「群作用」を含む日記 RSS

はてなキーワード: 群作用とは

2025-11-17

[]

僕は今、月曜の2時13分にここでキーボードを叩いている。眠れない理由は単純で、超弦理論位相量子化で起こる射影的自己同型の消滅条件が唐突に頭の中で整合しはじめたからだ。

脳が完全に臨戦態勢になってしまった。こういう時は寝ようとしても無駄だし、僕の思考収束前には必ず日記を取るというルールに従って、理性に屈服する形で書き始めた。

今日夕方ルームメイトが「君は日曜ぐらいリラックスしてもいいんじゃないか」と言っていたが、僕がリラックスしているかどうかは、僕が主観的エントロピーを最小化する行動を選べているかどうかで決まる。今日は午前中に完全に整然としたルーティンをこなした。まず、朝食前に僕の7ステップ手洗い儀式を完遂し、それから定位置ソファに正確に42度の角度で腰を下ろし、いつものごとくTCGデッキリスト更新した。最新環境では相変わらずテンポ系アグロが幅を利かせているが、そのメタゲーム上の凸集合を解析すると、今期はあえて失敗したアーキタイプに見えるコントロール系のほうが上振れ余地が大きい。特にカウンター軸を多項式環上の構成フィルタで再評価すると、一般プレイヤーには理解不能領域に潜む勝ち筋が可視化される。僕はその数学裏付けがないと、カード一枚すらスリーブに入れられない。

午後、隣人がシューズを買い替えたらしく、箱を抱えてエレベーターで乗り合わせた。僕は話しかけられないよう壁の中心に対して身体位置黄金比で保ち、視線を固定していたが、それでも「今日休み?」と聞かれたので、僕は今日次元選択解釈を再構築するための検証日だと答えた。相手は笑っていたけど、僕は真面目に言った。今日主題は、従来の超弦理論依存してきた10次元時空を、圏論でいうところの自己随伴構造を持つモノイダル圏の射影的層として再概念化し、その上で、最近発表されたばかりの無限階層ガロア格子の部分群作用に基づく因果的相関因子の消滅定理適用できるかの検証だった。専門家でもまだ定義すら曖昧研究と言うだろうけど、曖昧かどうかと有効かどうかは別問題で、僕は今日、その曖昧さがむしろ次元圧縮自由度を与えると証明できた。ルームメイトは「それは何かのゲームの話か?」と言っていたが、ゲーム理論的視点から見ればあながち間違っていない。超弦理論次元配置は、巨大なTCGデッキ構築とかわらない。可観測量は有効カードプールであり、不要次元は抜けばいい。

夜は友人が来て、いつものホビーショップの話をしていた。彼らはミニチュアの塗装方法ボードゲームの新作の話をしていたけど、僕は途中から位相双対性ミニチュアの影の落ち方に適用できないか考えていたので、会話の半分しか聞いていない。でも僕が影の境界線局所コンパクト性の破れとして理解できると言った時、彼らは黙り、ルームメイトは僕にココアを淹れて渡してきた。これは彼なりの「黙ってろ」という合図だ。僕はありがたく受け取った。

そのあと入浴して、いつもの順番通りにタオルを畳み、歯磨きを右上→右下→左下→左上の順に完遂し、寝る準備は万端だったのに、2時13分、突然すべての数学ピースが一気に接続した。自己同型の残差部分を消すために必要だったのは、張られた層の間にある外部導来関手じゃなくて、単に対象のものの余極限だったのではないかという単純な洞察だ。これで次元の束縛条件が一段階緩和される。誰にも説明できないが、僕にとっては寝るより優先度が高い。

こんな時間日記を書いているけど、これは僕のルーティンの一部だし、明日仕事効率には影響しない。脳が正しく動作している時、睡眠は後回しでも構わない。超弦理論の新しい構図が明瞭になり、TCGメタ読みも更新され、こだわり習慣も破られず、ルームメイトも隣人も友人も、それぞれの役割を果たし、日曜日は正しい閉じ方をした。

僕はあと10分だけ、脳内で余極限の安定性を点検したら寝るつもりだ。もっとも、その10分が実際に10分になるとは限らないけれど。

2025-11-15

抽象数学とか超弦理論かについて

超弦理論を、幾何・量子・相互作用・背景・対称性などの具体語をすべて捨てて、抽象数学の圏・∞圏・トポス代数構造として再構成する。

超弦理論とは、以下の大枠で捉えられる。

超弦理論とは、ひとつの ∞‐トポスの内部に存在する、整合する高次対象の網の自己同値群作用として定義される力学階層のこと。

ここでいう高次対象の網とは

まり超弦理論は、高次圏における一貫した自己同型の塔として唯一の統一構造形成する。

世界構成要素(時空・ブレーン・場・弦など)を、具体的存在ではなく、因子化代数の生成する情報単位ローカル抽象操作の束)として扱う。

局所性とは、因子化代数のテンソリアル分解可能性であり、その破れが重力・非可換性・ホログラフィーとなって現れる。

この表現は近年の因子化ホログラフィー、AQFT(作用素代数)による重力再構成整合する。

具体的な「紐」は出てこない。

代わりに、

弦とは、対象間の射が厳密に可換しないことからまれる高次ホモトピー階層構造のもの

その結果

すべてが幾何実体ではなくホモトピー代数的な関係パターンとして統一される。

S-双対性、T-双対性、U-双対性ホログラフィーER=EPR のような、A と B が実は同じ理論であるという主張は、すべて 同一の ∞‐対象を異なるファイバー関手で見ているだけという主張に還元される。

まり

最先端研究(Harlow・Witten・Leutheusser 等)では、重力系の作用素代数は中心を持たず、中心の欠如が再構成不可能領域として幾何を生む。

これを抽象化すると、

まり時空は「入れ物」ではなく、作用素代数に付随する冪等射の配置図として emergent に現れる。

相互作用とは粒子間の力ではなく、∞‐圏の合成律が完全には対称化されないことによる高次コヒーレンスの破れ。

例:

5つの超弦理論は、同じ ∞‐構造の異なる層(filtration)または異なるコホモロジー階層の射影として理解され、M理論はこれらの層化を結ぶ普遍対象(colimit)として現れる。

量子とは粒子ではなく、因子化代数の非中心性 + 高次圏の非可換ホモトピーの束 の総体である

ER=EPR

自己同値の絡みが、双対視点で経路接続として読める現象

コードサブスペース AdS/CFT

∞‐圏の部分圏への忠実な埋め込み。冗長性 = 誤り訂正

TTbar 変形

因子化代数テンソル構造の非局所的再配線。幾何ではなく、圏論的な図式変形。

Swampland

大域構造整合しない射からなる排除集合。整合可能理論 = ∞‐圏の完全部分圏。

摂動二次元重力行列模型

高次圏の普遍的生成対象が作る低次射の平均化された振る舞いの分類。

まとめ

超弦理論とは何か?

超弦理論とは、自己同値階層的に組織された ∞‐構造情報片の因子化を許すときに生じる一貫した世界像の総称である

2025-11-13

[]

僕は木曜日の朝10時に、昨日(水曜日)の出来事を記録している。

朝の儀式はいつも通り分解可能位相のように正確で、目覚めてからコーヒーを淹れるまでの操作は一切の可換性を許さない。

コーヒーを注ぐ手順は一種群作用であって、器具の順序を入れ替えると結果が異なる。ルームメイトは朝食の皿を台所に残して出かけ、隣人は玄関先でいつもの微笑を投げかけるが、僕はそこに意味を見出そうとはしない。

友人二人とは夜に議論を交わした。彼らはいつも通り凡庸経験則に頼るが、僕はそれをシグナルとノイズの分解として扱い、統計的有意な部分だけを抽出する。

昨晩の中心は超弦理論に関する、かなり極端に抽象化した議論だった。僕は議論を、漸近的自由性や陽に書かれたラグランジアンから出発する代わりに、代数的・圏論的な位相幾何学の言葉再構成した。

第一に、空間時間背景を古典的マンフォールドと見なすのではなく、∞-スタック(∞-stack)として扱い、その上の場のセクションがモノイド圏の対象として振る舞うという観点を導入した。

局所的な場作用素代数は、従来の演算子代数特にvon Neumann因子のタイプ分類)では捉えきれない高次的相互作用を持つため、因子化代数(factorization algebras)と導来代数幾何(derived algebraic geometry)の融合的言語を使って再記述する方が自然だと主張した。

これにより、弦のモードは単なる振動モードではなく、∞-圏における自然変換の族として表現され、双対性は単に物理量の再表現ではなく、ホモトピー同値(homotopical equivalence)として扱われる。

さらに踏み込んで、僕は散逸しうるエネルギー流や界面効果を射影的モチーフ(projective motives)の外延として扱う仮説を提示した。

要するに、弦空間局所構造モチーフホモトピー理論ファイバーとして復元できるかもしれない、という直感だ。

これをより形式的に述べると、弦場の状態空間はある種の導来圏(derived category)における可逆的自己同型の固定点集合と同値であり、これらの固定点は局所的な因子化ホモロジーを通じて計算可能である

ただしここから先はかなり実験的で、既知の定理保証されるものではない。

こうした再定式化は、物理予測を即座に導くものではなく、言語を変えることで見えてくる構造的制約と分類問題を明確にすることを目的としている。

議論の途中で僕は、ある種の高次圏論的〈接続〉の不変量が、宇宙論エントロピーの一側面を説明するのではないか仮定したが、それは現時点では推論の枝の一本に過ぎない。

専門用語の集合(∞-圏、導来スキーム、因子化代数、von Neumann因子、AQFT的制約など)は、表層的には難解に見えるが、それぞれは明確な計算規則と変換法則を持っている点が重要だ。

僕はこうした抽象体系を鍛えることを、理論物理学における概念的清掃と呼んでいる。

日常についても触れておく。僕の朝の配置には位相的な不変量が埋め込まれている。椅子の角度、ノートパソコンキーボード配列ティーカップの向き、すべてが同相写像の下で保存されるべき量だと僕は考える。

隣人が鍵を落としたとき、僕はそれを拾って元の位置に戻すが、それは単なる親切心ではなく、系の秩序を保つための位相補正である

服を着替える順序は群作用対応し、順序逆転は精神的な不快感を生じさせる。

ルームメイトが不可逆的な混乱を台所に残していると、僕はその破線を見つけて正規化する。

友人の一人は夜の研究会で新しいデッキ構築の確率最適化について話していたが、僕はその確率遷移行列スペクトル分解し、期待値分散を明確に分離して提示した。

僕はふだんから、あらゆる趣味活動マルコフ過程情報理論の枠組みで再解釈してしまう悪癖がある。

昨夜は対戦型カードルールインタラクションについても議論になった。

カード対戦におけるターンの構成勝利条件、行動の順序といった基礎的仕様は、公式ルールブックや包括的規則に明確に定められており、例えばあるゲームではカードやパーツの状態を示すタップアンタップなどの操作が定式化されている(公式の包括規則でこれらの操作とそれに付随するステップ定義されている)。

僕はそれらを単純な操作列としてではなく、状態遷移系として表現し、スタックや応答の仕組みは可逆操作の非可換な合成として表現することを提案した。

実際の公式文書での定義を参照すると、タップアンタップ基本的説明やターンの段階が明らかにされている。

同様に、カード型対戦の別の主要系統では、プレイヤーセットアップドロー、行動の制約、そして賞品カードノックアウトに基づく勝利条件が規定されている(公式ルールブック参照)。

僕はこれらを、戦略的決定が行なわれる「有限確率過程」として解析し、ナッシュ均衡的な構成を列挙する計算を試みた。

また、連載グラフィック作品について話題が及んだ。出版社公式リリースや週次の刊行カレンダーを見れば、新刊重要事件がどう配置されているかは明確だ。

たとえば最近の週次リリース情報には新シリーズ重要な続刊が含まれていて、それらは物語トーンやマーケティング構造を読み解く手掛かりになる。

僕は物語的変動を頻度分析し、登場人物の出現頻度や相互作用ネットワークを解析して、有意プロットポイント予測する手法を示した。

夜遅く、友人たちは僕の提案する抽象化が読む側に何も還元しない玩具言語遊びではないか嘲笑したが、僕はそれを否定した。

抽象化とは情報の粗視化ではなく、対称性と保存則を露わにするための道具だ。

実際、位相的・圏論表現は具体的計算を単に圧縮するだけでなく、異なる物理問題戦略問題の間に自然対応(functorial correspondence)を見出すための鍵を与える。

昨夜書き残したノートには、導来圏のある種の自己同型から生じる不変量を用いて、特定ゲーム的状況の最適戦略を分類するアルゴリズムスケッチが含まれている。

これを実装するにはまだ時間がかかるが、理論的な枠組みとしては整合性がある。

僕の関心は常に形式実装の橋渡しにある。日常儀式形式実験場であり、超弦理論の再定式化は理論検算台だ。

隣人の小さな挨拶も、ルームメイトの不作法も、友人たちの軽口も、すべてが情報理論的に扱える符号であり、そこからノイズを取り除く作業が僕の幸福の一部だ。

午後には彼らとまた表面的には雑談をするだろうが、心の中ではいものように位相写像圏論随伴関手の組を反芻しているに違いない。

2025-10-09

[]

昨日(2025年10月8日水曜日)の僕は、いつものように目覚めの瞬間から几帳面だった。

アラームを鳴らす前の微小な筋肉収縮で6時44分59秒に目が醒め、コーヒーの湯温は必ず蒸らし後92.3℃で計測し、トーストの一片は正確に28.4g、バナナは熟度指標F値が2.1に収まっていることを確認してから食べる。

こうした儀式性は僕の一日の基準座標を与える。

 

午前中は机に向かい形式的かつ徹底的に「超弦理論位相的/圏論精緻化」を考察した。

具体的には、ワールドシートCFTを従来の頂点作用素代数VOA)として扱う代わりに、スペクトラル代数幾何言葉で安定∞-圏の係数を持つ層として再構成することを試みた。

まり、モジュライ族 上に、各点で安定∞-圏を付与するファイバー化されたファミリーを考え、その全体をファクタライゼーション代数として捉えて、Lurie 的な infty-functor として境界条件ブレイン/D-brane)を安定∞-圏の対象対応させる枠組みを描いた。

ここで重要なのは、変形理論が Hochschild 共役で制御されるという点で、VOA のモジュラー性に相当する整合性条件は、実は E_2-作用素ホモトピー的不変量として読み替えられる。

従って、運動量・ゲージアノマリーの消去は位相的にはある種の線バンドル自明化(trivialization)に対応し、これはより高次のコホモロジー理論、たとえば楕円コホモロジー/tmf 的な指標によって測られる可能性があると僕は仮定した。

さらに、Pantev–Toën–Vaquié–Vezzosi のshifted symplectic構造を導来スタック文脈で持ち込み、ブライアンのBV–BRST 形式主義を∞-圏的にアップグレードすることで、量子化形式的deformation quantizationから∞-圏的モノイド化へと移行させる方針検討した。

技術的には、済んだ小節のように A∞-圏、Fukaya 型的構成、そして Kontsevich 型の formality 議論をスペクトラル化する必要があり、Koszul 双対性と operadic正規化(E_n-operad の利用)が計算上の鍵になる。

こうした抽象化は、従来の場の理論レトリックでは見逃されがちな境界の∞-層が持つ自己整合性顕在化させると信じている。

 

昼には少し気分転換ゲームを触り、ゲーム物理乱暴さを数理的に嫌味ったらしく解析した。

具体的には、あるプラットフォーマーで観察される空中運動の離散化された擬似保存則を、背景空間を非可換トーラスと見なしたときの「有効運動量写像帰着させるモデルを考えた。

ゲームデザイン上の「二段ジャンプ」はプレイヤーへの操作フィードバックを担う幾何的余剰自由度であり、これは実は位相的なモノドロミー(周回時の状態射の非可換性)として記述できる。

こう言うと友人たちは眉をひそめるが、僕にはすべてのバグ代数的不整合に見える。

コミックについては、連載物の長期プロットに埋め込まれモティーフと数理構造類比を延々と考えた。

例えば大海叙事詩航路上に出現する島々を、群作用による軌道分割として見ると、物語回帰点は実はモジュライ空間上の特異点であり、作者が用いる伏線はそこへ向かう射の延長として数学的に整理できるのではないか妄想した。

 

そう言えば隣人は最近、ある実写シリーズ話題にしていたが、僕は物語世界法則性が観客認知整合しているか否かをまず疑い、エネルギー保存や弾性論的評価破綻している場面では即座に物理的な説明(あるいはメタ免罪符)を要求する習慣があるため、会話は短く終わった。

ところで、作業ノートは全て導来stackのようにバージョン管理している。具体的には、研究ノートは日ごとに Git の commit を行い、各コミットメッセージにはその日の位相観測値を一行で書き、さらに各コード片は単体テストとして小さな homotopy equivalence のチェッカーを通す。

朝のカップ左手から時計回りに3度傾けて置き、フォークテーブルエッジから12.7mmの距離に揃える。

こうした不合理に見える細部は、僕の内部的整合性を保つためのメタデータであり、導来的に言えば僕というエンティティ同値類を定めるための正準的選択だ。

 

夕方、導来スタック上の測度理論に一箇所ミスを見つけた。p進的局所化と複素化を同時に扱う際に Galois 作用の取り扱いをうっかり省略しており、これが計算整合性を損なっていた。

誤りを修正するために僕はノートを巻き戻し、補正項として gerbe 的な位相補正を導入したら、いくつかの発散が自然キャンセルされることを確認できた。

 

夜はノートを整理し、Emacs の設定(タブ幅、フォントレンダリングundo-tree挙動)を微調整してから21時30分に就寝準備を始めた。

寝る前に日中考察を一行でまとめ、コミットメッセージとして 2025-10-08: ∞-categorical factorization attempt; corrected p-adic gerbe termと書き込み、満足して目を閉じた。

昨日は水曜日だったというその単純な事実が、僕にとってはすべての観測規律を括る小さなモジュロであり、そこからまた今日位相問題へと還流していく。

2025-04-13

物理学とは何か

物理学概念対応
物体対象 A ∈ 𝒞
力、相互作用 射 f: A → B
法則 射の合成規則 g ∘ f
運動方程式汎関数の変分問題
空間・時空 多様体 𝓜
測定 射影演算子 or 評価写像
対称性群作用 G ⇀ 𝒞
保存則 ノーター定理による群の不変量

2024-06-14

anond:20240614084143

群と言えば対称性みたいなの、ほんとやめるべき

ほんとそれ。

物理学科で「群とは対称性です!」という言い方で講義されたけど全然意味わからんかったわ。

ベクトル場とかテンソル場に対して「座標変換に対する変換性の違いが」とか言うのも同様。

ベクトルとかテンソルは座標系に関係なく存在するもんであって、変換性が問題になるのは適当な基底で表示した場合だけ。

「座標系に関係ない」ということが多様体(当然Lie群多様体)の本質なんだからそこを外すのは流石にダメだろって思う。

だって対称性とは関係なく存在していて、何か別のオブジェクトに対する群作用を考えたときに初めて対称性の話が出てくるだけなのにな。

Lie群に付随する等質空間は(よく知らんが)本質的な構造であって、それを対称性と言うんだろうけど、物理で言う「対称性」とはちょっと違うと思う。

「(Lie)群と言えば等質空間」の方がいいんじゃないか。

2024-06-13

anond:20240613143132

「具体的には、Lie群連続対称性を持つ幾何学構造研究するんです」

群 = 対称性って物理畑だとよく言うけど違和感あるんだよな。

運動方程式とか結晶構造とか波動関数とかが群作用に対して対称性を持っていたらそれは対称性の話だけど、群自体別に対称性とは関係なく存在するもんじゃねえの?って思う。

百歩譲って結晶点群とかの本来的に対称性から発生している群の話だったらわかるけど、Lie群連続群であって広がった空間のものみたいなもんじゃん。

 
ログイン ユーザー登録
ようこそ ゲスト さん