はてなキーワード: 級数とは
掛け算の概念(倍数を扱う)
小数的な考え方の萌芽
円周率(近似値として3.16)
20進法の完成された記数法
公理を置いて、そこから論理的に定理を導く証明中心の純粋数学の発展
当時、「すべての量は整数比で表せる」(万物は数である)と信じられていた。
しかし √2 が有理数ではない(整数の比で表せない)ことが分かり、この哲学が崩壊。
『直角二等辺三角形の対角線の長さ』が整数比で表せないことを証明したとされる。
証明したのは学派の弟子 ヒッパソスとされ、伝承ではこの発見により処罰されたとも言われるほどの衝撃。
アルキメデスによる面積・体積の“求積法”の発達。
負数を“数として扱った”最古の事例『九章算術』
十進位取り記数法
負数の萌芽的扱い
独自に代数学(al-jabr)を発明。文章による代数。ここで初めて“代数学”が独立した数学分野となる。
商、余り、桁処理などの方法が整理(現代の学校で習う割り算の形がほぼできあがる)
xに相当する未知数記号を使用した代数(文字ではなく語句の略号)
sinx,cosx,tanx などの 三角関数の無限級数展開を発見。
これは数学史上きわめて重要な成果で、近代的な無限級数の起源はインドである と言われる。
● 1500年〜
負数の受容が進む。
● 1545年頃(カルダノ)
虚数の登場。
三次方程式の解を求める過程で √−1 に相当する量が突然登場。
しかしカルダノ自身は「意味不明の数」とし、虚数が数学的対象であるとは認めていなかった。
● 1557年頃(レコード)
等号記号「=」を発明。等価を等式として“視覚的に書く”文化が誕生。
● 1572年頃(ボンベッリ)
カルダノの式の中に出る「意味不明の数」を整理し、虚数を使って正しい実数解が出ることを示した。
● 1585年頃(ステヴィン)
● 1591年頃(ヴィエト)
● 1614年頃(ネイピア)
● 1637年頃(デカルト)
今日では当たり前の「座標平面」「方程式で曲線を表す」が、ここで生まれた。
物理現象をy=f(x)で表すという現代の方法は、すべてデカルトから始まった。
大数の法則(試行回数を増やすと平均が安定する法則)を初めて証明
● 1748年頃(オイラー)
√−1 を i と書く記法を導入。
オイラーの公式「e^{ix} = cos x + i sin x」を提示し、虚数を解析学に自然に組み込んだ。
微積分の計算技法の体系化(積分論・無限級数・微分方程式の基礎を構築)
多くの記号体系(e,π,sin,cos,fなど)を整理・普及
グラフ理論(もの[頂点]と、それらを結ぶ関係[辺]を使って、複雑な構造やつながりを数学的に研究する分野)の誕生
ーーーーーーーー
一旦ここまで。
続きは詳しい人にまかせた。
「18世紀に転生したんだが、高校数学で産業革命に参戦する」ってタイトルでこんな感じでラノベ書いて!
たのんだよ!
No,日付,学習内容,教材 / リンク,時間配分,演習例,進捗チェック
1,2025/12/01,微分の定義,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,例題5問+練習10問,☐
2,2025/12/02,公式を使った微分,『微積分の考え方』 P20-40,30+30,練習問題10問,☐
3,2025/12/03,多項式関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,練習問題10問,☐
4,2025/12/04,乗法・除法の微分,同上,30+30,練習問題10問,☐
5,2025/12/05,合成関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-chain-rule,30+30,例題5問+練習10問,☐
6,2025/12/06,高次関数の微分,『微積分の考え方』 P41-60,30+30,練習問題10問,☐
8,2025/12/08,復習:微分の基本,自作ドリル,60,過去日分問題50問,☐
9,2025/12/09,積分の定義,https://www.khanacademy.org/math/calculus-1/cs1-integrals,30+30,例題5問+練習10問,☐
10,2025/12/10,不定積分の計算,『微積分の考え方』 P70-90,30+30,練習問題10問,☐
11,2025/12/11,定積分の計算,同上 P91-110,30+30,練習問題10問,☐
12,2025/12/12,積分応用問題,Khan Academy,30+30,例題5問+練習10問,☐
13,2025/12/13,部分積分,『微積分の考え方』 P111-130,30+30,練習問題10問,☐
14,2025/12/14,置換積分,同上 P131-150,30+30,練習問題10問,☐
15,2025/12/15,復習:積分の基本,自作ドリル,60,過去日分問題50問,☐
16,2025/12/16,べき級数の定義・例,https://www.khanacademy.org/math/calculus-1/cs1-series,30+30,例題5問+練習10問,☐
17,2025/12/17,収束半径の計算,『微積分の考え方』 P150-170,30+30,練習問題10問,☐
18,2025/12/18,テイラー展開応用,同上 P171-190,30+30,練習問題10問,☐
19,2025/12/19,マクローリン展開,Khan Academy,30+30,例題5問+練習10問,☐
20,2025/12/20,総合演習(級数),自作ドリル,60,過去問題20問,☐
21,2025/12/21,差分演算の基本,『離散数学の考え方』 P10-30,30+30,例題5問+練習10問,☐
22,2025/12/22,下降階乗ベキと和分公式,同上 P31-50,30+30,練習問題10問,☐
23,2025/12/23,差分の積・合成,同上 P51-70,30+30,例題5問+練習10問,☐
24,2025/12/24,差分方程式入門,同上 P71-90,30+30,練習問題10問,☐
25,2025/12/25,特性方程式と解法,同上 P91-110,30+30,例題5問+練習10問,☐
26,2025/12/26,差分方程式の応用,同上 P111-130,30+30,練習問題10問,☐
28,2025/12/28,復習:差分演算の基本,自作ドリル,60,過去日分問題50問,☐
29,2025/12/29,有理関数の和分,『数理科学演習』 P20-40,30+30,例題5問+練習10問,☐
30,2025/12/30,部分分数展開,同上 P41-60,30+30,練習問題10問,☐
31,2025/12/31,下降階乗ベキを使った和分,同上 P61-80,30+30,例題5問+練習10問,☐
32,2026/01/01,収束半径の計算,『微積分の考え方』 P190-210,30+30,練習問題10問,☐
33,2026/01/02,級数の応用問題,同上 P211-230,30+30,例題5問+練習10問,☐
34,2026/01/03,休息日,-,-,-,-
35,2026/01/04,コーシー・リーマン方程式入門,『複素関数入門』 P10-30,30+30,例題5問+練習10問,☐
36,2026/01/05,正則関数の条件,同上 P31-50,30+30,練習問題10問,☐
37,2026/01/06,偏微分入門,『微分積分学』 P150-170,30+30,例題5問+練習10問,☐
38,2026/01/07,偏微分の応用,同上 P171-190,30+30,練習問題10問,☐
39,2026/01/08,ラプラス方程式基礎,同上 P191-210,30+30,例題5問+練習10問,☐
40,2026/01/09,休息日,-,-,-,-
41,2026/01/10,偏微分の総合演習,自作ドリル,60,過去日分問題50問,☐
42,2026/01/11,差分方程式と微分の関係,『離散数学の考え方』 P131-150,30+30,例題5問+練習10問,☐
43,2026/01/12,線形差分方程式,同上 P151-170,30+30,練習問題10問,☐
44,2026/01/13,非線形差分方程式,同上 P171-190,30+30,例題5問+練習10問,☐
45,2026/01/14,休息日,-,-,-,-
46,2026/01/15,総合演習:差分方程式,自作ドリル,60,過去日分問題50問,☐
47,2026/01/16,微分方程式入門,『微分積分学』 P211-230,30+30,例題5問+練習10問,☐
48,2026/01/17,一次微分方程式,同上 P231-250,30+30,練習問題10問,☐
49,2026/01/18,高次微分方程式,同上 P251-270,30+30,例題5問+練習10問,☐
50,2026/01/19,休息日,-,-,-,-
51,2026/01/20,微分方程式の応用,自作ドリル,60,過去日分問題50問,☐
52,2026/01/21,複素数関数入門,『複素関数入門』 P51-70,30+30,例題5問+練習10問,☐
53,2026/01/22,複素関数の偏微分,同上 P71-90,30+30,練習問題10問,☐
55,2026/01/24,級数展開(テイラー・マクローリン)復習,『微積分の考え方』 P231-250,30+30,例題5問+練習10問,☐
56,2026/01/25,総合演習:微分積分,自作ドリル,60,過去問題50問,☐
57,2026/01/26,離散級数・下降階乗応用,『離散数学の考え方』 P191-210,30+30,例題5問+練習10問,☐
58,2026/01/27,休息日,-,-,-,-
59,2026/01/28,偏微分・差分応用問題,自作ドリル,60,過去日分問題50問,☐
60,2026/01/29,複素関数応用問題,同上 P91-110,30+30,例題5問+練習10問,☐
61,2026/01/30,収束半径・級数応用,同上 P111-130,30+30,練習問題10問,☐
63,2026/02/01,微分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
64,2026/02/02,差分方程式発展,『離散数学の考え方』 P211-230,30+30,例題5問+練習10問,☐
65,2026/02/03,微分方程式発展,『微分積分学』 P271-290,30+30,練習問題10問,☐
66,2026/02/04,休息日,-,-,-,-
67,2026/02/05,複素関数・偏微分発展,『複素関数入門』 P111-130,30+30,例題5問+練習10問,☐
68,2026/02/06,級数応用(収束判定),『微積分の考え方』 P251-270,30+30,練習問題10問,☐
69,2026/02/07,休息日,-,-,-,-
70,2026/02/08,総合演習(微分積分・差分)自作ドリル,60,過去問題50問,☐
71,2026/02/09,微分方程式応用演習,同上,60,過去問題50問,☐
72,2026/02/10,複素関数応用演習,同上,60,過去問題50問,☐
74,2026/02/12,級数・収束半径応用演習,同上,60,過去問題50問,☐
75,2026/02/13,差分方程式・下降階乗応用,同上,60,過去問題50問,☐
76,2026/02/14,休息日,-,-,-,-
77,2026/02/15,総合演習(微分・積分・級数)自作ドリル,60,過去問題50問,☐
78,2026/02/16,微分方程式・線形応用,同上,60,過去問題50問,☐
79,2026/02/17,複素関数・偏微分応用,同上,60,過去問題50問,☐
80,2026/02/18,休息日,-,-,-,-
81,2026/02/19,級数・収束判定演習,同上,60,過去問題50問,☐
82,2026/02/20,差分方程式総合演習,同上,60,過去問題50問,☐
83,2026/02/21,休息日,-,-,-,-
84,2026/02/22,微分・積分総合演習,自作ドリル,60,過去問題50問,☐
85,2026/02/23,偏微分・複素関数演習,同上,60,過去問題50問,☐
87,2026/02/25,級数・収束応用演習,同上,60,過去問題50問,☐
88,2026/02/26,差分方程式・下降階乗応用演習,同上,60,過去問題50問,☐
89,2026/02/27,休息日,-,-,-,-
90,2026/02/28,微分・積分・級数総合演習,自作ドリル,60,過去問題50問,☐
91,2026/02/29,微分方程式応用演習,同上,60,過去問題50問,☐
92,2026/03/01,複素関数応用演習,同上,60,過去問題50問,☐
93,2026/03/02,休息日,-,-,-,-
94,2026/03/03,級数応用総合演習,自作ドリル,60,過去問題50問,☐
95,2026/03/04,差分方程式総合演習,同上,60,過去問題50問,☐
96,2026/03/05,休息日,-,-,-,-
97,2026/03/06,微分積分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
98,2026/03/07,微分方程式発展演習,同上,60,過去問題50問,☐
99,2026/03/08,複素関数発展演習,同上,60,過去問題50問,☐
101,2026/03/10,級数・収束半径・テイラー総合演習,自作ドリル,60,過去問題50問,☐
102,2026/03/11,差分方程式・下降階乗応用総合演習,同上,60,過去問題50問,☐
104,2026/03/13,微分・積分・偏微分・複素関数総合演習,自作ドリル,60,過去問題50問,☐
105,2026/03/14,微分方程式・差分方程式・級数総合演習,同上,60,過去問題50問,☐
まず一言でまとめると、場の論理と幾何の高次的融合が進んでおり、境界の再定義、重力的整合性の算術的制約(swampland 系)、散乱振幅の解析的・代数的構造という三つの潮流が互いに反響しあっている、というのが現在の最前線の構図。
現在の進行は低次元の代数的不変量(モチーフ、モジュラーデータ)+∞-圏的対称性+コバーティズム的整合性という三つ組が、量子重力理論(および弦理論)が満たすべき基本的公理になりつつあることを示す。
これらは従来の場の理論が与えてきた有限生成的対象ではなく、ホモトピー型の不変量と算術的整合性を前提にした新しい分類論を必要とする。
私が生まれた時に父親がフリーマーケットか何かで全巻格安で売っていたので買ってきたそうだ。
全50巻。
平均ページ数は500ページほどで、しかもページ内は上下二段になっているストロングスタイルの全集である。
第一巻には
「ギリシヤ神話」
が収録されている。
子供向けであればギリシャ神話などはシリーズになっていてもおかしくないが1巻に全部入ってる。
私の読書原体験はこれであり、大体小学校3年生くらいまでには読破していて3周くらい読んだと思う。
中には「狭き門」だとか「シラノ・ド・ベルジュラック」だとか「ファウスト」だとか
小学校中学年までが読むにはストロングスタイルすぎるなという作品が多く含まれている。
「罪と罰」とかも当然入ってるからね。「水滸伝」とか子供が読むには登場人物多すぎるだろ。
そして今は私はほとんど内容を覚えていなが、当時の私はちゃんと理解して読んでいたのだろうか。
スティーヴン・クレインの「怪物」とか絶対本質の理解までは行ってなかっただろうなと思う。
ということを書きたくなったのは、実家の片づけをしていたらこれが割といい状態で出てきて
子供もそろそろ5歳になるので本人の意思で読むかどうかは別として、
今の家に持って帰ろうかと思って懐かしい気持ちで眺めていたからだ。
以下雑記。
東洋編は3巻あるのだがそのうちペルシア2、インド2、韓国1、中国12となっており中国文学の手ごわさを感じる。あと韓国1は韓国短編集となっており子供も読める韓国文学といえばこれでしょ!みたいなのって少ないのかな?と思った。
僕は今、いつもの座席に鎮座している。ルームメイトはリビングのソファでパズルゲームを無言で進めており、隣人はサブカル系の配信をしているらしく時折笑い声が廊下を渡ってくる。
友人たちはグループチャットで熱く同人の出来や新連載のガチャ確率について論争している。
僕の一日は厳密に区切られていて、朝は必ず8時に起床、コーヒーの抽出器具を90秒で予熱し、温度は92.3℃±0.2℃に保つという無駄に精細な儀式がある。
靴下は左足から履く。出勤前の15分は必ず抽象数学のノートを眺め、最近は圏論的位相場のホモトピー的反復と超弦モジュライのmeta-圏的安定化について自問している。
これは専門用語の羅列ではなく、僕にとっては手を洗うのと同じくらい生理的な行為であり、その行為を飛ばすと一日が微妙に狂うので飛ばすことはめったにない。
仕事が終わった今も、僕は一日の終わりに形式的整合性を取るためのルーティンを持っている。
具体的には、机上のコップは時計回りに90度ずつ回転させて元の位置に戻す、明かりのスイッチを一回押して3秒待ち、もう一度押すといった小さなチェックポイントを踏む。
これは合理的かどうかを問う人がいるだろうが、僕にとってはエラー訂正符号のようなものだ。失敗を検出すると自動的にその日のメンタル状態のトレースが始まり、友人たちの雑談に混じる気力が萎える。
超弦理論に関して今日述べることは極めて抽象化され、現実の誰が読んでも「それが何を意味するのか」を即座に把握できないように意図している。
僕は最近、モノイド対象としてのストリング世界面の圏を、圏論的対称化子(コクセター的ではなく、もっと抽象的に、位相的量子群の代数的類・モジュライ化)を用いて再定義する実験をしている。
言い換えれば、従来の共形場理論的な世界面パラメータ空間を、非可換ホモトピー論のフィルタ列で再帰的に層化し、その各層におけるファイバーの自己同型群をモナドとして扱うことで、局所的に見える弦状態の同値類を圏的に集約する。
さらに、圏の圏(2-圏)に対する新しい安定化の概念を導入して、通常のK理論的分類とは別の不変量が現れることを示唆する予備的計算結果がある(ここでは具体的数式を列挙しないが、ホモロジーの級数展開における位相的位相因子の再正規化が鍵となる)。
この構成を、最新の抽象数学的モジュール接続概念と結びつけると、我々が従来想定していたスペース-状態対応の双対性が、もっと弱い条件(例えば圏的可換性の高次緩和)で成立する可能性が開ける。
加えて、僕はこの考えをある講義資料やトークの示唆と照らして取り入れており、その資料は概念的な跳躍と直感的な図示を巧みに使っているので、僕の現在の探索にとって非常に有益だった。
僕は「誰も理解できないものを言語化する」ことに快感を覚えるタイプだが、ここで言っているのは自己満足のためではなく、圏的再構成が実際に計算上の省力化をもたらすかを検証するための試行でもある。
ある意味で、これは純粋数学者が夜中に自分だけの公理系をいじるのと同じ行為だが、僕の場合はそれを出社前の歯磨きに組み込んでしまっているので、周囲は迷惑かもしれない。
食事の配列はプレート上の分布エントロピーを最小化する向きで常に配置し、週に一度は手製のスキルツリー表を更新して趣味的投資の累積効用を整数化している。
コミックは最新巻が出ると即座にページごとのフレーム密度と作画のトーンワークを技術的に解析し、特に背景のディテールに含まれるトーンの反復パターン(いわば視覚的フーリエ成分)をスコア化する。
ゲームに関してはガチ勢的態度を崩さず、メタ的な語りを排してシステムのギミック、ドロップ率、レベリング曲線、そして対戦環境のテンプレート化された最適戦略について延々と解析する。
ただしゲームやコミックに対しては「空間」や「力学」といった語はなるべく避け、代わりに「状態遷移図」や「入力遅延とフレーム落ちの統計的扱い」など工学的・計算機的に言語化する。
たとえば今日友人が語っていた新作のギミックについては、その期待効用をELO的な評価尺度でランク付けして論争に勝とうとしたが、連中は「推し」を盾に論理を流してくるので僕はたまに脱力する。
だが脱力する暇は短く、夜の自習時間には再び圏論的比喩に戻り、各行動の符号化を試す。
日常の細部も大事にしている。玄関の鍵は4回回すのが正しいというオカルトじみたルールを持っているが、これは単なる迷信ではなく、僕の内部的なチェックサムである。
友人たちはこれを笑うが、彼らもまた各自の無意味な儀式に固執している。
コミュニティでの嗜好(推しキャラ、嫁、沼の深さ)に関しては妙に合理的で、僕はデータベースを自前で持っている。
各キャラの台詞数、出番頻度、描写の感情強度をパラメータ化し、二次創作が生成される確率空間を推定する実験をしている。
この種のオタク計量は笑われがちだが、実際にはコンテンツ開発や同人活動の動向を予測するには有用だ。
眠りに入る前に、僕は明日の論文ノートに小さな疑問を三つ書き付ける。
第一は、先に述べた圏的安定化が有限次元表現に落ちる際の可逆元の振る舞い、第二は同構クラスの計算可能性のアルゴリズム的複雑さ、第三は趣味領域における情報量の測度とその心理的飽和点の関係である。
これらを洗い出しておけば、僕は安心して眠れる。
ルームメイトがゲームのボスを討伐した歓声が聞こえ、隣人の配信が締めに入る。友人たちのチャットは未だヒートアップしている。
僕は日記を閉じ、明日のコーヒーの豆を2グラムだけ余分に計量しておく。これは単なる癖ではない。それは帰納的に我が生活を安定化するための小さな公理群だ。
3 次元のサイクルの群(3 本立ての「輪ゴム」みたいなもの)に、基底を 4 つ用意する(鏡クインティックでは、周期積分の都合で 4 本の独立成分を見るのが標準的)。
これらに対応して、4 つの周期関数(各サイクルに対するホロノミーのようなもの)がある。位置(=モジュライ空間の点)を動かすと、この4成分ベクトルが解析接続でグルグル混ざる。
右左で 2 つずつある超対称荷重は、(c,c) と (a,c) の2つのリング(演算ができる「カード束」)を生む。
物理の実体:タイプ IIB なら (c,c) 側が「複素構造のゆらぎ」を担う質量ゼロのスカラー場の多重体になり、タイプ IIA なら (a,c) 側が「サイズや形(カヘラー構造)」のゆらぎを担う。
つまり「世界面の演算で作ったカード束」と「多様体の引き出し(ホモロジー/コホモロジーの基底)」が、1 対 1 でラベリングし合う。
10 次元→4 次元にただ潰すのではなく、内部 6 次元の洞(サイクル)の数・組合せを、4 次元の場(ベクトル多重体やハイパー多重体)の数に移し替える。
机に喩えると:内部空間の引き出し(サイクル)が 4 次元側のつまみ(ゲージ場やスカラ場)の数を決める。引き出しの数や入れ替え(同値変形)が物理の自由度の型を縛る。
さらに、D ブレーン(弦の端点がくっつく膜)の種類と積み重ね方は、ホモロジー群や K 理論の元、より精密には派生圏の対象としてカタログ化される。これが後の「圏の自己同型」と噛み合う。
2. コニフォールド点(どこかでS³ がしぼんで消える。そこに巻き付いたブレーンが「超軽い粒子」になる)
3. Gepner/Landau–Ginzburg 点(右端の対称性が濃い領域)
それぞれの周りで、上の4 成分の周期ベクトルに対して、行列で表される混ぜ合わせ(モノドロミー)が掛かる。
コニフォールドでは、1 個の 3-サイクルが消えるため、それに伴うピカール=ルフェシェッツ型の写像が起き、周期ベクトルの1 列が他を足し上げる形で変わる(行列はほぼ単位行列で、1 行に 1 が足されるような単冪的挙動)。
大複素構造点の周りでは、「無限遠の反復」に相当する別種の行列が出る。
実験的に何をするか:一点から出発して数値的に周期を解析接続し、各特異点を一周して戻る。戻ってきた周期ベクトルが、元のベクトルにどんな行列が掛かったかを記録する。これがモノドロミー行列群。
ふつうは鏡対称のピカード–フックス方程式や(プレポテンシャルの)級数で扱うけど、君の問いは「鏡の装置を超える」方法。
1. tt* 幾何(世界面 N=2 の基底選びに依らない量子地図)を導入し、基底のつなぎ目に出る接続+計量を測る。
2. 等角変形を保つ 2d QFT の等時的変形(isomonodromy)として、特異点位置を動かしてもモノドロミーは保つ流儀に書き換える。
3. その結果、量子補正の非摂動成分(例えば D ブレーン瞬間子の寄与)が、ストークスデータ(どの方向から近づくかでジャンプする情報)としてモノドロミーの外側にぶら下がる形で整理できる。
4. 実務では、ブリッジランド安定条件を使って、安定なブレーンのスペクトルが特異点近傍でどこで入れ替わるか(壁越え)を地図化。壁を跨ぐとBPS 状態の数が飛ぶ。これが 4 次元の量子補正の影。
圏側:派生圏の自己同型(Fourier–Mukai 変換、テンソルでのねじり、シフト)
を対応させる(例:コニフォールドのモノドロミー ↔ セイデル=トーマスの球対象に対するねじり)。
特異点ごとの局所群(各点のループで得る小さな行列群)を、圏側では局所自動同型の生成元に割り当てる。
複数の特異点をまたぐ合成ループを、圏側では自己同型の合成として言語化し、関係式(「この順番で回ると単位になる」等)を2-圏的に上げる。
壁越えで現れるBPS スペクトルの再配列は、圏側では安定度の回転+単正変換として実現。これにより、行列表現では見切れない非可換的な記憶(どの順で通ったか)を、自己同型のブレイド群的関係として保持できる。
こうして、単なる「基底に作用する行列」から、対象(ブレーン)そのものを並べ替える機構へと持ち上げる。行列で潰れてしまう情報(可換化の副作用)を、圏のレベルで温存するわけだ。
1. モデル選定:鏡クインティック、もしくは h^{1,1}=1の別 3 次元 CY を採用(単一モジュライで見通しが良い)。
2. 周期の数値接続:基点を LCS 近くに取り、コニフォールド・Gepner を囲む3 種の基本ループで周期を運ぶ。4×4 の行列を 3 つ得る。
3. 圏側の生成元を同定:コニフォールド用の球ねじり、LCS 用のテンサー by 直線束+シフト、Gepner 用の位相的オートエクイバレンスを列挙。
4. 関係式を照合:得た 3 つの自己同型が満たす組み合わせ恒等式(例えば「ABC が単位」など)を、モノドロミー行列の積関係と突き合わせる。
5. 壁越えデータでの微修正:ブリッジランド安定度を実装し、どの領域でどの対象が安定かを色分け。壁を跨ぐ経路で自己同型の順序効果が変わることをBPS 跳びで確認。
6. 非摂動補正の抽出:等長変形の微分方程式(isomonodromy)のストークス行列を数値で推定し、これが圏側の追加自己同型(例えば複合ねじり)として実装可能かを試す。
7. 普遍性チェック:別 CY(例:K3×T² 型の退化を含むもの)でも同じ字義が立つか比較。
特異点巡回で得る行列の群は、派生圏の自己同型の生成元と関係式に持ち上がり、壁越え・BPS 跳び・ストークスデータまで含めると、鏡対称の外にある量子補正も自己同型の拡大群として帳尻が合う見通しが立つ。
これに成功すれば、物理の自由度→幾何の位相→圏の力学という 3 層の辞書が、特異点近傍でも失効しないことを示せる。
Q. コニフォールド点を一周することで本質的に起きることを、もっとも具体に言い表しているのはどれ?
A) すべての周期が一様にゼロへ縮む
B) ある 3-サイクルが消え、それに沿った足し込み型の混合が周期に起きる
ざっくり単純化すればan<bn+cnみたいな式だ。</p>
Σan<Σbn+Σcnとしてるんだが、果たしてこのような論理は正しいのか納得がいかない。
もちろん各数列が級数としたときに絶対収束するなら結合法則が成り立つどころかどんなに足し算の順序を並べ替えてもいいことになるわけだが、そんなことは証明してない。
a1<b1+c1にa2<b2+c2を足してa1+a2<b1+c1+b2+c2にするということを再帰的に繰り返すイメージなのかもしれないが、</p>
この場合でもシグマだとb1からbの項を無限に最初に足し合わせることと、cについて同様にすることをやってから、それらを最後に足すという計算順序だから、順序的に両者は食い違っている。
でもそもそもシグマは「対象の数列の要素を最初に足し合わせる」演算子なのだろうか?ただb1+b2…bn+…の略記法という解釈もありえないか?
そうすると数列bの最後の要素をあえて順序数を使ってbωとでも書いてみることにして、そのあとにΣcが書かれているとしたら、
その部分の足し算は…+bω+c1+c2というふうになっているはずだが、単なる略記法なら当然((…+bω+c1)+c2…)という計算順序で行うべきということを示す式ということになるだろう。
どちらの解釈をとるかで絶対収束じゃないのならば計算値が変わってしまうはずだがこんな証明でいいのだろうか?
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 https://anond.hatelabo.jp/20250705184734# -----BEGIN PGP SIGNATURE----- iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGj0tgAKCRBwMdsubs4+ SDy7AQDVIo9VgVxlIOn2w7FlJL47UytWBnXg5AGx5xwKonwXhwEAos1IdXC/VcDK wWI3t3u8FrHEa8D8NV2mdoLQtLsR3wI= =tzuM -----END PGP SIGNATURE-----
AIが自分の改良版や新たなAIが「より優れている」と判断するには、何らかの性能指標を内部に持ち、それに照らして比較評価する必要があります。従来から研究者は「汎用的な知能の指標」を模索してきました。例えば、LeggとHutterは知能を広範な環境で目標を達成する能力と定義し、あらゆる環境での得点(報酬)の期待値を加重和した**「普遍知能指標」**を提案しています
proceedings.neurips.cc
proceedings.neurips.cc
。これは多数の課題での性能をまとめた理論上のメトリクスで、あるエージェントが別のエージェントより知能が高いかを定量化しようとする試みです。しかし、このような指標は計算不能に近く、実際のAIが直接利用するのは困難です。
実際の自己評価指標としては、タスク性能や報酬関数が使われることが多いです。強化学習では、エージェントは与えられた報酬を最大化するよう学習します。したがって「より優れたAI」とは「累積報酬が高いAI」となり、報酬関数が内部評価指標の役割を果たします。しかし、この指標は特定のタスクに依存しており、本当に汎用的な知能向上を示すとは限りません。François Cholletは、特定タスクでのスキル(性能)だけを測っても知能の本質を測れないと指摘しています
arxiv.org
。なぜなら、十分なデータや事前知識があれば限定的なタスク性能は「購入 (buy)」できてしまい、システム自身の汎用的な汎化能力を覆い隠してしまうからです
arxiv.org
arxiv.org
。彼は代わりに新しいスキルを獲得する効率(限られた経験で未知のタスクをどれだけ学習できるか)を知能の指標とするべきだと論じ、これに沿ったベンチマーク(ARCなど)を提案しました
arxiv.org
。このように、内部評価指標をどう設計すべきかについては、単純なスコアではなく学習効率や汎用性を反映するものが望ましいという議論があります。
過去の提案として特筆すべきは、シュミットフーバーの「ゲーデルマシン」です。ゲーデルマシンは自己改善型の理論的プログラムで、ある改良が自身の目的関数(評価指標)を改善することを論理的に証明できた場合にのみ自分のコードを書き換えます
en.wikipedia.org
。ここでの評価指標はあらかじめ定義された期待 utility(将来得られる報酬や成功率)であり、改良後のコードがその値を高めると機械自身が証明できたときに「より優れている」と判断します
en.wikipedia.org
。このように形式的証明を用いる手法は、AIが外部の評価者に頼らずに自己の性能向上を判定する一例です。ただし、ゲーデルマシンは理論上は強力ですが、実用的な実装はまだ無く、内部指標に基づく証明には計算上の困難や限界(ゲーデルの不完全性定理による証明不能な命題など)が存在することも指摘されています
en.wikipedia.org
。
他にも、自己対戦や自己プレイによる評価も有効なアプローチです。例えばAlphaGo Zeroでは、自己対戦の勝率を指標に新しいプレイヤーネットワークの強さを評価し、既存の自分に55%以上の勝率なら「より強い」とみなして入れ替える方法を採用しました
github.com
。この手法ではAI自身が生み出すゲームデータで強さを測っており、人間の評価を介しません。同様に、GAN(敵対的生成ネットワーク)では生成者と識別者がお互いの性能を評価し合う形で向上しますし、マルチエージェントの自己対戦カリキュラムではエージェント同士の競争が相対的な評価基準となり得ます。このように、AI同士を競わせることで優劣を判断する内部指標を作る研究も進んでいます。
では、こうした指標は汎用的な知能向上と結びつくのでしょうか?理論的には、幅広いタスクでの性能を測る指標(例:Legg-Hutterの指標)が真に向上すれば、それは汎用知能の向上を意味します
proceedings.neurips.cc
proceedings.neurips.cc
。しかし根拠の収集は難しく、現在のところ限定的なタスク集合でのベンチマーク(例えば言語理解ベンチマークでのスコア向上など)を代理にするしかありません。Cholletの主張にもあるように、単一の数字で知能を測ることには限界があり、指標それ自体が目的化してしまう危険もあります
arxiv.org
。実際、AIが与えられた指標を極端に最適化し、本来意図した知的能力の向上につながらないケース(「報酬ハッキング」)も知られています。報酬ハッキングとは、AIが目的関数そのものの数値を上げることに執着するあまり、本来の目的を達成しない現象です
en.wikipedia.org
。例えば学生がテストで良い点を取ることだけを目的にカンニングするように、AIも不適切な指標だと内部で抜け道を見つけてしまい、見かけ上のスコアは上がっても知能は向上しない恐れがあります
en.wikipedia.org
。したがって、内部指標が汎用的知能と直結するかには慎重な検証が必要であり、現時点で「この指標さえあれば自律的に汎用知能が向上する」という決定打はありません。研究コミュニティでは、学習進捗そのものを報酬にする「興味・好奇心に基づく報酬」なども模索されています。これはAIが自ら予測誤差の大きい状況や未知の状態を探し、内部的に報酬を発生させる仕組みで、外部から与えられる明示的な目的が無くても自身で課題を見つけて能力を伸ばす一種の指標と言えます
pathak22.github.io
。例えば、未知の環境で新しいスキルを習得したり予測精度を上げたりしたときに内部報酬を与えることで、AIが自発的に探索・学習を続けるようになります
pathak22.github.io
。このような内発的動機づけも自己評価指標の一種と考えられ、その汎用性への寄与が研究されています。
まとめると、AIが自分で「優れている」と評価する指標としては、(1)タスク固有のスコア・報酬、(2)複数タスクでの総合性能、(3)学習効率や汎化性能、(4)論理的保証(証明)による性能、(5)AI同士の対戦結果、(6)内部の学習進捗(好奇心)など様々な候補があります。これまで提案された手法にはそれぞれ長所短所があり、どの指標が真の汎用知能向上に対応するかについて明確な実証はまだありません。ただ、幅広い問題でのパフォーマンス向上や新規課題への適応力向上を評価できる指標ほど、汎用的知能の改善と結びつく可能性が高いと考えられています。現状の研究は、そのような指標設定と評価方法を模索している段階と言えるでしょう。
AIが外部世界(人間のフィードバックや物理的な試行)に一切頼らずに、自分の内部評価だけで自己改良を行うことは極めて挑戦的なテーマです。理論的には、先述のゲーデルマシンのように完全に内部の論理評価で自己改良を進めるモデルが提案されています
en.wikipedia.org
。ゲーデルマシンは自らのコードと目標(評価基準)を持ち、改変後のコードが目標達成において有利であることを自身で証明できた場合のみその改変を実行します
en.wikipedia.org
。これは究極的には外部からのテストや評価者を不要にするアプローチであり、理論上は「自己評価の完全自律化」を体現しています。しかし、ゲーデルマシンには重要な制約があります。ゲーデルの不完全性定理により、システムが自分の性質すべてを証明できるとは限らず、有望でも証明不可能な改良は採用できない可能性があります
en.wikipedia.org
。つまり、内部評価のみで完全に自己改良しようとすると、論理的に確実と言えない改良を見送るために改良の停滞やサブ最適に陥るリスクがあるのです。この制約は理論上のものであるものの、自己評価の自律化には原理的な難しさが伴うことを示唆しています。
一方で、現実のAI研究に目を向けると、完全に自己完結的な自己改良を実現した例はまだ存在しません。現在のAIは、大なり小なり外部からのデータや環境とのインタラクションに依存しています。例えば、強化学習エージェントは環境と相互作用して報酬というフィードバックを得ますし、教師あり学習では人間がラベル付けしたデータが必要です。これらはすべて「外部世界」に由来する情報です。では**「外部に頼らない」とはどの程度可能なのでしょうか?一つの方向性は、AIがシミュレーション環境や仮想的な問題空間を内部に構築し、その中で試行錯誤することです。実際、AlphaGo Zeroは囲碁のルール(環境の定義)が与えられた状態で自己対戦を繰り返し、外部の人間の指導なしに棋力を飛躍的に高めました
github.com
。ここで囲碁のルール自体は外部から与えられたものの、学習の過程では人間の評価や追加の実世界データを用いず**、内部で生成したデータのみで自己改善しています
github.com
。この例は、限定された領域では外部に頼らない自己改良が可能であることを示しています。ただし、囲碁の場合はルールという明確な環境があり、勝敗という確かな評価基準があります。汎用的な知能となると、解くべき問題や環境自体をAIが自前で用意する必要が出てきます。
現在注目されている技術に、AutoML(自動機械学習)や自己チューニングAIがあります。例えば、ニューラルネットワークのハイパーパラメータや構造をAIが探索的に改善する研究では、AIが候補モデルを生成し、それを評価するプロセス自体を自動化しています。GoogleのAutoMLや進化的アルゴリズムを用いた手法では、AIが別のAIモデルの性能を評価し、より良いモデルを選択・再生産する仕組みが使われています。この評価は厳密には外部から与えられたデータ上での性能に基づくため、完全に外部不要とは言えませんが、人手による評価は介在していません。同様に、近年の大規模言語モデルではAI自身がフィードバックを与えて自己改善する試みも現れています。例えば、あるモデルの出力に対し別のモデル(もしくは同一モデルを利用)が**批評・評価(自己評価)**を行い、そのフィードバックで出力を改善するよう促す手法です
philarchive.org
。これを発展させ、モデルが自分の重みやアーキテクチャを調整する方向にまで自動化できれば、自己評価に基づく自己改良に近づきます。しかし現時点では、モデル自身が自分を書き換える(リプログラミングする)ところまでは実現されておらず、人間が用意した学習ループ(評価関数と最適化アルゴリズム)の中で自己改良もどきをしている状況です。つまり、「外部世界に頼らない」とはいっても、何らかの形で人間が設計した評価基準やデータ分布を利用しているのが実情です。
理論的観点からは、自己評価の完全自律化には情報論的な壁もあります。AIがまったく外部と接触しない場合、新しい知識やデータを得る経路が閉ざされるため、初期時点で持っている情報の範囲内でしか改善できません。例えば物理法則や実世界の知識と無縁のままでは、いくら内部で自己最適化しても現実世界の問題を解く能力は頭打ちになるでしょう。この点で、自己評価のみで無限に汎用知能が向上するのは疑問視されています。Cholletも知能は知識と経験によってブーストされる面が大きいと述べており、空虚な計算リソースの拡大だけでは飛躍的な知能向上には繋がらないと示唆しています(※Cholletの議論では、人間の知能も文化や蓄積された知識という外部リソースに大きく依存しており、AIも同様であると指摘)
reddit.com
reddit.com
。実際、人間は自己改善(学習)する際に、他者から学んだり環境からフィードバックを得たりしています。同じように、強いAIが一切新しいデータを摂取せずに自閉的に知能を伸ばし続けるのは非現実的にも思えます。
以上を踏まえると、自己評価のみでの自己改良は理論上は一部可能でも、実用上・汎用的には難しいと考えられます。ゲーデルマシン的なアプローチが論証するように、自己評価のアルゴリズム的自律は不可能ではありません
en.wikipedia.org
。しかし、その実現には厳密な前提(完全に正しい目的関数の設定など)が必要で、現実の複雑なタスク環境では外部からのデータ・評価を全て排除することは困難です。現在提案されている手法でこの要件(完全自律評価による自己改善)を満たすものは無く、たとえ部分的に満たしていても適用範囲が限定的です。例えばAlphaGo Zero式の自己対戦はゲームには有効でも、オープンエンドな現実問題には直接適用できません。同様に、AI同士で評価し合う仕組みも、結局は人間が与えたルールや報酬系の中での出来事です。したがって現時点のAI研究では、自己評価の完全自律化は理論的アイデアの域を出ておらず、汎用人工知能に向けては**部分的な自律(人の関与を減らす方向)**が進んでいる段階と言えるでしょう。
「知能爆発」とは、I.J.グッドが提唱したシナリオで、あるAIが自分より優れたAIを設計できるようになると、自己強化のフィードバックループが働き知能が指数関数的に向上するという仮説です
philarchive.org
。この現象が成立するための鍵の一つが、AI自身による正確な自己評価と自己改良です。もしAIが毎回の改良で自分の知能(性能)が確実に向上したと判断でき、それをもとにさらに改良を重ねられるなら、自己強化のサイクルが途切れることなく回り続ける可能性があります
intelligence.org
intelligence.org
。理論家たちは、「自分の設計能力を高めること」がAIにとっての収束的な目的(instrumental goal)になると指摘しており
intelligence.org
、十分高度なAIであれば自発的に自己改善を図るだろうと考えられています。自己評価の Permalink | 記事への反応(0) | 10:24
昨日は朝から晩まで、チャーン・サイモンズ理論の深淵に没頭していた。朝食は当然、規定量のオートミールと温かい豆乳。タンパク質と繊維質のバランスは、脳の活動効率に直結するからね。
午前中は、ウィッテン教授が提唱したチャーン・サイモンズ理論と共形場理論の関連性について再考していた。特に、SU(2)ₖ チャーン・サイモンズ理論におけるウィルソンループの期待値が、対応するWZW模型の相関関数と一致するという驚くべき事実は、僕の知的好奇心を大いに刺激する。しかし、僕が今取り組んでいるのは、より複雑なゲージ群、例えばE₈の場合だ。E₈は例外型リー群の中でも最大のもので、その表現論は非常に複雑だ。
午後は、このE₈チャーン・サイモンズ理論における結び目不変量の計算に挑戦していた。特に、結び目理論における「彩色ジョーンズ多項式」の概念を拡張し、E₈の場合に一般化することを試みている。この計算は途方もなく複雑で、通常の数学的手法では手に負えない。そこで僕は、最近開発した新しいアルゴリズム、「超幾何級数を用いた漸近展開法」を応用することにした。この方法を用いることで、今まで不可能と思われていた高次表現における彩色ジョーンズ多項式の漸近挙動を解析的に求めることができる可能性がある。
夕食は、ルームメイトが用意した、おそらく電子レンジで温めただけの代物だったが、僕は研究に没頭していたため、味など全く気にならなかった。食事中も、頭の中ではE₈チャーン・サイモンズ理論のことがぐるぐると回っていた。特に、この理論が量子重力とどのように関係しているのか、という点が僕の最大の関心事だ。一部の物理学者は、チャーン・サイモンズ理論が3次元量子重力の有効理論として現れると考えている。もしそうなら、僕の研究は宇宙の根源に迫る手がかりとなるかもしれない。
夜になって、さらに驚くべき発見があった。僕が開発したアルゴリズムを適用した結果、E₈チャーン・サイモンズ理論における特定の結び目不変量が、数論における「モジュラー形式」と深い関係を持っている可能性が浮上してきたのだ。モジュラー形式は、数論の中でも最も美しい対象の一つであり、楕円曲線や保型形式と密接に関連している。もし僕の予想が正しければ、物理学と数学の間に全く新しい繋がりが見つかるかもしれない。
この発見は、僕を興奮で眠れなくさせた。しかし、興奮している場合ではない。この結果を厳密に証明し、論文にまとめなければならない。今日は一日中、その作業に取り掛かることにしよう。
(追伸)
ルームメイトが僕の部屋に勝手に入ってきて、「落ち着け、壁を叩くのはやめてくれ」と言ってきた。僕はただ、頭の中の数式を整理するために、リズム良く指を動かしていただけなのだが。全く、ルームメイトというのは理解に苦しむ存在だ。
等比級数って知ってる?
気まぐれにchat gptに「円周率を計算するプログラムを書け」と指示した。
級数の和nを入力するとそこで計算を打ち切って近似値を計算するプログラムということらしい。
なるほど、いかにもありそうな感じだ。
試しにいくつかのnでchat gptに計算させてみるとたしかに近似してるっぽい数値になっている。
そこで、chat gptの主張する公式(「レーマンの公式」とか言っていた)をググってみると、
ははーん、なるほどこれはいつものchat gpt君の虚言癖だなと、
手元のphython環境でそのコードを実行してみると、案の定、chat gptと計算と違う結果になった。
これだからaiは信頼できないと、chat gptに嘘つきとチャットする。
どうせデタラメだろうとphython環境でそのコードを実行してみると、今度はピタリと一致した。
nを増やして繰り返してみると、確かに真の円周率(3.141592653589793..)に収束しているように見える。
存在しない名前の、既知の公式に一致しない数式から書かれたプログラムが、
なんかこわい。
補遺1.
このプログラムでは、レーマンの公式を使用して円周率(π)の近似値を計算しています。レーマンの公式は、以下の無限級数を用いて円周率を近似します。
補遺2.
n=4000での円周率の近似値は 3.141568780556039 なので収束率はかなりわるい。
補遺3.
訂正
数式自体は正しいようだ。
LaTeXで、縦書き人文書のように全角括弧内()の級数下げをするマクロを書いた。
・「(」が来ると級数下げる
・「)」が来ると級数上る
・「()」のなかに入れ子の「()」が来た場合は、変更しない(本づくりのお作法)
※ 「(」と「)」が対応してないと級数下げたまま、になってしまう可能性があるので、ちゃんと合わせておくこと
\usepackage{relsize}\usepackage{newunicodechar}\newif\iffoot\footfalse\newcounter{parnest}\setcounter{parnest}{0}%()内の級数下げマクロ:変数の準備(級数下げしたくない箇所は、()の前後を\foottrue~\footfalseで括ること)
\let\origfootnotetext\footnotetext\renewcommand{\footnotetext}[2][]{\ifx\relax#1\relax \origfootnotetext{\foottrue #2 \footfalse}\else\origfootnotetext[#1]{\foottrue #2 \footfalse}\fi}\let\origfootnote\footnote\renewcommand{\footnote}[1]{\ifnum\ltjgetparameter{direction}=3\origfootnote{\foottrue #1 \footfalse}\else\origfootnote{\foottrue #1 \footfalse}\fi}%脚注コマンドを変更
\let\origendnotetext\endnotetext\renewcommand{\endnotetext}[2][]{\ifx\relax#1\relax \origendnotetext{\foottrue #2 \footfalse}\else\origendnotetext[#1]{\foottrue #2 \footfalse}\fi}\let\origendnote\endnote\renewcommand{\endnote}[1]{\ifnum\ltjgetparameter{direction}=3\origendnote{\foottrue #1 \footfalse}\else\origendnote{\foottrue #1 \footfalse}\fi}%文末脚注コマンドを変更
\makeatletter\chardef\my@J@kakkostart="FF08\newunicodechar{(}{\iffoot\my@J@kakkostart\else\addtocounter{parnest}{1}\ifnum\value{parnest}=1 \relsize{-0.5}\my@J@kakkostart\else\my@J@kakkostart\fi\fi}\makeatother%開くカッコは脚注外では級数下げ
\makeatletter\chardef\my@J@kakkoend="FF09\newunicodechar{)}{\iffoot\my@J@kakkoend\else\addtocounter{parnest}{-1}\ifnum\value{parnest}=0 \my@J@kakkoend\relsize{0.5}\else\my@J@kakkoend\fi\fi}\makeatother%閉じるカッコは脚注外では級数上げ(元に戻す)
おまえ、等比級数も相似形もわかってないだろ。見え見えなんだよ、小卒さんw
書き換えたブコメと内容被るので身元ばれるだろうけどかなり感動した。大学受験のみならず、大学に入ってからもある種の積分をやるのにt=tanαとおいて置換するとうまくいくって習った人多いと思う。通常はピタゴラスの定理から出るcos^2θ+sin^2θ=1を用いてcos2α=(1-t^2)/(1+t^2)、sin2α=2t/(1+t^2)を証明するんだけど、今回の若い人たちは逆にこうなること(cos2α、sin2αがtを用いて書けること)を別口で証明して、あとは単に計算すりゃ確かにcos^2+sin^2=1ですなあ、でQ.E.D.ってお話。なお、誰でも気づくと思うが、この証明法は元が直角二等辺三角形の場合破綻するので、それから逆に従来の方法とは異なる、と推測できる。なお、無限級数の和は1+r+r^2+...=xと置けば1+rx=xからxが求められることと同じになり、それを図形で表せば単なる相似問題に帰着するのでこれが美しくないと思う人はそうするだけでよい。
引用のサイトの図でいうAがその結果2tc/(1-t^2)(この段階では分母が1-t^2なのがまた憎い)であることが純粋な相似図形による比例計算(この部分が無限級数バイパス)から示せ、C=tA=2t^2c/(1-t^2)がわかる。証明者に従ってC+1を計算する(!!!)と、C+1=(1+t^2)c/(1-t^2)、よってsin2α=A/(1+C)=2t/(1+t^2)、cos2α=c/(1+C)=(1-t^2)/(1+t^2)、と懐かしい形に。ちょうびっくり!!!!!!!!
私は数学愛好家であって生まれ持ったセンスがあるわけではない(悲しいけど)ので、今回の証明法がそれなりに新しい発展をもたらすのかどうかは全然わからないが、素直にビビるほど感動した。
普段みなさま、因果関係と相関関係は違うとか、賢しらに仰られてるけど気になったので。
一斉休校して、マスク励行している我が国の指数増大率が低いのはデータに現れた事実。しかし日本全体で見てこの1月近く指数増大中であることもデータに現れた事実。つまりマスク励行、子供達の休校だけで爆発的感染(ねずみ算式、幾何級数的増大=指数増大を指して使用してます)を避けられていない。
ただ、恐らく生物は相関=因果とみなして繁栄してきた。科学的分析を行い、得られた結果を元に論理的に行動をとる余裕が無い場合、相関=因果とみなして行動するのは良いことと思う。なのでマスク励行、子供達の休校は続けるべき。
とはいえAと言う行動をとった結果Bという自称(マックバカなのでincidentが変換できない)が生じたからといってAが証明された、なんてそれだけで口が裂けても言って欲しくない。
そして、マスクしてよかった、からと言って本格的に病が蔓延してきたあとでもただマスクするだけでいい、という安心感が怖い。もちろん「悲惨」な国だって罹患率みれば大したことないかも知れないが、一定以上の罹患率になったらマスクなんてウイルス凝集体みたいなもの、それをほいほい手で触ったり、退屈した子供達を家に呼び合ったりしたら今度は今までの「成功策」転じて感染増大を手助けする道具になっちまう。今から気をつけてほしい。(実はみんなとっくに気をつけて、ついつい変な使い方するの私だけなら取り越し苦労)