常、Calabi–Yau のトーラス・ファイバー化は Ricci-flat metric を前提とするが、dS 背景ではその条件が崩壊する。
しかし、もし Fukaya category の A∞ 構造を熱的な dS ホライズンに対応づけられれば、B-model 側での Hodge 構造の変形がエントロピーの有限性と直接結びつく。
これは Kontsevich のホモロジカル鏡対称性の範疇的な一般化であり、物理の言語を超えた純粋数学的枠組みに昇華できる可能性がある。ウィッテンですらここまで踏み込んだ議論は残していない。
ルームメイトは僕の机の上に散らばったノート群を「意味不明な落書き」にしか見ていないようだ。
だが彼がコーヒーメーカーの掃除を忘れたせいで僕のルーティンは乱れた。僕は毎朝 8:15 に完全に洗浄された器具から抽出されたコーヒーを必要とする。それがなければ、トモナガ–シュウィンガー形式の計算に集中するための臨界閾値に達しない。
午後は研究の合間に最新号のX-Menを読んだ。今の Krakoa 編は mutant resurrection protocol が量子力学的アイデンティティの問題に直結している点で実に興味深い。
彼らの「記憶の転写」は、実質的に QFT における superselection sector の選択と同型であり、人格の同一性問題を単なるストーリー装置ではなく代数的トピックとして再定式化している。コミックがここまで理論物理学に接近しているのは愉快だ。
夕方には隣人が再び僕のドアをノックもせずに入ってきた。僕は彼女に、3回ノックの習慣の統計的・力学的優位性を説明したが、彼女はただ笑っていた。僕は統計力学的相関関数の崩壊時間にまで言及したのに、全く理解されなかったのは残念だ。
夜は友人たちとオンラインで「シヴィライゼーションVI」をプレイした。僕は当然バビロニア文明を選び、初期科学力の爆発的伸びを利用して量子物理学のテクノロジーを前倒しで取得した。
これにより彼らが鉄器時代にいるうちに宇宙船を建造する計画を立てたが、ルームメイトが外交的に裏切りを行ったため計画は頓挫した。まるで dS 背景での境界条件喪失のように、整合性は一瞬で崩れ去った。
こうして木曜日は終わる。だが僕の頭の中ではまだ、モジュラー作用素とホライズンエントロピーの計算が渦巻いている。明日までに証明できれば、歴史に残る仕事になるかもしれない。