はてなキーワード: 三重水素とは
前半("トリチウムの話も含めてあらゆる科学理論は証明されておらず、すべての理論は仮説だと言えるよ。"まで)は正しい。
反証という日本語は正しくないので帰無仮説と呼ぶ。帰無仮説になる「安全であるない」は一般に状況証拠の積み上げで否定する。
ある集団が健康被害を訴えた。彼らの共通点は処理水を放出した海域で泳いでいたあるいは海域で捕獲された魚を食していた。彼らは内部被ばくをしていた。彼らの体内の三重水素の比率が、そうでない人の体内の三重水素の比率に比べて有意に多い。
これは直接的に海洋放出が健康被害の原因であることを示すものではない、いわゆる状況証拠であるがこれでよい。
「安全である」は「安全でない」を統計的に否定したものなので、帰無仮説成立の可能性を有意水準の範囲で否定できなくなった時点で「安全である」とは言えなくなる。
そうやって今までの四大公害や食中毒や得体のしれないものの原因を突き止めてきた。最近では沖縄米軍基地や横田基地のPFASが記憶に新しい。
海域モニタリングも同じ話。現在多くの国が原発処理水を放出し続けている中で
今後のモニタリングで異常値の原因なんか特定できるはずもない。
仮に今後異常値が出たとして、「処理水放出が原因とは断定できない」というしかないんじゃないかな。
(冒頭で正しいと書いた)前半部分では一般的な方法論を述べているにも関わらず、ここにきてケース固有の現実の技術水準の話にすりかえている。
特に海域モニタリングについては、主観の域を全く出ていない。異常値が出たら放出口近辺を調べることによって放出が原因か否かを科学的(確率的・統計的)に判断することができる。
危険の判定を下すことは十分に可能(否定の根拠が増田の主観でしかない)なのでこれ以降は語る必要がないのだが、以下については論理に飛躍があり過ぎるので一つずつ潰しておく。
処理水放出が危険だったという判定を下す、つまり反証をできないのであれば、反証に繋がりそうな事例を否定するに終止するしない。
反証可能性は否定できていないので事例を否定するに終始する必要はないし、むしろ被害者救済を担う国は早く見つけたいだろう。
「処理水放出は安全である」という主張は、そもそも確率的/統計的なもので絶対ではない。科学とはそういうもの。
従って、健康被害が発生した場合は政府として何が原因なのかは当然調査することになる。システムのフェールなのかそもそも構造的にトリチウムで健康被害が生じないというのが誤りだったのか。ただし、ことトリチウムに限って言えば実績が十分にあり過ぎるので、否定されることは考えにくいが(もちろん絶対ではない)。
①処理水放出は科学理論だよ。主張する当の日本政府がそう言ってるよ。
①言いたいことはわかるが正しい日本語を使いましょう。処理水放出=科学理論って何ですか?
③状況証拠の積み上げだよ。工学に数学のような厳密な証明は必要ないし一般にできるとは限らないから詳細なメカニズムの解明は後で十分だよ。その状況証拠を統計的に否定する責任は東電と政府にあるので第三者は詳細メカニズムの解明までする必要はないよ。
https://anond.hatelabo.jp/20210924183546
の続き。核融合についてこんなに見てくれる人が出るとは思わなかったのでびっくり。おじさん続き(というか、前回の記事でまるっとスルーした部分についての補足)を書いちゃうよ。もうバレてると思うけど、増田は核融合ベンチャーに頑張ってほしいと思ってる(利害関係はない)タイプの業界人だよ。業界の中にも否定的な人は普通にいるよ。
核融合で発電するには、「十分高い温度と密度の高純度なプラズマ」が必要。それが十分な性能になったら、あとは発電設備を付ければ発電できるようになる(それも簡単ではないけど)。
プラズマの性能は温度・密度・閉じ込めの3つを同時に達成しないといけないので、本当は核融合三重積という指標を使う。そうじゃないと「温度は高いけどスカスカで核融合反応をほとんどしないプラズマ」とかがすごいっぽく見えてしまう。でもここでは長くなるので割愛。というのも、幸いにしてすでに核融合反応を起こした装置は2つあって「実際核融合で何Wを何秒出した」と言えるのでそこで判断してもらって大きな問題はないから。
TFTRは装置名。世界初の大型装置での核融合燃料を使った本格的な核融合反応。(ここまでは取り扱いの面倒な三重水素は使われてなかった。)核融合出力1000 kWをプラズマ的には十分長い0.2秒くらい維持した。
現在までの最高出力記録。このとき、2400kWくらいのエネルギーを投入して1600kW出したので、投入エネルギーの0.6倍は出せた計算。ただし、投入エネルギー=投入電力ではないので注意。電力ベースでは(記録はないけど)おそらく0.1を割るだろうと思われる。
ギネス認定の人工での世界最高温度記録である5.2億度を達成した。また、1億度のプラズマを9秒フラットに維持したりもしている。日本は放射線管理のあれこれで核融合燃料を使えなかったため、核融合出力はない。しかし、この5.2億度のプラズマでの温度や密度から、核融合燃料を使っていれば投入エネルギーを超える核融合出力が得られたと推定されている。(JETの0.6を超えて1.2くらい達成したはずという意味)
この3つを見てわかるとおり、核融合の記録は90年代ばかり、2000年代以降は更新されていない。iphone13の時代にwindows meすらない時代の記録が最高記録扱いなのである。研究者がベンチャーなんてやりたくなるほどのフラストレーションを感じている理由もちょっとはわかってもらえるだろう。
そこらへんの火力や原子力の発電所では、電気出力が数十万 kWから百万 kWくらいなので、発電効率を考えて核融合出力で100万kWくらい出せれば核融合発電所第一号としては十分だとすると、JETの記録を600倍は増やさないといけない。600倍とかヤバくね?と思うかもたけど、iterは50万kWの核融合出力を400秒続けられるように設計されている(それは見通せてる)ので、iterの二倍で良いわけである。本当なら今頃はiterの成果を見ながら「iterの2倍程度の出力をもっと長く継続する」「発電設備をつける」にトピックが移ってたはずなんだけど、遅れてるのが現状。元々90年代の成果と知見を元に次の装置を設計して建設するため、10年程度の空白期間が出来てしまうことはしょうがないのだけど、2010頃には動いていたはずのiterが遅れたために空白期間かここまで伸びてしまっている。iterが複数企業どころか複数国(EU+六カ国)が機器を持ち寄るというみずほ銀行勘定システム以上のゲキヤバ案件でなければ今頃...iterが大失敗して、核融合業界全体が死んでた可能性もあるんだけどね。
iterの基本設計が古くて保守的だから。97年にベース設計が決まって、2007に更新されたのがiter。炉形式も実績はあるが思想の古い保守的なトカマク(上述の3つはこれ)。しかも「失敗は許されない!」と90年代に確実だった(枯れた)技術ばかりが使われている。典型的には超伝導線材(コイル)で、iterは日本のLHDで採用された実績のあるニオブとチタンの合金の超電導線材すら「日本しか供給できないので供給力が不安」という理由で不採用にして、性能が低いニオブとスズの合金の線材を採用しているくらいに保守的なのである。
そういうiterなので、研究者が「リスクを犯してでも最先端の技術や炉形式を使えば、もっと安く、もっと良いものができる!」と考えるのは当然の帰結。そんなわけなので、2000年代にようやく工業レベルの供給ができるようになってきた高温超伝導導体はベンチャーの提案ではスタンダードである。
ここからはより私見が強くなるけど、「2030年代に既存の原発や火発なみに発電する核融合発電所ができるか?」なら答えはNo。そもそも、建設に10年程度かかるものなので、2030年代までに動くのは次の世代の炉だけ。でも、ガチ発電所の前に一世代「お試し発電はするけど、ガチ発電所ほどじゃない」やつが要る。二世代作るのはどう頑張っても間に合わないし、次のやつのデータを見ながら規制法律の整備とかもするからそういう意味でも間に合わない。多分、用地設定とかも含めると、すでに提案済みの新型原発(核分裂炉)でも20年たらずで発電開始は無理じゃないかな?
でも、「2030年代にちょっとでも良いから核融合で消費電力を超える発電をする」なら10 %くらいいける確率はあると思う。首相が青森の六ケ所(iterの候補に立候補してた)あたりを特区指定して、原子力規制庁が規制法を爆速で整備して、現存の設計案(ベンチャーの案でも、量研機構が準備してる次世代核融合炉設計案でも良い)の最小限版を速攻で建設開始するシナリオ。当然その時はみずほ勘定システム方式ではなく、日立なり東芝なりの一社に全体を統括してもらう。そこまでお膳立てされれば遅れない。多分遅れないと思う。遅れないんじゃないかな。ま ちょっと覚悟はしておけ。
前記事書いてたときに存在を忘れてた。ロッキード・マーチンのチームはアカデミアとつながっていないので、他の核融合ベンチャーが論文などを出してる一方で情報が一般向けのニュースくらいしかない。でもまぁ、振動磁場で粒子を閉じ込めるというアイデアもちょっと無理がある(そんな早い振動磁場を高強度で作れない)と思うし、車に乗るとかどう考えても無理があることも書いてたのでなぁ(加熱装置も発電装置も電源も車に載るほど軽くない)。核融合ベンチャーは大なり小なり希望的なことを言うものだけど、それと比較しても無理っぽいんじゃないですかね。すでに内部で解散してても驚かないです。
大体マジやで。燃料として使うのは重水素と三重水素の2つやけど、重水素は地球上の水素には一定割合で混ざってて海の水から取り出せる。三重水素の方は自然にはあんまりないし、福島原発の処理水の分でも足らんけど、リチウムに中性子当てたら核反応で作れるから、壁(ブランケット)にリチウムを仕込んどいたら作れる。で、そのリチウムは海水に含まれてるわけ。
でも実はリチウムは海水から取り出すよりも鉱石から作ったり特別な湖の水から取り出したりするほうが今は安いから、今作るならリチウムは海水由来のやつは使わんやろけどね。
自民党総裁候補の高市早苗さんが2030年代に実現する(最初は2020年代)と言って話題になった核融合。高市さんのキャラもあってか「そんなもんできるわけねーだろ」的に扱われることもあるが、実は世界の核融合ベンチャー企業では「2030年代に核融合実現」を掲げて100億以上投資を受けている企業が複数あるので、業界としてはさして驚きはないのである。というわけなので、いくつかの核融合ベンチャーと、官製の核融合実験炉であるiterについて簡単にまとめてみる。
冷戦終結の一つのシンボルとして米露が共同で建設を決めていたiterに、単独で実験炉を作るのを予算的に躊躇していた各国が相乗りしたのが現iterの体制である。
建設地決定の遅れや、上記の各国が機器を持ち寄って組み立てるという、みずほ銀行の勘定システムばりにカオスな体制のために建設は当初予定から20年近く遅れ、2025年初稼働(テストみたいなもん)、本格稼働は2035年という状況になっている。実はこの遅れが核融合ベンチャーが乱立する現在を作ったと言っても過言ではない部分があって、というのも、核融合ベンチャーにはiterに予算が取られて食い詰めた研究者が立ち上げた組織が多いのである。
炉形式は保守的なドーナツ型のトカマク。国際協調なのであまり斬新なアイデアは盛り込まれず、磁石も昔ながらの低温超伝導導体を使う。
投入エネルギーの10倍程度の核融合エネルギーを出すことを目指すが、投入"電力"ではないため、正味はマイナス。発電設備も持たない。ここで得た知見を元に発電を行う"原型炉"を設計する、というのが各国政府の公式な計画(ただし予算は決まってない)である。
iterなどの保守的トカマクが、よくあるドーナツ的な形のプラズマを作るのに対して、球状トカマクは球の真ん中に細い貫通穴を通したような形状をしているのが特徴。球状トカマクは磁場を使ってプラズマを閉じ込める(押し込める)のに有利ではあることがわかっているものの、まだ高温・高密度での実績は弱い。
トカマクエナジーは高温超伝導導体で球状トカマクの磁石を作ることを目指している。球状トカマクは保守的トカマクに次いで実績があるので(日本には九州大学にQUESTという中型装置がある)核融合ベンチャーとしては「目新しさ」は弱いものの、逆に堅さがあるともいえるだろう。米国プリンストン大学(NSTXという装置が燃えて止まっている)とも連携しているらしく、そういう意味でもチームが強い。
すでに100億以上の資金を調達しており、堅実に装置を作って稼働させている。すでに1500万度程度のプラズマを実現している(年内にはこの装置で1億度を目指す)ため、単純な段階としては核融合ベンチャーのトップランナーと言って良い。(世界最高温度は1000億単位かかった日本JT-60Uの5.2億度)
2030年までに電力を電力網に送り出すことを目標としている。
MITのチームがベースになって設立した核融合ベンチャー。もともとMITはAlcator C-modというトカマクを持っていたが、CFSはこれをベースにしたARCという核融合炉を提案している。現在はその前段階装置であるSPARCを建設中である。
Alcator C-modは小ぶりながら、世界最強の高磁場(最大8T)を作れるトカマクとして、他では真似できない成果を出していてプラズマ業界では存在感があったものの、2016年に完全にシャットダウンした。それと前後して元々力のあったMITの高温超伝導研究者とAlcator c-modのプラズマ研究者がタッグを組んで提案したのが、ARCである。
2030年代にはSPARC(商用炉でないものの投入電力より大きな出力を出すことを目指している)を稼働させることを目指しているので、ほぼtokamak energyと同じ目標を少し遅めの日程で掲げていると言ってよいだろう。
ARCという名前は、どう見てもアイアンマンのアークリアクターに引っ掛けているのだけど、残念ながらロバートダウニーJrは再エネ関連に投資しているようでアイアンマンとのシナジーはないようだ。
MTF(磁化標的核融合方式)と呼ばれる方式で核融合炉を目指すカナダのベンチャー。この企業はCEOの人のカリスマ的なやつで早期にお金を集めたという印象がある。CFSやtokamak energyがトカマクによる磁場閉じ込めでの長い歴史と実績(90年代に米国はMITの装置ではないが1000 kWを超える核融合出力を実現している)とチームの長い研究歴を背景に、ある種の堅実さをアピールしている一方で、MTFはテーブルトップでの成果も出ていない状態からスタートアップを初めている。液体金属をぐるぐる渦巻かせて中心に空間を作り、そこに吹き込んだプラズマを液体金属で爆縮して断熱圧縮で高温にするというシステムである。野心的であるということはゲームチェンジャーになりえるということであるが、一方で論文などの試算はかなり大雑把なものなので(プラズマや液体金属がうねったりせずにすごくきれいに断熱圧縮される計算)、「そんなきれいに押しつぶされてくれるもんかねぇ?」という印象を持っている人は多いだろうと思われる。
メジャーな核融合ベンチャーの中では多分最古参企業で、おそらく最大の資金投資を受けている企業。FRCという、トカマクなどとは異なる磁場閉じ込め形式を目指す。FRCはプラズマを閉じ込める磁場を、コイルではなくプラズマの動きで作る。5000万度を達成済で、2030年までに発電実証を目標としている点はCFSやtokamak energyと同じ。FRCは高温は作れてもプラズマを安定して維持する能力は低いので、5000万度を作ったからかといって他より先に進んでいるかというとそんなことはないが、装置を作りまくって成果を出しているのは確かである。元々は陽子とボロンの核融合反応を使った発電を目指しており、その反応で出る3つのアルファ粒子に由来して"Tri Alpha Energy"という名前だったのだが、今は他の形式と同じ重水素と三重水素を使った発電を直近の目標とした(陽子ーボロンも捨ててないらしい)ためTAEと名前が変わったらしい。
細かいところはよく知らないが、核融合一辺倒ではなく、応用技術の特許化などで収益をだしているらしく、そこはすごい。
装置名が「ノーマン(現行)」「コペルニクス」とかっこよいのも特徴。
京都大学小西教授が率いる日本初の核融合ベンチャー。小西教授は核融合炉ブランケット(後述)を専門にしている人で、一般向けエネルギー関連書籍を出してたりしている。
ただし、この会社は核融合炉全体を設計するのではなく、ブランケット(核融合で出た中性子を受け止めて熱に変換するところ)の設計を売る会社である。海外などのプラズマ屋さん主導の核融合ベンチャーは、ブランケット設計はあまり注力していないところが多いので、そういうベンチャーに「あんたの炉はこんなブランケットがおすすめですよ」と設計を売るのが仕事。まぁベンチャーの目的なんて投資額と投資家の意思でどうにでもなるといえばそうなので、お金が予想外に集まればプラズマ屋さんも集めて核融合炉全体の設計・製作だってやるのかもしれないが、さしあたり核融合炉自体を作る予定はなさそうである。ほかもそうだが、日本のベンチャーはこの2年でようやく2つ立ち上がっただけなので、今は正直海外と比べると桁違いに規模が小さいし弱い。ここも表に出ている研究者は一人だけである。
Webサイトの小西先生がちょっと疲れているように見えるのが気になる。
2019年創業。"日本初のフルスタック核融合ベンチャー"をうたう企業。光産業創成大(浜松ホトニクスという企業が作った大学院大学)の研究者が設立したらしいが、新しいため詳細は不明。"フルスタック"という言葉はよくわからないが、京都フュージョニアリングがブランケットのみの開発を売っていることと対比して、核融合炉全体を見て実現を目指すという意味だろうと思われる。レーザー核融合は米国NIFの2010年代の大コケにより世界的に元気がないので、生き残りをかけているのだろう。日本のレーザー核融合といえば大阪大学のレーザー研があるが、こことどの程度の連携をするかなども詳細不明である。
ちなみに、"EX-Fusion"で検索すると、ドラゴンボール関連ゲームでの同名の設定のほうが上位に表示される。
Webサイトのみ公開されている未設立の企業。まだ設立すらしていないので何もかも謎だが、噂では日本の核融合科学研究所のチームが作るようだ。核融合科学研究所は1億度を超えるプラズマの実績のあるヘリカル型(トカマクとは違うよじれたコイルが特徴)の装置を保有しているのだが、近々シャットダウンを予定している。その後は新規の大型装置の予算が確保できないために小型設備での基礎研究に舵を切るとされているため、内部の核融合発電所を本気で作りたい一派が起業するらしい。日本で"ヘリカル型"といえばここか京都大学なので、名前からしてどっちかであるのは確かだろう。
こうしたことから三重水素は最も毒性の少ない放射性核種の1つと考えられ、
しかし一方で、三重水素を大量に取扱う製造の技術者が、内部被曝による致死例が2例報告されている。
また
1ベクレルのトリチウムを取り込んだ場合の被ばく量は、1ベクレルの放射性セシウムを取り込んだ場合の被ばく量の1000分の1程度です。
[追記]
トリチウムは、宇宙空間から地球へ常に降りそそいでいる「宇宙線」と呼ばれる放射線と、
そのため、酸素と結びついた「トリチウム水」のかたちで川や海などに存在しています。
雨水や水道水、大気中の水蒸気にも含まれており、富士山周辺における地下水の年代測定にも活用されています。
また、人の体内の水分量と、日本の水道水や大気中に存在するトリチウムの量から試算すると、
水道水などを通じてトリチウムを摂取することで、人体内にも数10ベクレルほどのトリチウムが存在していると言えます。
10月8日の一日だけの開催ですわ。
しかも、目玉機材の大型ヘリカル装置(LHD)は来年から放射線を出す試験をするので、
立ち入りが制限されるため、一般公開はされなくなるそうですわ。
クイズラリーをやったのですが、「ヘリカル装置」の磁場閉じこめ方式は「ヘリオトロン型」。
さらに核融合炉は液体ヘリウムで冷却して、核融合の生成物にヘリウムが出てきます。
核融合はどうしてこんなに「ヘリ」が好きですの?
ところで核融合炉が経済運転できる時代がきたら、液体ヘリウムは自ら生成したヘリウムを使うことになるのかしら。
三重水素の原料はリチウムで、リチウムは海水から無尽蔵にとれると説明していましたけれど、
現状では塩湖の資源に頼っていて、リチウムイオン電池がそれで困っていたはずですわ。
二重水素と三重水素を超高温で磁場の中に閉じこめる核融合のコンセプトは、
「合体しないと出られない部屋」だとプラスチック越しに中を覗いて理解できましたわ。
そう考えると下町ロケットのロケ等にも使われた管制室が妖しげに思えてきます。
LHD以外の展示も簡単な化学実験があったりして興味深い物でした。
ガラス球内のプラズマは観てわかりやすく、お子様にも好評のご様子。
高校生の研究展示でJINの青カビペニシリンに挑戦しているところがありました。
うまく行かなかったようですけど、続報が気になる研究でした。
クイズラリーの答え合わせ後にレストランでお食事をいただきました。
リーズナブルな代わりにメニューの種類が少なくて、毎日食べるとつらいかもしれません。
焼き魚定食で塩鯖が提供されていましたので、ハンバーグとえびふりゃーの定食を頼みました。
核融合科学研究所では我が国独自のアイデアに基づいて、ねじれたドーナツ形状の磁場を超伝導の電磁石で作り、これによって超高温のプラズマを閉じ込める研究を行っています(図1)。これが大型ヘリカル装置(LHD)です。
高温プラズマは、そのままでは拡散し容器壁などに触れてエネルギーを失ってしまいます。 そこでプラズマを高温・高密度の状態で閉じ込めて核融合反応を起こさせるために、磁場を用いる方法と強力なレーザーを利用する方法が提案されています。 磁場閉じ込め方式は、電気を帯びたプラズマ粒子が磁力線に巻き付いて運動するという性質を利用したもので、 磁力線で編んだ籠状の磁気容器内にプラズマを閉じ込める方法です。 この方式にも磁場の形状によりいくつかの種類があり、本研究所で進めているヘリカル型のほかに、トカマク型、ミラー型などがあります。 レーザー光を利用する方法は、慣性閉じ込め方式と呼ばれ、強力なレーザーを重水素と三重水素の氷塊(ペレット)に照射して瞬間的に核融合反応を起こそうというものです。