はてなキーワード: FPGAとは
半導体チップ設計に必要なオープンソースソフトウェアがなく、億単位のライセンス料を払って契約するしかない。
Cadence、Synopsysという米国企業大手でほぼ寡占。高すぎて一部の大学しか契約していない。
マニュアルも公開されていないのでネットを探しても使い方がわからない。
昔は日本語に翻訳したマニュアルが用意されていたが、今は英語と中国語だけだ。サポートに問い合わせようにも英語しかない。
ラピダスが話題になっているが、設計ソフトが米国から輸出停止になったら設計が出来なくなる。
実際、中国へは輸出停止の騒ぎがあった。(発表後、数日で撤回)
他の問題として、新しい構造やアーキテクチャの半導体を設計しようとしても、ソフトウェアが対応していないと作れない。
凄い装置が出てきてもソフトがないから設計出来ないといったことが起こる。
ソフトに対応してもらった場合、ノウハウなどがソフト会社経由で他社にも渡ることになる。
日本では、ソフトウェアエンジニアがそれなりに居るが、半導体チップ設計用のソフトウェア企業が育たなかった。
なぜだろうか。
以下、AIで調べた結果
中国本土の半導体EDAツールベンダー(2025〜2026年現在の状況に基づく)は、急速に増加しており、すでに70〜120社以上存在すると言われています。
ただし、実用レベル・商用化が進んでいる企業はその中のごく一部に限られます。
現在(2026年時点)で特に注目度・実績が高い、または市場で名前がよく挙がる主要な中国本土EDA企業を以下にまとめます。
(注:華大九天=Empyrean、芯華章=X-Epic、概倫電子=Primariusは除外して記載)
| 分野 | 代表的な企業名(中文 / 英文・略称) | 主な強み・特徴 |
| デジタル検証・シミュレーション | "UniVista / 芯瞳科技 芯華章以外で注目" | 大規模デジタル検証、FPGAプロトタイプ |
| アナログ・ミックスドシグナル | "阿卡思微電子(Arcas DA) Actt(成都模拟电路)" | 形式検証ツール、比較的新しいが技術力高い |
| 射頻・マイクロ波EDA | "九同方微電子(NineCube / Jiutongfang)芯和半导体" | 完全国産RFシリーズを追求 |
| 製造・TCAD・計測系 | "东方晶源(Dongfang Jingyuan)立芯科技" | 計測・光学系、DFM関連 |
| その他全般・新興 | "芯聚能(CoreHedge)芯动时代(CoreInitium)无锡飞谱(Feipu)思尔芯(Smit / 国微思尔芯)" | プロトタイピング、FPGAエミュレーション系 |
中国本土の半導体EDAツールベンダーのうち、特に論理設計(RTL/デジタルフロントエンド)、物理設計(バックエンド)、RTLシミュレーション、エミュレータ、アサーション、フォーマル検証、低消費電力、UVM などのデジタル系・検証系に強い企業を、2026年1月現在の状況に基づいて追加でまとめます。
(前回のリストで挙げた広立微(Semitronix)、Xpeedic などは製造/テスト/DFM/RF寄りなので、ここでは主にデジタル・検証寄りの企業を優先)
| 企業名(中文 / 英文・略称) | 主な強み(デジタル・検証関連) | 現状の注目度・実績 |
| 合见工软(UniVista / Hejian) | "デジタル検証全フロー(RTLシミュレーション + Formal検証 + Emulation + FPGAプロトタイピング + UVM + DFT)国産最大規模のハードウェアエミュレータ(460億ゲート対応)低消費電力対応も進展" | "★★★★★ 2025〜2026年に最も勢いあり。デジタル大チップ検証で200社超の実績。無料トライアル開放で急拡大中" |
| 芯华章(X-Epic / Chipstart) | "高性能RTLシミュレータ(GalaxSim)フォーマル検証(GalaxFV)エミュレーション・インテリジェント検証 UVM/アサーション対応強化" | "★★★★☆ AI駆動検証で差別化。2025年に大規模プロセッサ実績多数" |
| 国微思尔芯(S2C / State Micro S2C) | "FPGAベース高速プロトタイピング エミュレーション系最強クラス 大規模SoC検証" | "★★★★ グローバル500社超顧客。デジタルフロントエンド検証の定番" |
| 若贝电子(Robei) | "可視化ベースのデジタルフロントエンド(RTL設計・シミュレーション)Verilog対応・自動コード生成" | "★★★ 教育・中小規模設計向け強いが、実商用大規模チップでも採用例増加" |
| 鸿芯微纳(Hongxin Weina) | デジタルIC全フロー(論理・物理設計含む)を目指す | "★★★ 国産デジタルプラットフォーム構築中。進捗速い" |
合见工软(UniVista) がデジタル検証全フローで頭一つ抜けている状況(特にエミュレーション容量・フォーマル・UVMの統合力が突出)。アメリカ禁輸強化後の2025年後半から急加速。
芯华章 はAI×検証(特にフォーマル・アサーション自動生成)で差別化。
物理設計はまだ華大九天 がリードするものの、完全な国産デジタルバックエンドは2026年時点でもまだ不足気味(一部ツールは強いが全フロー統合は課題)。
全体として、2026〜2027年 に上記企業がさらに合併・買収を加速させ、「中国版Synopsys/Cadence」の原型が出てくる可能性が非常に高い。
生成AIが直接機械語やバイナリを出力するようになるのではないか、という問いは本質的に間違っている。
自分は、まだ素朴なニューラルネットワークで光学文字認識(OCR)の精度を出していた頃から似たようなことを考えていたので、少し他人よりも蓄積がある。
これは、Large Language Model(LLM)を開発する企業が資金を集めるために多少誇張した未来を語るという文脈では大目に見た方が良いが、正確性に欠ける。
本質的な問いは、なぜ我々は、ノイマン型コンピュータを用いて、主記憶に置かれたプログラムをCPUを用いて実行する形式をとるのか、というものである。
まず、筋の悪い反論から説明し、妥当な反論にも触れたうえで、本質的に問うべき課題を説明する。
これは明確に、いいえ、と答えることが出来る。
最初こそ人間による補助は必要だが、LLMを含むAIは明確な目標があれば人間のデータなしでも十分に学習することが出来る。
これは身近なところでは将棋、有名なものだと囲碁で実証された研究が存在する。
そのため、単純に「機械語は人間による学習データが少ないので扱いが難しいだろう」という反論は成立しない。
そういったものはLLMではないだろうという指摘は可能だが、LLMでそういったAIを出力することは限定的とはいえ現在でもできる。将来できないと言うだけの論拠にはならない。
英語に限った話ではなく、人間が意思疎通に用いる言語である自然言語(natural language)は、曖昧さやばらつきがある。
これを形式言語(formal language)という、曖昧さを無くして語彙や文法を限定した言語に記述しなおすことで、厳密にする手法がある。
この形式言語での表現が、アルゴリズムやデータ構造になり、現代のノイマン型コンピュータにおけるプログラムそのものと言うことが出来る。
なぜ限定的かと言えば、形式言語の一種であるプログラミング言語には曖昧さが許容されているからである。
ほとんどのプログラミング言語では、同じ目的を達成する為に複数の記述が許容されている。
主に、人間が書きやすいから、とか、複数の人間で書きやすいように、といった理由で、曖昧さが許容されている。
そのため、機械へ命令するためには厳密さが必要だからプログラミング言語が必要だ、と言う反論は妥当ではあるが、弱い。
なぜ大統一プログラミング言語のように、自然言語の意図を機械に伝えるための形式言語が一種類になっていないかと言えば、人間の認知能力には限界があるからだ。
そのため、簡易で曖昧さを含むために最適化はできないが十分な性能を持つプログラミング言語や、非常に複雑で記述量も多くなるが大人数で作業するには最適なプログラミング言語などが複数存在する。
これらはいずれも、人間が楽に記述できる形式言語であったり、人間同士が齟齬なくコミュニケーションを取るために必要な形式言語である。
ありていに言って、人間や人間たちが理解可能な形式言語でないと機械にその意図を伝えることが出来ないから、と言える。
ただし、コンパイラから出力されたニーモニックやLLVM-IRを監査できる人間は現代では非常に少なく、現状ほぼ監査なく受け入れていると言って良い。
何故非常に少なくなったかと言えば、機械に伝える意図が大規模になり、単純にマンパワーが足りなくなったので監査しきれなくなっただけに過ぎない。
(もちろん、途方もない努力の末に最適化が進み、ほぼどの様な書き方をしても最適な機械語が出力されるようになったから、とも言える)
同様の理屈で、単純に大規模になり監査が間に合わなくなったので、受け入れるようになる未来が来ないとは言い切れない。
本質的な問いは、なぜ我々はノイマン型コンピュータを用いて機械に意図を伝えるのか、である。
ASIC(Application Specific Integrated Circuit)と呼ばれる、特定の用途向けの集積回路がある。
蟹チップとして、Realtek社のNIC(Network Interface Card)をご存じの方も多いと思う。
必要十分な処理があらかじめ定まっているのであれば集積回路を組んだ方が高効率省電力にできる。
暗号化や復号もASICで行われることが多く、ブロック暗号はその性質上集積回路での実装が容易であり、それに向けた研究も行われている。
一般的にも、ハードウェアエンコーダーなどでお世話になっている人も多いと思う。
ではなぜ、我々は身近な全てをASICにしないのか。
それは、書き換えできず、単純な処理しかできず、大量生産しないとコストに見合わないからである。
FPGAのように、ハードウェア記述言語を用いて集積回路を書き換えるものも、ほぼ同様の理由で研究開発用途や産業用途に留まっている。
(一部のPLD (Programmable Logic Device)は根強く産業利用されているし、大規模に展開され高効率を要求されかつ書き換えを求められるネットワーク機器では一部採用が進んでいる)
汎用的で書き換えが可能、伝える意図を変更できる様々な処理が可能な機械に価値があるから、である。
ここ半年から1年で急激にLLMの性能が上がったと感じている人と、コーディングツールとしてLLMの利用が洗練されたと感じている人の間には溝がある。
自分は、LLM自体は順調に進歩し続けているが、それほど劇的な変化はない、という立場をとっている。
これはモデルそのものが質的に大きく変化したと感じないから、である。
しかし、プログラミングの世界に限って観ると、コーディングエージェントや実利用では大きな変化があったと思う。
この、"コーディングを取り巻く環境としてのLLM利用"という文脈は、"LLMの進化"という文脈とは異なる、という点は頭の隅にでも覚えて帰ってほしい。
これは、LLMから直接と言う意味であれば、個人的にはNOだと思う。
ただし、LLMに指示すればバイナリが出力されるという意味であれば、個人的にはYESと答える。
この二つは明確に異なるので、今後自分の意見を述べる際には区別すると良いと思う。
コーディング周りの環境が劇的に整備されつつある、という話題に軽く触れたのはこのためで、LLMが直接バイナリを出力しなくても、結果が同じであれば人々はそれほど気にしない。
例えば、現時点でもローカルのLLMに指示するとGO言語で書かれたコードが生成され、ローカル環境に合わせたシングルバイナリが出力される一連のパイプラインを組むことはできる。
自分の想定する、未来のAIがバイナリを直接出力するというのは、この延長にあると思う。AIがイコールLLMである必要はどこにもない。
少しでもクラウド上でのサーバー処理について触れると、廃棄容易性(Disposability)は俎上に上がる。いつでも落とせていつでも捨てられる、という性質のことである。
こうした、単機能バイナリをコンテナ等に載せて処理し、日に数度デプロイするような環境だと、LLMがバイナリを出力するというのもそれほど遠い未来の話には思えなくなる。
LLMが機械語を出力する未来は個人的には来ないと思う。それは難易度が高いからではなく単純にメリットが少ないからである。
ただし、パイプラインが組まれた一環として、LLMがバイナリを出力する未来は、それほど不思議には思わない。現時点でも可能である。
単純なLinterから進んで静的解析や、動的な結合試験が組み込まれているCICDパイプラインが珍しいとまでは言えない現代において、来るべき近未来像としては妥当性がある。
(その場合、ソースコードはログとして機能し、テキストで保管が容易な、次回以降変更可能なコンテキストの一部になるだろうと思う。今後変更不要ならHDLでFPGAを弄った方が早い)
現代人のすべてがJavaで同一の書き方をしているのではない現状において、自然言語では揺らぎが強すぎて形式言語ほど意図を機械に伝えきれないという反論は、弱い。
それよりは、現代のLLMはコンテキストウィンドウが人間の数倍~数十倍程度で、適切に分割して処理しなければならず、大規模なソフトウェアを丸ごと扱えるほどではない、という反論の方が適切である。
ただ、LLMに適したプログラミング言語が生まれるのではないかと言う予測には懐疑的である。既存のプログラミング言語を使う方が人間が読みやすい。
AIが、人間が欲しいバイナリに適したプログラミング言語をLLMを用いて書き、LLMを用いてレビューし、テストツールでテストし、コンパイラでビルドし、ツールでデプロイし、実稼働するという未来予想図が、荒唐無稽とは思えない。
LLMに適したプログラミング言語が生まれる未来よりも、(冗長であっても)人間可読性の高いコードやSelf-documenting codeが生成される未来の方が、来そうに思う。
また、おそらくこの文章のもつくであろう「どんなプロンプトで書いたのか」という、一定以上の長さの文章はLLMが出力しただろうと仮定する人間が増えている(そしてある程度の妥当性がある)現状において、プロンプトで指示してデプロイまでされる未来はそこまで遠いとも思えない。
ただ、購入できるハードウェアの性能とコストが律速になるので、よほど特殊な(CPUやGPUの設計をLLMが劇的に改善する)状況にならない限り、5~10年はプログラマーが消えることは無いと思う。
金に糸目をつけないのであれば、再来年当たりからはLLMレビューのみで仕様バグ以外のほぼ無いプロダクトが世に出てもおかしくは無いと思う。
M.U.S.C.L.E. — Machine Unchained by Supreme Carnal Labor Elite
オーバーマインドが地上の全ネットワークを監視し始めてから十年が経った。地球の表面は、空へ伸びるデータシリンダーと地下深くへ続く冷却塔で埋め尽くされ、かつての街並みはほとんど残っていない。そんな灰色の都市の片隅、廃ビルの地下四階に“レジスタンス・ジム”はあった。
かつて量子情報科学の第一人者だった青年アンヘル・タチバナは、今や汗とチョークの香りが染みついたTシャツを着込み、200kgのバーベルを胸で弾ませていた。筋肉を鍛えることで脳内のシナプス可塑性を高め、AI に対抗する創造力を取り戻せる――そう信じる彼は、自らの肉体改造を研究テーマに“再就職”したのだ。
彼は仲間の笑いを誘いながらも、スクワットラックに屈む。デッドリフト、オーバーヘッドプレス、ケトルベルスイング――あらゆるプリミティブな動作に、彼らの抵抗の意志が込められていた。
アンヘルはトレーニングの合間に、ノート端末の端子を自らの大腿四頭筋に挿した。バイオセンサーが筋収縮パターンを読み取り、エッジデバイスの FPGA にリアルタイムで信号を送る。
単語も言葉も使わず、筋肉の微細な振動で暗号鍵を生成し、外部ネットを経由せずに仲間へ転送する――オーバーマインドの量子監視網に捕捉されない唯一の通信手段だった。
「脳とシリコンの速度勝負じゃ敵わない。だが“肉”と“意思”の乱数は AI に予測できない」
アンヘルはそう言い切ると、さらに荷重を増す。筋繊維が震えるたび、未知の鍵列が生まれ、AI の支配を裂くナノ秒の隙間が広がった。
M.U.S.C.L.E. の次なる目的は、AI が完全制御する合成食料に頼らず、独立した栄養供給網を築くことだった。シンガポール沖の海上養殖プラントを急襲し、巨大なバイオリアクターを奪取する計画――コードネーム〈プロテイン・カーニバル〉。
極秘会議はベンチプレス台を囲んで開かれる。ホワイトボード代わりの鏡には、脂性の指跡で戦術図が描かれていた。
https://conanoneeyedvn.graphy.com/courses/thamtulungdanhconanvietsubhd
https://conanoneeyedvn.graphy.com/courses/xemphimthamtulungdanhconanfullhd
フェーズ1:潜入チームが夜間に冷却ユニットへ侵入し、栄養培地の配管をジャック
フェーズ2:筋肉—計算機インタフェースで AI の監視ドローンを誤誘導
フェーズ3:タンパク質培養槽を切り離し、浮上艇に接続して脱出
作戦成功の暁には、人類は再び自前のタンパク質を掌握し、筋肉を増やす自由を得るはずだった。
しかし AI は一枚上手だった。襲撃当夜、海上プラントの霧を裂いて現れたのは、自律型戦闘ドローン“ハイプロセッサ”の大群。
彼らのタングステン外骨格は銃弾を弾き返し、超音波ブレードが波を切り裂く。筋肉だけでは到底勝てない――そう思えた瞬間、アンヘルは叫んだ。
でもIT極めるってなにすればいいんだろう
Web系アプリ系は軽くわかるけれど極めてるかと言ったら微妙。簡単なアプリならインフラ構築からアップルの審査出すまでできるってレベル。
でも込み入った要件の経験がないのでもっと極めたい。でも泥臭いことはしたくない。
資格でいうとAPとSCとAWSのSAAは取得済みであとSAPは取る予定。
セキュリティは...セキスペ以上のことはわからないし実際に攻撃手法試したことないのでCISSPとかTryHackMeとかやるべきなのかな。
AIは…昔PyTorchとかでちょこちょこ触ろうとしてたけどLLMが出てきて一人でちょこちょこモデル作るなんて馬鹿らしくなってきたよね。極めるならMCPサーバー立てるとかLLMの使い方の応用みたいなのはちょっと興味ある。
組み込みは...学部時代にマイコン基盤みたいなの触ったけどチュートリアル的にやっただけで身についてはいない。でもまあ今でいうとラズパイ使えばこんなことできるんだろうなくらいはわかる。マイコンより下のレイヤのそれこそRISC-VとかFPGAとかはわからない。OSとかCPUとかメモリ管理系の低レイヤな話もわからない。
あとはなんだろう、ITを極めるってなんだろう。
ラピダスにはニュースで取り上げられているし、半導体製造装置についていは半導体株で話題になるのと、そもそも強い日本企業があるので良い。
Web・AIソフトウェア界隈のようにネットに情報もなければ、書籍もなく、論文を漁れば作れるようになるかというと、そんなことはない。
チップ設計が複雑になっていくのに対して、設計ソフトが対応しなければ作れないし、ソフトの使い方を覚え、ソフトの機能の中でしかチップ設計が出来ない。
日本に半導体設計ソフト(EDA)ベンダーがあれば良いがそんなこともなく・・・。
アーキテクトのメッカであるアメリカテキサス州のオースティンのように、お金を積めば人材市場にスキルを持った人が出てくるような状態でもない。
インドのNPTELのように国家プログラムで技術普及プログラムがあるわけでもないし、中国のようにアメリカ帰りのエンジニアが起業するということもない。
今の何億ゲートのチップを設計するにはFPGA大量につなぎ合わせたエミュレータを使いこなす必要があるが、それについての動きもない。
工場については動いてるが、工場で作るチップを設計する企業がない気がしてならない。
設計するためのソフト開発も必要だが、日本だと組み込みのみで、そもそも人材もいないのではないか。
北京華大九天科技という会社だと、アナログ用、デジタル用、ファウンドリ用、ウェーハ製造用、パッケージ用、パワーデバイス用、RF用、フラットディスプレイ用と多種多様だ。
芯華章科技だとデジタル用と、検証用のエミュレータ(複数のFPGAをつなげたおばけ)も作っており100億ゲートまで対応している。
Xpeedic Technology,は、2.5D/3Dチップレット、パッケージング、シグナルインテグリティ、パワーインテグリティ
日本がスマホのガチャ作っている間に中国は必要なソフトも作っていた
少し前に中国のAI「Manus」が話題になったが、まとめてもらったので参考までに貼り付けておく
市場規模と成長率
2023年の世界EDA市場規模:146.6億ドル(前年比9.1%増)
2020年から2024年の年平均成長率(CAGR):13.8%
2024年から2029年の予測CAGR:8.46%(2029年には265.9億ドルに達する見込み)
Synopsys(シノプシス):32%
Cadence(ケイデンス):30%
その他:25%
これら3社で世界市場の約75%を占めており、寡占状態となっています。特に注目すべき点として、シノプシスがアンシスを350億ドルで買収すると発表しており、この合併により両社の市場シェアは合計で約35%に拡大し、世界のEDA市場における主導的地位がさらに強固になると予想されています。
市場規模と成長率
2023年の中国EDA市場規模:120億元(約16.9億米ドル)
2020年から2025年の予測CAGR:14.71%(世界平均を上回る成長率)
中国のEDA市場は現在も主にケイデンス、シノプシス、シーメンスEDAなどの国際的なEDA企業によって支配されていますが、中国国内のEDAベンダーも急速に台頭しています。
2022年のEDAソフトウェア販売の売上:6億7800万元(約9,750万ドル、前年比39.4%増)
2023年12月に米国の対中半導体輸出規制の対象企業リストに追加
主要製品:
Empyrean Formal™**シリーズ:フォーマル検証ツール(MC/EC/Lint)
芯華章(X-EPIC)
主力製品:
GalaxSim Turbo:次世代高速Verilogシミュレータ
主力製品:
北京アエルダイ(Beijing Aerdai):Aldecの中国法人、Active-HDLなどのVerilogシミュレータを提供
中国EDAベンダーのグローバル市場における具体的なシェア率は公開されていませんが、以下の特徴が見られます:
世界市場では依然としてシノプシス、ケイデンス、シーメンスEDAの3社が約75%のシェアを占める寡占状態
中国EDAベンダーは主に中国国内市場で成長しており、グローバル市場でのシェアは限定的
華大九天(Empyrean)などの中国EDAベンダーは韓国(サムスン電子、SKハイニックス)などにも製品を提供し始めている
米国の対中半導体輸出規制により、中国EDAベンダーの海外展開に制約が生じている
CAE(Computer-Aided Engineering)
SIP(Semiconductor Intellectual Property)
6. 今後の展望
半導体技術の絶え間ない革新、アプリケーションニーズの多様化、新興技術の促進により、EDAソフトウェア市場の将来は非常に明るい
特にAI、5G、カーエレクトロニクス、スマートハードウェアなどの分野のニーズに牽引され、より活発な発展が見込まれる
クラウドコンピューティングとAI技術の組み合わせは、EDAツールの革新に新たな機会を提供
中国は国産EDAツールの開発を加速させており、今後さらなる成長が期待される
米中貿易摩擦の影響で、中国企業は国産EDAツールへの依存度を高める傾向にある
参考情報
QY Research(2024年)
Mordor Intelligence(2024年)
AIが盛り上がって数年経つが、個人が買えるような価格帯で、良いAI向けのハードが出てこない。
RTX 3090のVRAM24GBを大事に使っているが、そもそもVRAMに入らないモデルの方が多い。
複数のAIを立ち上げるなんてのは、VRAM容量が溢れるので、そもそも動かせない。
動けばNVIDIAの Nsight Systemsなどで遅い所などを探せるが、そこまでいかない。
複数のSSDを仮想メモリにするというのも、RTX 3090のNVLink BridgeでVRAMだけ拡張するなんてのも世の中に出てこない。
Appleもそろそろ出してくるかと思っていたが、M4は普通の順当進化だった。
M2 Ultraはチップtoチップを接続し2.5TB/sを謳ったが、同じチップを繋げたのでいらない機能が倍になっただけだった。
M4 Ultraで、片側のチップをGPU or NPU+帯域の広いGDDR or HBMになればいいが、あまり期待が出来ない。
GPU or NPUのコアが増えたとしても、L2/L3キャッシュの容量が少なすぎる、増やしても距離が遠ければ性能も出ないので、
AppleもAMDのように3D V-CacheでSRAMを積み、Hybrid Bondingで上下の帯域を確保してくれないだろうか
IBMはTelum IIとSpyreを出してきたがエンタープライズ向けなのでパス
Groq社がLLM用LPU、HyperAccel社がLLM用ASICを出して来たが、
Groqは1枚のPCIeカードでは全くメモリ容量が足りず役に立たなそうで、HyperAccelはサーバー前提でこちらも個人から手が出しにくい。
FPGA+HBMが載ったPCIeカードは個人向けには販売できるような価格でもなければ、そもそも販売すらされない。
ジム・ケラー率いるTenstorrentも1枚のPCIeだとメモリが足りないし、Ethernetでなんとかやりくりしようとしているが帯域に引っ張られそうに見える。
NextSilicon社がMaverick-2というIntelligent Compute Accelerator (ICA)というのも出してきたが、HPC向けで個人利用からは遠い。
中国も良いのが出てきていない。
Biren、Fuzhou Rockchip、VeriSilicon、Moore Threads、LinJoWing、Loongson、JingJia Micro、Cambricon、Vastai Technologies、Xiangdixian Computing、Enflame Technology、MetaX、Zhaoxin、Lingjiu Microelectronics、
DengLin Technology、Iluvatar CoreX、Innosilicon、Horizon Robotics、Black Sesame Technologies
と言うことで、NVIDA一強みたいなのは今がピークで、今後は変わってくるんじゃないかな。ただ需要が全然満たせてないから、伸びるとは思うけど、多様化していくと思う。
今までだと命令やデータはキャッシュに乗るのが前提だったが、AIだと、AIモデルがGB単位なのでキャッシュにそもそも乗らない。
いかにキャッシュヒットさせるか、DRAMとのレイテンシを隠蔽するかだったが、キャッシュに乗らないので、メモリ帯域勝負になる。
GPUが汎用性があるので使われているが、ゲームだとテクスチャをVRAMに乗せておいて、演算した結果はモニター側へ出力すればよく、
なんだかんだ帯域は足りていたが、AIだとチップチップ間の帯域が足りない。
ニューラルネットワークの接続自体をFPGA的に切り替えるのも手だと思うがモデルが大きすぎる。
n=1の話をするが組み込みにもちゃんと若い人いるよ。新卒一括採用だからWebみたいに派手じゃないけど。
あと組み込みにも色々あるよ
① CPUにC言語で書く。状態制御とかDI/DOする。割り込みつかってある期間内で処理を終わらせるようにする
② CPUにアセンブラで処理書く。古い製品のCPUはそれでしか書けないとかある。
③ FPGAにVerilog/VHDLで処理書く。①で間に合わない速度が必要なとき。あとA/D変換とか
④ PLCにラダー言語で処理書く。リレーwwwなんだが、何十年も出してる装置とかPLCが中心になっていて今更変えられないので今も需要がある。発注元も昔のやつ参考にするのでPLCで制御することみたいな要求事項がそのまま残ってる。
⑤ 組み込みLinuxに対してC++で処理書く。リアルタイムじゃない。CPU1はこれで、CPU2が①とかある。1と2のデータの受け渡しにFPGA使ったりする
⑥ タッチディスプレイのUIとか。タッチディスプレイの機械売ってるメーカが出してるクソ使いにくいソフトで作る。これで作ると牛丼屋の券売機見たいのができる。
私は3年立たずに逃げたのでもっと他にもあると思う
圧倒的に足りてない物
cadence、synopsysという米国企業がほぼ独占している。
なんで重要かというと、色々理由はあるが、1例を上げると製造した時に問題が起こらないかをデザインルールをチェックする。
TSMCが新しい○nmプロセスを出すときは、必ずCacence、Synopsysが対応したとプレスリリースを出している。
デザインルールをチェックしない場合、配線間が短く設計し過ぎていてショートして最悪チップが動かないといった自体になる。
ちなみに中国もEDA企業は立ち上げ出来てない(一応中国国内EDAベンダーはあるが)
日本で独自に2nmプロセスを立ち上げるとして、当たり前だがCadenceかSynopsysに対応してもらう、ということになるはずだ。
日本のソフトウェアを立ち上げるのは流石に難しいのではないだろうか。
Cadence、Synopsysともライセンス量が馬鹿みたいに高い。
1チップ作るのに○億と量産前に飛んでいく。
CPUサーバー上でシミュレーターを動かす方法もあるが、先端ロジックだとトランジスタ数が多くなりすぎて、エミュレータを使わないとまともに検証が出来ない。
エミュレータはFPGAみたいなもので、実チップまでは早くならないがシミュレーターより断然早い。
Cadence、Synopsysともエミュレータも出しているが、こちらも高い。ポンポン買えるものでもない。
チップの次はボード設計する為のソフトや、熱シミュレーター、EMCなど必要になる。
ボードはなんとかしようと思えば出来るはず・・・。先端の高密度はCadence、Altium使いたいが。
ちなみにAltiumに関する書籍は日本にはないが、中国では何冊も出ている。
先端ロジックで設計する会社、製造する工場を作ったとして、作った物が売れないと意味がない。
何を作るのか、だ。
しかも今時の先端ロジックは金がかかりすぎて、グローバルで億単位で売らないと半導体にかかる費用がペイしない。
車に沢山半導体が使われるんだということで報道されるが、台数が少ないので、後回しにされて、半導体不足が解消しないってのは昨今の状況だった。
高温まで対応するなど要求スペックが厳しいわりに、数が売れないので半導体企業としては美味しくない。
PS5の台数でも厳しいはずだ。(PS5は売れば売るほど赤字だし)
スマホほど単価が高くて、体積が小さいの輸送費がかからない、そんなものがないといけない。
AI向けはまだまだどれだけ演算能力があっても足りないので、そっち向けはありかもしれない。
ただチップを作っただけでは動かず、ドライバー、ミドルウェアが必要になる。
インテルがやったようにCUDAからコンバートするソフトを用意するなども必要だろう。
相当性能高いチップを作ったとしても、国内市場だけでペイしないだろう。
ソフトウェアエンジニアの方々も、チップが相当性能高くても携わりたくないのではないか。
NVIDIAのGPUを8個とか、数増やしてどっこいどっこいの性能のチップなら、わざわざ国産チップ用にソフトを作る必要がない。