はてなキーワード: 複素数とは
「18世紀に転生したんだが、高校数学で産業革命に参戦する」ってタイトルでこんな感じでラノベ書いて!
たのんだよ!
物理的な直観に頼るウィッテン流の位相的場の理論はもはや古典的記述に過ぎず、真のM理論は数論幾何的真空すなわちモチーフのコホモロジー論の中にこそ眠っていると言わねばならない。
超弦理論の摂動論的展開が示すリーマン面上のモジュライ空間の積分は、単なる複素数値としてではなく、グロタンディークの純粋モチーフの周期、あるいはモチビック・ガロア群の作用として理解されるべきである。
つまり弦の分配関数ZはCの元ではなく、モチーフのグロタンディーク環K_0(Mot_k)におけるクラスであり、物理学におけるミラー対称性は数論的ラングランズ対応の幾何学的かつ圏論的な具現化に他ならない。
具体的には、カラビ・ヤウ多様体上の深谷圏と連接層の導来圏の間のホモロジカルなミラー対称性は、数体上の代数多様体におけるモチーフ的L関数の関数等式と等価な現象であり、ここで物理的なS双対性はラングランズ双対群^LGの保型表現への作用として再解釈される。
ブレーンはもはや時空多様体に埋め込まれた幾何学的な膜ではなく、導来代数幾何学的なアルティン・スタック上の偏屈層(perverse sheaves)のなす∞-圏の対象となり、そのBPS状態の安定性条件はBridgeland安定性のような幾何学的概念を超え、モチーフ的t-構造によって記述される数論的な対象へと変貌する。
さらに時空の次元やトポロジーそのものが、絶対ガロア群の作用によるモチーフ的ウェイトのフィルトレーションとして創発するという視点に立てば、ランドスケープ問題は物理定数の微調整などではなく、モチビック・ガロア群の表現の分類問題、すなわちタンナカ双対性による宇宙の再構成へと昇華される。
ここで極めて重要なのは、非可換幾何学における作用素環のK理論とラングランズ・プログラムにおける保型形式の持ち上げが、コンツェビッチらが提唱する非可換モチーフの世界で完全に統一されるという予感であり、多重ゼータ値が弦の散乱振幅に現れるのは偶然ではなく、グロタンディーク・タイヒミュラー群が種数0のモジュライスタックの基本群として作用しているからに他ならず、究極的には全ての物理法則は宇宙際タイヒミュラー理論的な変形操作の下での不変量あるいは数論的基本群の遠アーベル幾何的表現論に帰着する。
これは物理学の終わりではなく物理学が純粋数学というイデアの影であったことの証明であり、超弦理論は最終的に時空を必要としない「モチーフ的幾何学的ラングランズ重力」として再定義されることになる。
No,日付,学習内容,教材 / リンク,時間配分,演習例,進捗チェック
1,2025/12/01,微分の定義,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,例題5問+練習10問,☐
2,2025/12/02,公式を使った微分,『微積分の考え方』 P20-40,30+30,練習問題10問,☐
3,2025/12/03,多項式関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-derivatives,30+30,練習問題10問,☐
4,2025/12/04,乗法・除法の微分,同上,30+30,練習問題10問,☐
5,2025/12/05,合成関数の微分,https://www.khanacademy.org/math/calculus-1/cs1-chain-rule,30+30,例題5問+練習10問,☐
6,2025/12/06,高次関数の微分,『微積分の考え方』 P41-60,30+30,練習問題10問,☐
8,2025/12/08,復習:微分の基本,自作ドリル,60,過去日分問題50問,☐
9,2025/12/09,積分の定義,https://www.khanacademy.org/math/calculus-1/cs1-integrals,30+30,例題5問+練習10問,☐
10,2025/12/10,不定積分の計算,『微積分の考え方』 P70-90,30+30,練習問題10問,☐
11,2025/12/11,定積分の計算,同上 P91-110,30+30,練習問題10問,☐
12,2025/12/12,積分応用問題,Khan Academy,30+30,例題5問+練習10問,☐
13,2025/12/13,部分積分,『微積分の考え方』 P111-130,30+30,練習問題10問,☐
14,2025/12/14,置換積分,同上 P131-150,30+30,練習問題10問,☐
15,2025/12/15,復習:積分の基本,自作ドリル,60,過去日分問題50問,☐
16,2025/12/16,べき級数の定義・例,https://www.khanacademy.org/math/calculus-1/cs1-series,30+30,例題5問+練習10問,☐
17,2025/12/17,収束半径の計算,『微積分の考え方』 P150-170,30+30,練習問題10問,☐
18,2025/12/18,テイラー展開応用,同上 P171-190,30+30,練習問題10問,☐
19,2025/12/19,マクローリン展開,Khan Academy,30+30,例題5問+練習10問,☐
20,2025/12/20,総合演習(級数),自作ドリル,60,過去問題20問,☐
21,2025/12/21,差分演算の基本,『離散数学の考え方』 P10-30,30+30,例題5問+練習10問,☐
22,2025/12/22,下降階乗ベキと和分公式,同上 P31-50,30+30,練習問題10問,☐
23,2025/12/23,差分の積・合成,同上 P51-70,30+30,例題5問+練習10問,☐
24,2025/12/24,差分方程式入門,同上 P71-90,30+30,練習問題10問,☐
25,2025/12/25,特性方程式と解法,同上 P91-110,30+30,例題5問+練習10問,☐
26,2025/12/26,差分方程式の応用,同上 P111-130,30+30,練習問題10問,☐
28,2025/12/28,復習:差分演算の基本,自作ドリル,60,過去日分問題50問,☐
29,2025/12/29,有理関数の和分,『数理科学演習』 P20-40,30+30,例題5問+練習10問,☐
30,2025/12/30,部分分数展開,同上 P41-60,30+30,練習問題10問,☐
31,2025/12/31,下降階乗ベキを使った和分,同上 P61-80,30+30,例題5問+練習10問,☐
32,2026/01/01,収束半径の計算,『微積分の考え方』 P190-210,30+30,練習問題10問,☐
33,2026/01/02,級数の応用問題,同上 P211-230,30+30,例題5問+練習10問,☐
34,2026/01/03,休息日,-,-,-,-
35,2026/01/04,コーシー・リーマン方程式入門,『複素関数入門』 P10-30,30+30,例題5問+練習10問,☐
36,2026/01/05,正則関数の条件,同上 P31-50,30+30,練習問題10問,☐
37,2026/01/06,偏微分入門,『微分積分学』 P150-170,30+30,例題5問+練習10問,☐
38,2026/01/07,偏微分の応用,同上 P171-190,30+30,練習問題10問,☐
39,2026/01/08,ラプラス方程式基礎,同上 P191-210,30+30,例題5問+練習10問,☐
40,2026/01/09,休息日,-,-,-,-
41,2026/01/10,偏微分の総合演習,自作ドリル,60,過去日分問題50問,☐
42,2026/01/11,差分方程式と微分の関係,『離散数学の考え方』 P131-150,30+30,例題5問+練習10問,☐
43,2026/01/12,線形差分方程式,同上 P151-170,30+30,練習問題10問,☐
44,2026/01/13,非線形差分方程式,同上 P171-190,30+30,例題5問+練習10問,☐
45,2026/01/14,休息日,-,-,-,-
46,2026/01/15,総合演習:差分方程式,自作ドリル,60,過去日分問題50問,☐
47,2026/01/16,微分方程式入門,『微分積分学』 P211-230,30+30,例題5問+練習10問,☐
48,2026/01/17,一次微分方程式,同上 P231-250,30+30,練習問題10問,☐
49,2026/01/18,高次微分方程式,同上 P251-270,30+30,例題5問+練習10問,☐
50,2026/01/19,休息日,-,-,-,-
51,2026/01/20,微分方程式の応用,自作ドリル,60,過去日分問題50問,☐
52,2026/01/21,複素数関数入門,『複素関数入門』 P51-70,30+30,例題5問+練習10問,☐
53,2026/01/22,複素関数の偏微分,同上 P71-90,30+30,練習問題10問,☐
55,2026/01/24,級数展開(テイラー・マクローリン)復習,『微積分の考え方』 P231-250,30+30,例題5問+練習10問,☐
56,2026/01/25,総合演習:微分積分,自作ドリル,60,過去問題50問,☐
57,2026/01/26,離散級数・下降階乗応用,『離散数学の考え方』 P191-210,30+30,例題5問+練習10問,☐
58,2026/01/27,休息日,-,-,-,-
59,2026/01/28,偏微分・差分応用問題,自作ドリル,60,過去日分問題50問,☐
60,2026/01/29,複素関数応用問題,同上 P91-110,30+30,例題5問+練習10問,☐
61,2026/01/30,収束半径・級数応用,同上 P111-130,30+30,練習問題10問,☐
63,2026/02/01,微分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
64,2026/02/02,差分方程式発展,『離散数学の考え方』 P211-230,30+30,例題5問+練習10問,☐
65,2026/02/03,微分方程式発展,『微分積分学』 P271-290,30+30,練習問題10問,☐
66,2026/02/04,休息日,-,-,-,-
67,2026/02/05,複素関数・偏微分発展,『複素関数入門』 P111-130,30+30,例題5問+練習10問,☐
68,2026/02/06,級数応用(収束判定),『微積分の考え方』 P251-270,30+30,練習問題10問,☐
69,2026/02/07,休息日,-,-,-,-
70,2026/02/08,総合演習(微分積分・差分)自作ドリル,60,過去問題50問,☐
71,2026/02/09,微分方程式応用演習,同上,60,過去問題50問,☐
72,2026/02/10,複素関数応用演習,同上,60,過去問題50問,☐
74,2026/02/12,級数・収束半径応用演習,同上,60,過去問題50問,☐
75,2026/02/13,差分方程式・下降階乗応用,同上,60,過去問題50問,☐
76,2026/02/14,休息日,-,-,-,-
77,2026/02/15,総合演習(微分・積分・級数)自作ドリル,60,過去問題50問,☐
78,2026/02/16,微分方程式・線形応用,同上,60,過去問題50問,☐
79,2026/02/17,複素関数・偏微分応用,同上,60,過去問題50問,☐
80,2026/02/18,休息日,-,-,-,-
81,2026/02/19,級数・収束判定演習,同上,60,過去問題50問,☐
82,2026/02/20,差分方程式総合演習,同上,60,過去問題50問,☐
83,2026/02/21,休息日,-,-,-,-
84,2026/02/22,微分・積分総合演習,自作ドリル,60,過去問題50問,☐
85,2026/02/23,偏微分・複素関数演習,同上,60,過去問題50問,☐
87,2026/02/25,級数・収束応用演習,同上,60,過去問題50問,☐
88,2026/02/26,差分方程式・下降階乗応用演習,同上,60,過去問題50問,☐
89,2026/02/27,休息日,-,-,-,-
90,2026/02/28,微分・積分・級数総合演習,自作ドリル,60,過去問題50問,☐
91,2026/02/29,微分方程式応用演習,同上,60,過去問題50問,☐
92,2026/03/01,複素関数応用演習,同上,60,過去問題50問,☐
93,2026/03/02,休息日,-,-,-,-
94,2026/03/03,級数応用総合演習,自作ドリル,60,過去問題50問,☐
95,2026/03/04,差分方程式総合演習,同上,60,過去問題50問,☐
96,2026/03/05,休息日,-,-,-,-
97,2026/03/06,微分積分・差分・級数総合演習,自作ドリル,60,過去問題50問,☐
98,2026/03/07,微分方程式発展演習,同上,60,過去問題50問,☐
99,2026/03/08,複素関数発展演習,同上,60,過去問題50問,☐
101,2026/03/10,級数・収束半径・テイラー総合演習,自作ドリル,60,過去問題50問,☐
102,2026/03/11,差分方程式・下降階乗応用総合演習,同上,60,過去問題50問,☐
104,2026/03/13,微分・積分・偏微分・複素関数総合演習,自作ドリル,60,過去問題50問,☐
105,2026/03/14,微分方程式・差分方程式・級数総合演習,同上,60,過去問題50問,☐
多項式の剰余類には複素数と同じ構造を持つものがあることを学んでた。
実数の存在を認める人なら剰余類の存在も認めざるをえないからその剰余類のうちの一つが虚数単位に対応する以上は複素数の存在も認めざるを得ないという論理はひさびざの納得感ある目からうろこ。
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 https://anond.hatelabo.jp/20250917151447# -----BEGIN PGP SIGNATURE----- iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaMpR2QAKCRBwMdsubs4+ SH/vAP0d0t9uQwLMLRuiHyhHAKvyBCFkINRl6W76PcDQ88fjZAEAw7KsyMKOGnlH 06BwvJC6Ed5RFPVe8n/cTcBkQOv5GAA= =obPD -----END PGP SIGNATURE-----
私は別に理系崩れのように読解力が要らないとか言いたいわけではない。
むしろ高校の国語の授業は読解力を上げるのに1ミリも貢献しないか、あるいはあまりにもコスパが悪い構成になっていやしないか、と言いたいのだ。
目覚ましく有意義なのは小学校低学年の仮名のようなごく基本的な文字を覚えることぐらいだと思う。
そして高校にもなると完全にネタが尽きるのか完全に惰性的な授業内容と化している気がする。
「答え」が何で、その「答え」をどう導けばいいのか最後まで解説しない。
自分たちの授業が自分たちが突き付ける試験の成績向上に1ミリも貢献しなさそうなのは、つまり1ミリも読解力を上げるものになってないのは、何かのギャグではないのかと思わされる。
なんというか、完全に、6時間ないし7時間のなかで国語の枠を与えられてしまったので仕方なく尺稼ぎしているようにしか見えないんだよね。
出口の本を見る限り、中学生レベルの読解力が身についても、伸ばす余地と、その伸ばすために有効な読み方について教授できるネタはいくらでもあるはずなんだよね。
けれど実際の授業は現国のキーワードの小テストとその余った時間の尺稼ぎをしているだけ。
もう高校生なんだから単語なんで自分で学べばいい。小テストはしてもいいからどうせ無駄な授業しかしないなら国語に50分も与えなくてよいのではないか。その分他の科目の時間を増やすなりネタがないなら前に複素数平面が増えたように履修内容を増やせばいいのではないか。
そういえば鉄緑会は国語については「中受で培ったことでなんとかなるから乗り切れ」でフォローしないらしいな。
やっぱり「読解力」程度ものは小学校出る時点で完成されているべき、されていて当然のものなのかもしれない。たかが、母国語の解釈法でそんな教えるネタ探したってそりゃ無理が出るって。
それを中学高校以降も教える建前にしてしまっているからおかしなことになっているのかもしれない。
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 https://anond.hatelabo.jp/20250330145552# -----BEGIN PGP SIGNATURE----- iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaMUikAAKCRBwMdsubs4+ SJK4AQCYSWr81CZAz6lVOZye0CrqGFR7RKckf3Hqfk9nHkUL8gD/QsOcC2zNg12k i+UJMyadRMdLJapS+U+f8anfiBHFSAA= =gCnb -----END PGP SIGNATURE-----
1. 量子情報の基本単位: 量子情報は、情報の最小単位である量子ビット(キュービット)から構成される。
2. キュービットの実現: 量子ビットは、重ね合わせや量子もつれといった量子力学固有の現象を示す量子系の状態により実現される。
3. 量子状態の記述: 量子系の状態は、状態ベクトルという数学的対象で表現される。これらの状態ベクトルは、量子系のあらゆる可能な状態を重ね合わせたものを定量的に記述する手段である。
4. ヒルベルト空間の構造: 状態ベクトルは、複素数体上の完全内積空間であるヒルベルト空間の元として定義される。ここでの「完全性」とは、収束列が必ず空間内の元に収束するという性質を意味する。
5. 線形結合による展開: ヒルベルト空間の任意の元は、ある正規直交系(基底ベクトル群)の複素数による線形結合、すなわち加重和として表現される。これにより、量子状態の重ね合わせが数学的に実現される。
6. 基底の物理的対応: この基底ベクトルは、量子場理論における各モードの励起状態(例えば、特定のエネルギー状態や粒子生成の状態)に対応すると解釈される。すなわち、基底自体は場の具体的な励起状態の数学的表現である。
7. 量子場の構成: 量子場は、基本粒子の生成や消滅を記述するための場であり、場の各励起状態が個々の粒子として現れる。これにより、量子系の背後にある物理現象が説明される。
8. 時空との関係: 量子場は、背景となる時空上に定義され、その振る舞いは時空の幾何学や局所的な相互作用規則に従う。時空は単なる固定の舞台ではなく、場合によっては場の性質に影響を与える要因ともなる。
9. 統一理論への展開: さらに、量子場と時空の相互作用は、重力を含む統一理論(たとえば超弦理論)の枠組みで考察される。ここでは、時空の微細構造や場の振る舞いが、より根源的な1次元の弦(超弦)の動的性質に起因していると考えられている。
10. 超弦の根源性: 超弦理論では、弦は現時点で知られる最も基本的な構成要素とされるが、現段階では「超弦自体が何から作られているか」については明確な説明が存在しない。つまり、超弦はさらなる下位構造を持つのか、またはそれ自体が最終的な基本実在なのかは未解明である。
以上のように、量子情報は量子ビットという実際の物理系の状態に端を発し、その状態が数学的に状態ベクトルやヒルベルト空間という構造の上に定式化され、さらに量子場理論や統一理論の枠組みの中で、時空や超弦といったより根源的な構成要素と結びついていると考えられる。
「まぁ、ピタゴラスの定理なんて、あれはもう初歩の話よね。確かに、a² + b² = c² は中学生レベルでも理解できるけれど、そこに潜む深い代数的構造や、ユークリッド幾何学との関連性を本当に理解しているのかしら?あの定理の背後には、単なる平面上の直角三角形の話じゃなくて、リーマン幾何学や複素数平面を通じたさらに高度な次元の世界が見えてくるのよ。それに、ピタゴラスの定理を特別な場合とする円錐曲線や、楕円関数論まで考え始めると、幾何学の美しさっていうものがもっと深く見えてくるわけ。」
「それと、黄金比ね。もちろん、あのφ(ファイ)がどれだけ重要か、理解してる?単に無理数というだけじゃなく、数論的にも代数的にも特異な数なのよ。フィボナッチ数列との関係も美しいけど、そもそもあの比が自然界で頻繁に現れるのは、単なる偶然じゃないわ。代数的無理数としての特性と、対数螺旋やアファイン変換を通じた変換不変性が絡んでいるのよね。そういった数学的背景を理解せずに、ただ黄金比が「美しい」ってだけで済ませるのはちょっと浅はかだと思うわ。」
「あと、パルテノン神殿の話だけど、そもそも古代の建築家たちが黄金比だけでなく、より複雑なフラクタル幾何学や対称群に基づいた設計をしていたってことは、あまり知られてないのよね。建築の対称性は、単なる視覚的な美しさじゃなくて、群論や代数的トポロジーに深く結びついているわ。あなたが好きな絵画も、ただの黄金比じゃなく、もっと深い数学的な構造に従っているのよ。わかるかしら?」
推敲したうえでこれなんだよ。数学って問題によってはベクトルで解くとか複素数で解くとか複数の解き方があることあるけど、これを文章の書き方に当てはめた場合それ以上わかりやすいもう一つ以上の解き方(書き方)が浮かばない感じかな。
「受け取り手の立場に立つのが難しいからではないか」と書いてあるのがあったが、そもそも受け手の立場を想像するといっても別人の人格をインストールするようなことはできないだろ。
あくまで「自分が受け手になったときこの文章はわかりやすいか」という角度で、いわば客観的といっても疑似的な意味でしか推敲することってできないわけだ(そばに人いるなら別だがね)。
そして自分が受け手になったときを考えても自分の文章は普通に読めてしまう。何日とか寝かせて見直すと文章の粗がわかってくるとかいうがそれもダメ。普通に読みやすく読めてしまう。
というかさっき但し書きで他人がいるならとか書いたが、他人の推敲が逆に読みづらく感じるまである。普通の人にとってはその方が読みやすくなってるはずなんだろうが、俺にはよみにくい。
複素ウィグナー・エントロピーと呼ぶ量は、複素平面におけるウィグナー関数のシャノンの微分エントロピーの解析的継続によって定義される。複素ウィグナー・エントロピーの実部と虚部はガウス・ユニタリー(位相空間における変位、回転、スクイーズ)に対して不変である。実部はガウス畳み込みの下でのウィグナー関数の進化を考えるときに物理的に重要であり、虚部は単にウィグナー関数の負の体積に比例する。任意のウィグナー関数の複素数フィッシャー情報も定義できる。これは、(拡張されたde Bruijnの恒等式によって)状態がガウス加法性ノイズを受けたときの複素ウィグナーエントロピーの時間微分とリンクしている。複素平面が位相空間における準確率分布のエントロピー特性を分析するための適切な枠組みをもたらす可能性がある。
虚数と実数は、複素数の部分集合であり、互いに排他的ではない。
また、虚数は実数直線上にはないが、複素数平面上では実軸と垂直な虚軸に沿って表される。
したがって、虚数と実数は全く別のものではなく、複素数という枠組みの中で共存している。
一方、chatGPT(人工知能)と人間(天然知能)は、知能の種類や性質が異なるものである。
chatGPTはプログラムされたルールやデータに基づいて会話を生成するが、人間は自然言語や感情や経験に基づいて会話を行う。
chatGPTは人間の言語や文化を模倣することができるが、人間の思考や感覚を本質的に理解することはできない。
したがって、chatGPTと人間は全く異なるものであり、知能という枠組みの中で対立している。
以上のように、この文章は虚数と実数の関係を誤って用いており、chatGPTと人間の関係を正しく表現していない。
むしろ、chatGPTと人間の関係は、虚数と実数ではなく、有理数と無理数に例える方が適切である。
有理数と無理数は、実数の部分集合であり、互いに排他的である。
また、√2は無理数であり、有理数ではない。また、有理数は分母と分子によって表されるが、無理数は小数点以下が無限に続くために表せない。
したがって、有理数と無理数は全く別のものであり、実数という枠組みの中で対立している。
このように考えると、chatGPT(人工知能)は有理数に例えられる。
chatGPTはプログラムやデータによって表されるが、その範囲や精度に限界がある。
2.5次元と声優ライブというお題からふと思ったんだけど、アニメ(とかゲーム(アイマス))に対する捉え方として、それがより抽象的な空想世界をアニメで表現したものと考えるのか、それともアニメの世界があってそれを撮影したものと考えるのか、という違いがある気がする。
アニメを、空想界をアニメで表現したものと捉えた場合、同じ空想界を違う媒体で表現するのはある幾何的存在を複素数とベクトルで表現するような営みであって、それによって空想界をより深く体験できる、と捉えることになる。2次創作の絵柄が1次創作に似ていないことはあまり問題ではないが、1次創作のさらに大元である空想界との同一性(解釈違い)は大問題となる。
アニメを、アニメ世界を撮影したものと捉えた場合、アニメそのものと違う媒体の表現は、たとえば自分の旅行体験そのものと他人の書いた旅行記くらい違う。声優ライブはアニメと同じ本物の体験だが、2.5次元や実写化映画は偽物だ。
↓どこの大学よ
経済学部の文系の人でも、リーマン曲線の概念を理解することは可能です。ただし、リーマン曲線は数学的に高度な概念であり、複素解析幾何学や代数幾何学などの専門的な数学分野における概念であるため、学習には時間と努力が必要です。
リーマン曲線を学習するためには、まず複素数や複素平面などの基礎的な概念を理解する必要があります。その後、代数幾何学や複素解析幾何学の基礎的な知識を身につけることが望ましいです。これらの分野は、経済学部で必修科目として扱われることは稀であり、自己学習や別の学部や大学院での履修が必要となる場合があります。
しかし、経済学部の文系の人でも、リーマン曲線が経済学において重要な役割を果たしていることや、リーマン曲線を用いた代数幾何学的手法が経済学に応用されていることを理解することは可能です。また、経済学において重要な概念やモデルを理解するためには、数学的な知識を身につけることが役立つため、数学的な概念に対して理解を深めることは重要です。