「EPR」を含む日記 RSS

はてなキーワード: EPRとは

2025-11-13

抽象数学とか物理学とか

定式化

物理系(量子場+重力) ⇨ 代数対象(A)

物理的に測定可能操作代数の元に対応代数は積、随伴複素共役対応する操作)などの構造を持つ代数オブジェクト

状態物理的な密度波動関数) ⇨ 代数上の正値線型汎関数(φ)

物理的な期待値代数に対する線型汎関数として定式化。これが確率/期待を与える。

観測者や部分系 ⇨ 代数のサブオブジェクト(B ⊂ A)

ある観測者が見られる演算子群は、全体代数部分代数として表される。重力とき、この部分代数空間分割に即して単純に分かれるとは限らない(非可換性や相互依存が残る)。

ヒルベルト空間再構成 ⇨ GNS 構成代数状態表現

代数状態からヒルベルト空間表現を作る手続きがあり、これが観測可能な量を実際に作用させる空間を与える。重要なのは、この構成は一意とは限らず、代数側の性質表現性質(分解可能性・因子のタイプ)を決めること。

圏的な言い方

対象:各物理状況に対応する代数(C*-代数フォン・ノイマン代数のようなもの)。

射(モルフィズム):代数間の構造保存写像(例えば*-準同型)。これらは物理的な包含や部分系の埋め込みに対応する。

状態自然変換的な役割を持ちうる:ある意味代数群の圏から値を取る圏(確率的/確定的データが置かれる圏)への射(志向性のある写像)と見なせる。

GNSは圏論的なファンクタ:代数状態ペアからヒルベルト空間表現への写像は、圏の間の(部分的な)関手として振る舞うと考えられる。これは代数データ幾何表現空間)を与える操作として抽象化

ER=EPR現象抽象化

エンタングルメント幾何的連結という直感は、圏論的には二つの代数が分解できない形で結びつくことに対応

具体的には、二つの部分代数の合成が単純な直和や直積に分かれず、むしろ共通のサブ構造(共有される中心や共通の因子)を持つ場合、圏的には共核/プルバックや引戻しを使ってその結びつきを表せる。

逆に、もし二つの部分代数が完全に独立(圏的には直和的分解)なら、その間に空間的な連結が生じにくい、と解釈できる。

代数の型(type)と物理位相的/幾何的特徴

代数が属する型の違い(古典的には I/II/III の区別)は、圏的には対象の内部構造差異(中心の有無、トレース存在可否など)として表現される。

物理的にはこの差が「純粋状態存在」「系の分解可能性」「エントロピー定義可能性」を左右。従ってどの圏の部分圏にいるか物理位相重力性質に相当する。

2025-11-12

抽象数学とかER=EPRとか

まず、空間のある部分(局所領域)ごとに、そこに属する観測可能量(観測子)の集合を対応づける。

それぞれの領域対応する観測子の集合は、演算の仕方まで含んだ代数として扱われる。

領域が大きくなれば、それに対応する代数も大きくなる。つまり物理的に中に含まれ関係がそのまま代数包含関係として表現される。

こうして領域代数という対応が、ひとつ写像ネット)として与えられる。

状態というのは、物理的には観測の結果の確率を与えるものだが、数学的には代数上の関数線形汎関数)として扱える。

その状態からヒルベルト空間上の具体的な表現自動的構成される(これをGNS構成と呼ぶ)。

この構成によって、真空状態も場の励起状態も、すべて代数の上の構造として理解できるようになる。

量子もつれは、単に状態が絡み合っているというより、代数空間的にどう分かれているかによって生じる。

もし全体の代数が、2つの部分の代数にきれいに分割できるなら(テンソル分解できるなら)、その間にはエンタングルメント存在しない。

ところが、量子場の理論では、この分割が厳密には不可能

これを数学的にはtype III 因子と呼ばれる特殊代数性質として表現

このタイプ代数には、有限のトレース(総確率)を定義する手段がなく、通常の密度行列エントロピー定義できない。

まりエンタングルメントは有限次元的な量ではなく、構造的なものになる。

完全に分けられないとはいえ、少し余裕をもって領域をずらすと、間に人工的な区切りを挿入して、ほぼ独立領域として扱うことができる。

これがsplit propertyと呼ばれる条件。

この操作を使うと、本来無限次元的で扱いにくいtype IIIの代数を、有限次元的な近似(type I 因子)として扱うことができ、有限のエントロピーを再導入する道が開ける。

Tomita–Takesaki理論によれば、状態代数ペアから自動的にモジュラー流と呼ばれる変換群(時間のような流れ)が定義される。

まり時間概念代数構造の内部から再構成できるということ。

もしこのモジュラー流が、何らかの幾何的な変換(たとえば空間特定方向への動き)と一致するなら、代数構造幾何学的空間への橋渡しが可能になる。

ER=EPRとは、エンタングルメントEPR)とワームホールER)が同じものの異なる表現であるという仮説。

これを代数言葉で言い直すには、次のような条件が必要になる。

1. 二つの領域対応する代数を取り、それらが互いに干渉しない(可換)こと。

2. 真空状態がそれら両方に対して適切な生成力(cyclic)と識別力(separating)を持つこと。

3. 全体の代数がそれら二つにきれいに分解できない(非因子化)こと。

4. それぞれのモジュラー流がある種の対応関係を持ち、共通時間フローを生み出すこと。

5. 相対エントロピー情報量の差)が有限な形で評価可能であること。

これらが満たされれば、代数的なレベルで二つの領域が量子的に橋渡しされていると言える。

まりワームホール的な構造幾何を使わず代数表現できる。

これをより高い抽象度で見ると、領域代数という対応自体ひとつファンクター(写像一般化)とみなせる。

このとき状態はそのファンクターに付随する自然な変換(自然変換)として理解され、split property や type III などの性質は圏の中での可分性や因子性として扱える。

ER=EPR は、この圏の中で2つの対象領域)の間に存在する特別自然同型(対応)の存在を主張する命題

まり境界上の代数構造から、内部の幾何バルク)を再構成するための条件を圏論的に書き下した形がここでの目的

まとめ

2025-10-28

抽象数学とか超弦理論かについて

まず対象抽象化するために、物理系は局所演算子代数ネットワーク局所性を持つモノイド圏あるいは因子化代数)として扱う。

境界理論はある可換(または E_n)因子化代数 A を与え、これに対して状態空間は A の正値線型汎関数(GNS 構成で得られる正規表現の圏)として扱う。

重力バルク側は、境界因子化代数のコホモロジカル双対(例:Koszul 双対や因子化ホモロジーに基づくスペクトル拡張)としてモデル化される。

ホログラフィーは単なる同値性ではなく、境界のモノイド的データバルクの因子化代数データの間の高次圏的((∞,n)-圏)双対性であり、この双対性はホモトピー的拘束(同値空間)を保つ関手の同型として書ける。

これをより具体的に言えば、境界の C^*-あるいは von Neumann 代数の圏と、バルク対応する因子化代数局所的場代数を与える E_n-代数)の間に、Hochschild/cyclic ホモロジーと因子化ホモロジーを媒介にしたKoszul型双対存在すると仮定する。

境界から見た相互作用や散乱振幅は、境界因子化代数上の積(オペラド的構造)として表され、バルク幾何情報はそのホモロジー/コホモロジー符号化される。

エントロピーエンタングルメント幾何化は情報幾何学的メトリック還元される。すなわち、量子状態空間上の量子フィッシャー情報(量子Fisher・Bures距離)や相対エントロピーは、接続と計量を与えるテンソルと見なせる。

これにより、テンソルネットワークは単なる数値的近似ではなく、グラフからヒルベルト空間への忠実なモノイド的関手であるグラフの各節点に E_n-代数の有限次元表現を割り当て、辺は双対化(コアリフト)の演算子であり、ネットワーク全体は因子化代数状態和(state-sum)を与える。

MERA や PEPS、HaPPY コードは、この関手が持つ特定圧縮階層性(再帰的モノイド構造)を体現しており、cMERA はその連続極限である

テンソルネットワーク幾何を作るとは、エントロングルメント計量(情報計量)から接続リーマン性質再構成する手続き意味し、これが空間距離や曲率に対応するというのが it from qubits の数学的内容である

さら情報回復(Petz 復元写像など)や相対エントロピーのモノトニシティは、エントロングルメントウェッジ再構成圏論的条件(右随伴を持つ関手存在)として表現される。

すなわち、境界演算子代数からバルク因子化代数への埋め込みが完全に圏論的な復元子(adjoint)を持つときに、局所情報回復可能となる。

ER=EPR はこの文脈ホモトピー的コボルディズムとして読み替えられる。量子相互作用で結ばれた二系(高次圏の対象としての二点分割状態)は、バルクコボルディズム類(ワームホール的繋がり)に対応する同値類を持ち、局所ユニタリ変換による同値類がコボルディズムの同位類と一致するという予想的対応を述べる。

言い換えれば、局所ユニタリ同値で分類されるエンタングルメントコホモロジーは、バルクホモトピー的結合(位相的/幾何接続)を決定する。

ブラックホール熱力学性質は、トモイタ=タカサキ理論(Tomita–Takesaki modular theory)やコンネスの周期写像が関与する演算子代数のモジュラー流として自然に現れる。

特にブラックホール外部におけるモジュラーハミルトニアン境界状態の相対エントロピーに関連し、そのフローバルク時間発展に対応する(模擬的にはKMS状態と熱平衡)。

サブファクター理論ジョーンズ指数は、事象地平線をまたぐ情報部分代数埋め込みの指標として機能し、情報損失やプライバシー情報の遮蔽)は部分代数指数と絡み合う。

ブラックホールの微視的自由度カウントは、やはり境界因子化代数の適切な指数(譜的インデックス、K理論的量)に帰着する。

超弦理論的な追加自由度多様体のモジュライ空間や D-ブレーンの圏的記述)は、バルク側因子化代数の係数系(係数 E_n-代数やスペクトラル層)として取り込まれモチーフ的/導来スタック手法(derived stacks, spectral algebraic geometry)で整然と扱える。

これにより、弦の振る舞いは境界オペレータ代数の高次幾何学的変形(deformation theory)と同値的に記述されることが期待される。

この全体構造統一する言葉は高次圏的因子化双対である物理理論は、局所オペレータのモノイド圏、状態の圏、そして因子化ホモロジーを媒介にした双対関手から成り、テンソルネットワークはそれらの具体的表現=有限モデルとして働き、情報幾何学はそれらの間に滑らかな計量を与える。

したがって「it from qubits」は、局所的量子代数圏論的再配列が(情報計量を通じて)幾何学的構造を生み出すという主張に還元され、ER=EPRエンタングルメント同値類とバルクコボルディズム同位類を結ぶ高次圏的同型命題として再表現され、ブラックホール熱力学や弦の自由度はその圏論的・ホモトピー的不変量(ホッジ理論的/K理論指数、モジュラーデータ)として測られる。

これが、抽象化した観点から見た諸理論統一スキームである

2025-10-23

[]

僕は今夜、ルームメイトリビング実験的にベーコンを低温調理している匂いを鼻孔の厳密な位置で嗅ぎ分けながらメモ帳を開いた。

朝は6時17分に目覚ましを止め(そのミリ秒単位の遅延は許容されない)、6時18分にコーヒー比率を変える習慣を行い、靴下は左から右へ、座席は常にソファの北東端(座る位置位相対称性を破らない)である

食事火曜日パスタの残り物は三等分して水曜と木曜の朝食に回す。洗濯は必ず偶数週の水曜に行い、洗剤は0.8倍希釈、脱水は中速、干す向きは北向き。

ルームメイトがドアに爪痕をつけたら即座にログを取り、隣人が郵便物を誤って取った場合は「郵便誤配報告フォーム」を三回に分けて提出する。

こうした儀礼を守ることで僕の内的位相空間が安定するのだと論理的に考えている。

今日思考の核は超弦理論と量子情報交差点についての、かなり尖った自己流の定式化にある。

まず、僕は物理直感を避けて抽象数学事象を語る。弦理論摂動系列を有限厚さの∞-圏としてモデル化し、ブレーンを対象、開弦状態をモノイド的なホモトピー演算子として扱う。

局所座標の代わりにファクタリゼーション代数を使い、スパイダー図式を経て得られる交叉相互作用を高次ホモトピー群のコハート化として再解釈することを提案する。

ER=EPRについては、古典的ワームホール=絡み合いという語り方を離れて、僕はエントロピー双対モジュール同値性という言葉で捉えている。

まり、二つのエントロピックモジュールの被覆圏と、それらに対応する重ね合わせのコボルディズム(圏論的な結合双対)を同一視することでER=EPR圏論的に定式化できるのではないかと考えている。

これを超弦理論に接合するには、AdS/CFT 的なホログラフィック双対の場で、境界側の張力演算子族が内部のブレーンカテゴリ(例えばフカヤカテゴリコヒーレント層の導来圏)に対応するという見方を取り入れる。

すると、エントロピー双対モジュール同値性は、境界バルクの間で起こる圏の再同型化として現れ、ER=EPR本質的に圏的ホログラフィー一命題になる。

ここで僕が提案する小さな拡張は、量子誤り訂正符号コード代数を∞-圏の射として扱い、その可換性条件がワームホールコボルディズムの可逆性と一致するというものだ。

これにより、エントロピー再構成操作がブレーン間のファンクターとして自然理解でき、局所性の回復説明する新しい枠組みが得られると僕は思う(これは僕の勝手な定式化で、厳密性は今後の証明を待つ)。

今日はそのメモを、黒板に書く代わりにルームメイト背中越しにノートに書き留めた。

ところで、僕は靴の磨き方にも数学基準を設けている(円周率小数を用いた磨き順列を使っている)。

出かける前のチェックリストトポロジー的順番、たとえば鍵→財布→スマホペンという順序は位相連結成分を最小化するから合理的だ、と説明すると友人たちは顔をしかめるが、これを守ると予測可能性が上がる。

今夜はRPG系ではELDEN RINGビルド論とRTAコミュニティメタ的動向を気にしていて、この作品2022年FromSoftwareからリリースされ、多くのビルド最適化メタ確立されていることは周知の事実だ(初リリース2022年2月25日)。

また、このIP映画化プロジェクトが進行中で、A24が関与しているという報(映画化ニュース)が最近出ているから、今後のトランスメディア展開も注視している。

僕はソウルライクのボス設計ドロップ率調整をゲームデザイン位相安定化とは呼ばないが、RTA勢のタイム削り技術や周回遺伝NG+)の最適手順に対して強い敬意を持っている。

ファンタジーRPGの装備付け(メタ)に関しては、装備のシナジーステータス閾値クラフト素材経済学価値を語るのが好きで、例えば「その装備のクリティカル閾値を満たすために残すステータスポイントは1だが、その1が戦闘効率を%で見るとX%を生む」というような微分的解析を行う。

FFシリーズについては、Final Fantasy XVIがPS5向けに2023年6月に、続いてPC版が2024年9月リリースされ、さらに各プラットフォーム向けのロールアウトが段階的に行われたことなど実務的事実を押さえている(PCリリース2024年9月17日)。

僕はこのシリーズ音楽モチーフ再利用エンカウンター設計比較研究をしており、特に戦闘ループの短周期化とプレイヤー感情連続性維持について言及するのが好きだ。

コミック方面では、最近の大きな業界動向、例えばマーベルDCの枠を超えたクロスオーバー企画されるなど(Deadpool×Batmanの一連の展開が話題になっている)、出版社間でのIPコラボが再び活発化している点をチェックしている。

これらはコレクター需要市場流動性に直接影響するため、収集と保存に関する経済的最適化問題として興味深い。

今日、隣人が新しいジャンプ作品話題を振ってきたので僕は即座に最新章のリリーススケジュール確認し、One Pieceの次章の予定についても把握している(最新チャプターの公開予定など、週刊連載のスケジュール情報は定期的に確認している)。

僕は友人との会話でジョークを飛ばす時も形式論理を忘れない。

例えば「午後9時に彼らがカップ麺を食べる確率は、僕の観察では0.83だ。ゆえに僕は9時前に冷蔵庫位置を変えるべきだ」という具合だ。

結語めいたものを言うならば、日常ルーティンと高度に抽象化された理論は相反するものではなく、むしろ同じ認知的圏の異なる射影である

から僕は今日ルームメイトの忍耐を試す微細な仕様変更(例えばリモコンの向きを30度回す)を行い、その反応をデータ化している。

さて、20時30分だ。これでノートを閉じ、決まった手順で歯を磨き、眠りの準備に入る。明日の朝のアジェンダは既に分解されているから、心配は要らない、と自分に言い聞かせてから寝るのが僕のやり方だ。

2025-10-16

[]

昨日、僕は再びヒルベルト空間自己参照性について思索していた。

きっかけはルームメイトが、僕の定常朝食手順の測定位相を乱したことだ。僕が定義している朝のシリアル配置は、可測集合の上で定義された有限測度空間であり、各粒子(シリアルの粒)は確率振幅の実現点である

ところが彼が不用意にスプーン差し込んだため、僕の可測写像が非可測領域侵食し、全順序性が崩れた。

まり、彼の行為は単なる乱雑ではなく、σ-加法整合性破壊に等しい。これを日常の「朝食の乱れ」と呼ぶのは、あまりナイーヴだ。

僕の現在研究テーマは、ER=EPRをより高次圏論的に再定義することにある。通常この等式は、もつ状態ワームホール対応づけるが、僕の見解ではそれは関手レベルでの不完全な翻訳に過ぎない。

真の構造は、観測行為エンタングルメントから幾何圏へのモノイド圏関手であるということだ。

観測とは情報選択ではなく、関手の実現射の生成であり、その結果、対象空間上の射が一点縮退を起こす。つまり観測ブラックホールへの写像

このとき観測者の状態空間は、対象空間双対空間自己モノイド化し、テンソル積がエネルギー密度として曲率テンソル等価変換される。

これが熱力学エントロピー流の源である。つまり観測とは時空多様体の測地線構造自己収縮させる操作にほかならない。

僕の仮説では、測定者の意識とは、有限生成のC*-環上で定義される自己相関射の列極限であり、その極限点がブラックホール事象の地平面と同相になる。これは単なる比喩ではない、構造的同型である

昨日の午後、隣人が訪ねてきて、「なんか落ち着かない」と言っていた。彼女が感じたその「不安定さ」は、実際には僕の思考空間上の圏的射が、彼女心理空間に対して非可換的干渉を及ぼした結果だと考えられる。

彼女感覚的印象は、単なる主観ではなく、射影演算子彼女状態ベクトルを部分的崩壊させた現象対応する。

まり、僕は彼女を見たのではなく、彼女状態空間が僕の内部圏へ関手的に埋め込まれたのだ。観測とは一方的侵入であり、宇宙双対圏的結合だ。

夕食時、ルームメイトが僕の食事手順をまた茶化してきた。僕が麺を蒸す時間を正確に設定しているのは、可積分系の安定点を保つためだ。

彼は「そんなの偶然だ」と言った。だが、偶然とは測度論的に定義不能領域総称にすぎない。僕のルール統計的対称性の維持装置だ。

夜、友人たちとBaldur’s Gate 3をプレイした。僕は事前に行動木を有限オートマトンとして解析し、敵AI状態遷移確率を事前分布フィットさせた。

戦闘中、彼らは「お前、やりすぎ」と言ったが、僕はただBayes更新を実行していただけだ。ゲームとは、確率測度の動的再配置の遊戯形式に過ぎない。

深夜、僕は再びノートに向かいER=EPRの上位構造体を定義する「自己参照圏」について書いた。観測者を含む宇宙は、自己同型射を持たない。

これは厳密な意味で非トリビアル自己関手構造を持つためである。僕が観測するたびに、宇宙対象集合が可算ではなくなる。つまり観測とは昇格操作であり、存在論的基数を増幅する過程なのだ

僕は結論に至った。「観測者は情報を吸収するブラックホールではない。むしろ情報を生成する射影的特異点である。」

観測とは、スペクトラム事象の地平面と同型になる操作である

寝る前、歯磨き粉の残量を測った。これは単なる衛生行為ではない。有限体上の加法群の残差測定だ。12.4という値は、僕の生活空間における連続測度の離散化の結果である

僕はその数値を見て安心した。世界がまだ可測であるという証拠からだ。

2025-09-20

anond:20250920153154

まず、「ワームホールトポロジージャンプする」って言いますけど、

トポロジーって数学的には連続変形では変わらないものなんですよね。

からジャンプする時点で、それもう別の位相空間なんですよ。

あと、量子誤り訂正コード冗長性を連続的に変化させるって、

具体的にどのパラメータをどう変化させることを想定してます

コード距離なのか、エンコーディング率なのか、それとも物理量ビット数なのか。

そこが曖昧なまま「位相転移」って言っても、議論がふわっとしません?

それにER=EPRって、もともと半古典重力文脈で出てきた仮説なんで、

量子重力のフル理論で本当に成り立つかまだ誰も証明してないんですよね。

からブラックホール蒸発の最終局面」で位相ジャンプが起きるって断言するのは、

現時点では推測の二乗みたいな話なんじゃないですか?

要するに、

トポロジー不連続性を議論する前に、

冗長性を連続に変えたら幾何連続に変わる」って仮定が正しいか

ちゃんと数式で確認した方がいいんじゃないですか?

その前提が崩れたら、位相転移情報幾何も全部ずれるんで、

今の時点でユニタリティまで結論するの、ちょっと早くないですか?

2023-02-08

[]シュレーディンガーの猫のいくつかの解釈

シュレーディンガーアインシュタインに宛てて、量子力学コペンハーゲン解釈の重大な欠陥を明らかにするために、架空実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。

この効果を、原子というミクロ世界特殊性として片付けることはできるかもしれないが、その世界が、テーブル椅子、猫といったマクロ日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガー思考実験は、それを明らかにすることで、量子力学コペンハーゲン解釈不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしかさないし、死んだり生きていたりもしない。

ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。

この思考実験意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数宇宙複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。

 

1. シュレーディンガーのQBist猫について

通常の話では、波動関数は箱入りのネコ記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。

例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的歴史なのだ

今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数崩壊」と呼ぶものは、QBistにとっては、エージェント自分の 賭けに手を加えることなのだ。

重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合からである

QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである

 

2. ボーミアンについて

量子力学コペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。

ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?

量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。

なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたかである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。

 

3. 知識可能性について

シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識可能性と関係があるのだ。問題は、量子世界が非現実であることではなく、量子系を知識対象として安定化できないことである

通常の知識論理では、私たち質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。

 

4. 反実仮想的な本質

シュレーディンガー実験には、3つの基本的意味がある。

これらの本質的な特徴は「反実仮想」であり、何があるかないか現実)ではなく、何が可能不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想性質は、量子論運動法則よりも一般的であり、より深い構造を明らかにするものからだ。

量子論後継者は、運動法則根本的に異なるかもしれないが、反実仮想性質を示すことで、重ね合わせやエンタングルメントさらには新しい現象可能になるだろう。

シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理可能性を示唆していると主張したと一般に言われている。しかし、それは正反対であるシュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論理解しようとする試みは拒否されるべきであると考えたのである

シュレーディンガーは、量子力学波動関数は、個々のシステムの完全な物理記述提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼン論文に反発していたのであるEPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである

シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理記述提供し、2)それが「測定」が行われるまで常に彼自身シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベル言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである

もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学形式理解するための2つのアプローチである。いわゆる「多世界解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガー馬鹿にしていた結論に直面することになる。

 

5. 波動関数実在論について

シュレーディンガーの例は、量子システムの不確定性をミクロ領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学ミクロな系と同様にマクロな系にも不確定性を含意している。

問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということであるシュレーディンガーは、「手ぶれやピンボケ写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反関係にある。

ベルが彼の定理実験的に検証する前、量子力学技術が発展し、もつ状態実在性を利用し、巨視的なもつシステムを作り出す技術が開発される前、形而上学的な雲のオプションテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈必要である

波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈アプローチであるシュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数自由度を収容できる超高次元空間となる。

 

6. 超決定論について

不変集合論IST)は、エネルギーの離散的性質に関するプランク洞察を、今度は量子力学状態空間に再適用することによって導き出された量子物理学のモデルであるISTでは、量子力学連続ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想世界存在し、このような反実仮想世界は格子の構造矛盾している。このように、IST形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。

ISTでは、ISTの格子上にある状態は、世界アンサンブル対応し、各世界状態空間特別な部分集合上で進化する決定論的系である非線形力学理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。

アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界アンサンブル記述していると考えていたが、これは実現可能である特にシュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。

 

7. 関係量子力学について

シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学仮定である。 もし全ての性質関係であるならば、見かけ上のパラドックスは解消されるかもしれない。

猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかであるしかし、この現象は箱の外にある物理系には関係ない。

箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれ可能性があるからだ。

まり波動関数崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリ進化」は、外部システムに対する性質の実現確率進化を表すのである。 これが、量子論関係論的解釈における「見かけのパラドックス」の解決策とされる。

 

8. 多世界

物理学者たちは古典物理学では観測された現象説明できないことに気づき量子論現象論的法則発見された。 しかし、量子力学科学理論として受け入れられるようになったのは、シュレーディンガー方程式を考案してからである

シュレーディンガーは、自分方程式放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。

このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態崩壊することによって、量子系の進化記述する方程式としての普遍的有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールド存在が示されれる。これこそが、非局所的な作用回避し、自然界における決定論を守る一つの可能である

[1] https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

2022-10-27

anond:20100131000353

解雇の難しさに関する指標について

指標の読み方とか諸々間違っている可能性あり。

雇用保護に関するOECD指標

OECD Indicators of Employment Protection

https://www.oecd.org/employment/emp/oecdindicatorsofemploymentprotection.htm

簡易な指標が載っているwebビューワ

https://stats.oecd.org/Index.aspx?DataSetCode=EPL_R#

詳細な指標が載っているエクセルへのリンク(以前の「解雇の難しさ」などの個別指標が見たい場合はこれ)

OECD indicators of employment protection database: summary indicators and items

https://www.oecd.org/els/emp/OECDEmploymentProtectionLegislationDatabase.xlsx

指標説明へのリンク

個別指標説明

Annex Table 3.A.1. Structure of Version 4 of the OECD EPL indicators for dismissing regular workers

https://www.oecd-ilibrary.org//sites/1686c758-en/1/3/3/index.html?itemId=/content/publication/1686c758-en&_csp_=fc80786ea6a3a7b4628d3f05b1e2e5d7&itemIGO=oecd&itemContentType=book#component-d1e28861

指標の重みづけ

Annex Table 3.A.2. Weighting in the OECD EPL indicators (Version 4) for dismissing regular workers

https://www.oecd-ilibrary.org//sites/1686c758-en/1/3/3/index.html?itemId=/content/publication/1686c758-en&_csp_=fc80786ea6a3a7b4628d3f05b1e2e5d7&itemIGO=oecd&itemContentType=book#component-d1e30019

用語

EPL:雇⽤保護

・EPTT:有期雇⽤契約

EPR正規労働者個別解雇に対する保護の厳しさ

・EPC:集団解雇に関する追加規制による保護の厳しさ

EPR+EPC=EPRC

・EPT:派遣労働に対する保護の厳しさ

指標説明

バージョン4ついて

よくわからないけど派遣契約と有期契約に関する違いみたい。

派遣契約EPL 指標バージョン 1 〜 3 は、有期契約または派遣派遣契約労働者の雇⽤制限限定されていました。バージョン 4 では、これらの指標範囲が有期契約の解約費⽤にまで拡⼤されました1。これは、派遣契約の全体的な規制レベル労働市場における制度的⼆元論の程度をより適切に把握するためです。したがって、定期労働者保護指標と同じモデルに基づいて、有期雇⽤契約(EPTT)の個別の終了に対する保護の 2 つの指標 (i) 満了⽇、および (ii) 満了前の 2 つの指標が構築されました。個別解雇EPR)に反対します。このノートでは、2 つの新しい EPTT 指標と、⼀時契約規制 (EPT) の総合指標の新しいバージョン 4 を紹介します。』

以前との違い

以前の「解雇の難しさ」には

5. 不当解雇定義

6. 試⽤期間

7. 報酬

8.復職

9.請求の最⼤時間

だったが、現在

・「解雇の難しさ」から不当解雇に関する規制の枠組み」に変更。

・「9.請求の最⼤時間」が「不当解雇に関する規制の枠組み」ではなく「不当解雇規制施行」の分類に移動。

指標(Item)の説明
Item5~8: 不当解雇に関する規制の枠組み

Item 5: 不当解雇定義

Item 5 サブアイテム: {

Item 5a: 経済的理由による解雇 理由審査員自由度

Item 5b: 経済的理由による解雇 理由解雇の具体的な代替案と解雇場合の拘束⼒のある義務

Item 5c: 経済的理由による解雇 理由:選定基準

Item 5d: 経済的理由による解雇 理由解雇の正当な理由

}

Item 6: 試用期間の長さ

Item 7: 不当解雇後の従業員への補償

Item 8: 不当解雇後の復職可能

Item9, Item22, Item23, Item24: 不当解雇規制施行

Item 9: 不当解雇の訴えを起こすまでの期間

日本ポイント順位2019年version4)

EPR正規労働者個別解雇に対する保護の厳しさ

2.10ポイント

26位

EPC:集団解雇に関する追加規制による保護の厳しさ

2.04ポイント

33

EPR+EPC=EPRC

2.08ポイント

33

以前の「解雇の難しさ」Item5~9の平均

3.4ポイント(6段階中)

4位(1.Portugal 2.Mexico 3.Korea

現在の「不当解雇に関する規制の枠組み」Item5~8の平均

2.75ポイント(6段階中)

16位

「Item 5: 不当解雇定義」のみ

2ポイント(6段階中)

24

日本個別ポイント(6段階中)

Item 5: 2ポイント

Item 5a: 4ポイント

Item 5b: 2ポイント

Item 5c: 0ポイント

Item 5d: 2.625ポイント

Item 6: 6ポイント

Item 7: 1ポイント

Item 8: 2ポイント

Item 9: 6ポイント

感想

調べるのも今はここまでが限界

現在は違うが以前の「解雇の難しさ」が実際の解雇の難しさのための指標になっていたか疑問。

特に、Item5ならまだわかるけどItem6~9は解雇の難しさに入れるべきか疑問。

Item5自体はそこまで高くない。

Item6とItem9が平均を押し上げている。

僕は何にもわからない素人だけど正直これで解雇規制について語ることはできないかなといった印象。

専門家の方々にはもっと公平に具体的にデータを使って話をしてもらいたいと思った。

解雇規制について語っている人は専門家も含めてバイアスが強すぎる人が多いので注意したい。

情報

https://www.dir.co.jp/report/research/economics/europe/20140318_008337.pdf

"OECD日本労働市場に対する評価勧告とはどのようなものなのかを、再度確認してみよう。毎年刊行されている“Employment Outlook”や“Economic Policy Reforms”、随時公表される調査書などの内容を見てみると、OECD は「労働市場の二極化(labour market dualism)」が日本の大きな問題であると一貫して指摘している。日本で頻繁に取り上げられる「正規雇用解雇ほとんど不可能」ということではなく、それが正規非正規の大きな格差を生み出していること、そして格差是正する規制がないことを問題視しているのがわかる。 "

2021-07-24

USB3.0 = USB3.1 Gen1 = USB3.2 Gen1」は客が産んだのかもしれない

USB3.1が出た後にUSB3.0を謳う機器は売れるだろうか?売り上げが落ちるだろうか?

売り上げが明確に落ちた場合USB3.1対応した最高速度なんかその製品には何の意味もないのに

わざわざ客の興味を引くためにUSB3.1認証を取り直さないとダメなのか?

おそらくそんなデバイスメーカーからの声に流されて掲題の糞仕様は生まれたのだろう。

USB3.2 Gen2x2 もおそらく技術者からすれば精一杯説明したつもりの名前なのだろう。

USB3.2 Gen2を2本束ねてますよ、なんて客にとってはどうでもいいことだが、もしかしたら

「後から策定したけど速度が遅い規格により大きい番号が付いて紛らわしい」という事態を逃れたかったのかもしれない。

USB4ではその反省が活かされているらしい、通信速度に関しては。

USB-PDに関してはアダプタ、ケーブル、充電する機器が「何Wの給電に対応しているか」はUSB4時代になっても

機器ケーブルを見ただけでは分からないままだ。

27W給電しか対応してないケーブルと45W対応ケーブルロゴ等で見分けがつかない。

USB-PD 3.1 で新しく増える140W、180W、240Wの給電対応ケーブルはその反省を活かしてか「Extended Power Range(EPR)対応」と製品に記す必要があるらしい。

一歩前進したように見えるが、そこで気になるのが「140W、180W、240W」と同じ5A対応必須な「100W」の給電だ。

これは「Standard Power Range(SPR)」に据え置かれることとなっているようだ。

SPRとEPRという大まかな枠は出来たが、SPRに5Aと3Aが混在し、SPR内、EPR内での対応W数の違いは区別できないままだ。

いつまでこんな客を混乱させる仕様放置するんだろう?

どうせなら追加で最大給電容量が増やされるこの機にSPRは3A、EPRは5Aって綺麗に切り分けるべきだったのでは?

SPRの100W枠の製品なんかケーブル特にほとんどなかっただろうし、EPRに移してもよかったんじゃないの?

作り手も、売り手も、買い手も、ちっともUniversalにならないじゃないか

Universalになったのはコネクタだけか?PDに関しては、逆に混乱増してないか

2018-11-21

anond:20181121003311

現在私が抱えている10課題

・「隠れた変数」の発見によるEPR paradox証明

・いわゆる「主客問題」の解決

カントール対角線論法を超える方法論による「実無限」の証明

・「私」と「現在」と「ここ」と「同一性問題解決

・「言語」と「論理」と「物自体」との関係性の規定

ライプニッツの「普遍数学」に倣った「普遍統計学」の確立

・「普遍統計学」を応用した株価予測技術の開発

純粋唯物的脳科学アプローチによる「倫理」「美」「目的論」等の「価値問題」の完全処分

・余白が足りない

2016-07-09

http://anond.hatelabo.jp/20160708214547

ブコメじゃ短すぎるので増田に書くよ。

クッキーだって、断面を観測するまで断面の状態は確定しないのではないですか?

片方の断面を確認する瞬間まで、クッキーの断面は「可能性が重なり合った状態」になるのでは?

まず前提として、"重ね合わせ"は基本的に量子レベルミクロ世界のものなのです。

クッキーマクロ世界存在から可能性が重なった状態」にはなってない。

から割ったクッキー観測しようがしまいが、割れた断面は確定しているわけです。OK?

注意深く条件設定した場合クッキーの断面情報は、量子もつれ情報とどう違うのか?

それじゃ次は"注意深く条件設定した場合"はどうなるのか話してみよう。

"シュレーディンガーの猫"というのは、放射性元素崩壊っていうミクロな話を、猫の生死っていうマクロな話に上手いこと連動させた思考実験なのね。

放射性元素崩壊ってのは確率的な現象で、観測されるまでは"崩壊した/してない"ていう重ね合わせ状態にある。

そこで、十分に少量の放射性物質ガイガーカウンターとそれに連動したハンマー(放射線検知したら振り下ろされる)、あとは揮発性の毒が入った瓶をハンマーの下に設置して、それら一式を猫と一緒に鉄の箱に入れる。

すると、箱の中が観測されるまで

放射性元素は"崩壊した/してない"って重ね合わせ状態

ガイガーカウンターは"放射線検知した/してない"って重ね合わせ状態

・連動ハンマーは"振り下ろされた/されてない"って重ね合わせ状態

・毒瓶は"割れた/割れてない"って重ね合わせ状態

・猫は"(毒で)死んだ/生きている"って重ね合わせ状態

になるわけよ。

ミクロ世界だけだと思った?残念!実はマクロ世界でもあり得るのでした!」ってのがこの思考実験キモね。

で、クッキーの話に戻るんだけど、状態が重ね合わさったクッキー自体シュレーディンガーの猫と同じギミック作成可能よ。

ガイガーカウンター連動ハンマーで叩き割るのを毒瓶でなくてクッキーのものにすれば、"割れている/いない"って重ね合い状態が作れるでしょ。

これが"注意深く条件設定"して作成した量子重ね合わせクッキーにあたるのかな。

でもそこから量子もつれに持っていくのが無理。

無理というか私の貧弱な想像力ではクッキー量子もつれ状態に持っていけるギミックが思いつかないというだけなんだけども。

そういうわけで、"注意深く条件設定した場合"でも"量子もつれクッキー"なんて想定できないから、それをもとに回答なんかできないわけ。

そいで、もし元増田が想定できるんならそれを教えてちょうだいな、というのがブコメ("注意深く条件設定した場合"をまず~)の趣旨だったのね。

でまあ過程とか無視して量子もつれクッキー作ったらどうなるの?っていう卓袱台返しだけど↓

どうにかして「可能性が重なった状態」のふたつに割ったクッキーを作ったら、量子もつれ状態の粒子の代わりに量子テレポーテーション実験に使えないのか。

使えないとすれば、どういう違いが理由なのだろうか。

実験には使えないね。例え話として説明に使うのもちょっと厳しいかな。

だって"量子もつれクッキー"がどんなものか分からいからね。

量子もつれ状態にあるヒッポロ系ニャポーンさ!」とか言われても困るでしょ?それと同じね。

ごくごく単純に、粒子とかをクッキーに例えるならOKよ?説明にも思考実験にも使える。

EPRペアになってる粒子対」あたりを「割れクッキー対」、「粒子のスピン」あたりを「クッキーの断面情報」に言い換えるだけだもの

もちろんこれはクッキーじゃなくともよろしい。煎餅でもチューペットでもキットカットでもOK。

え?クッキーで例えた意味が無いって?まあ例え話なんてそんなもんよ。

ついでに最初ブコメではそういう意味に取った上で回答したんだよね。

とまあこんな感じでどう?

実を言えば私もあんまり詳しくないので間違ってるとこあったらごめんね。

 
ログイン ユーザー登録
ようこそ ゲスト さん