はてなキーワード: SKYACTIVとは
ホンダ「EVって言えば、電気自動車だけじゃないよ!ホンダの技術で、未来をドライブしよう!」
e:HEV「こんにちは!ハイブリッドの進化系、e:HEVです。電気の力で、スムーズな走りを楽しめるよ!」
BEV「バッテリーだけで走る本格派、BEVだよ。ゼロエミッションで、地球にやさしい走りを!」
FCEV「水素で電気を作る未来型、FCEVです。水しか出さない、クリーンな走りを体験してね!」
「その通り、EVは電気自動車。EVと言えば日産、電気の道を切り開いてきた先駆者です!
BEV、e-POWERに乗れば、電気の可能性を体感できます!え?ボタンの多さも未来志向って?まあ、それも楽しみ方の一つですよね!」
たま電気自動車「こんにちは!私は1947年生まれの電気自動車です。日産のご先祖様みたいなものかな?」
e-POWER「ガソリンで発電、モーターで走行。それが e-POWER! EV感覚で楽しめるよ!」
BEV「100%電気で走るBEVだよ。日産リーフで始まった革命、今も続いてるんだ!」
'Emotive Vehicle'、運転する喜びを届けるもの。ただ電気で走るだけじゃなく、魂動デザインで心も動かします。EVでZoom-Zoomを忘れない。これがマツダ流!」
e-SKYACTIV X「ガソリンエンジンなのに、まるでEV。e-SKYACTIV Xで、効率と走りの両立を!」
MX-30 EV「EVでも、やっぱりマツダ。MX-30 EVで、電気の走りを楽しもう!」
「EV?もちろん、Electric Vehicleのことです。でもスバルではこうも考えます。
'Explorer’s Vehicle'、冒険者のための乗り物。ソルテラなら電気で自然を守りながら、険しい山道だって駆け抜けます。宇宙まで冒険したスバルの名に恥じないEVです!EVもAWD!スバルの全輪駆動技術で、どんな道でも安心!」
e-BOXER「ハイブリッドもボクサーエンジン。e-BOXERで、パワフルな走りを!」
SOLTERRA「フル電動でも、スバルらしさ全開。SOLTERRAで、新しい冒険の始まりだ!」
「電気自動車のことですね!ただ、三菱では'Electrifying Versatility'と言わせてください。
アウトランダーPHEVでSUVの可能性を広げ、電気の力で未来の冒険をサポートします。え?四駆魂はどこ行った?安心してください、そこは健在です!」
PHEV「プラグインハイブリッドの元祖、PHEVだよ。電気とガソリン、いいとこ取りの走り!」
BEV「バッテリーだけで走る本格派、BEVさ。軽自動車から始まる電気の革命!」
「Jawohl、EVは電気自動車。だけどVWではこうも呼びます。
'Everyone’s Vehicle'、みんなのための車。ID.シリーズはドイツのクラフトマンシップで、環境も財布も守ります。そう、世界中の道が私たちのステージです!」
ID.シリーズ「電気自動車の新基準、IDシリーズです。デザインも性能も、未来を走ってます!」
GTE「プラグインハイブリッドのGTEです。スポーティーな走りと環境性能の両立、お見事!」
「ええ、その通り。EVは電気自動車。テスラにとっては、'Extreme Velocity'。
ただ走るだけじゃなく、驚くほどの加速、そして自動運転で新次元へ。未来を作る、それがテスラの使命です。え?火星用のEVも欲しい?お待ちください、それは次の発表で!」
Model S「高性能セダン、Model Sです。驚異的な加速と航続距離で、EVの常識を覆します!」
Cybertruck「未来から来たピックアップ、Cybertruckだよ。EVでも、タフネスは負けませんぜ!」
「その通りです、EVは電気自動車。でもBYDにとってはこうです。
'Build Your Dreams'、夢を叶える車。電池のリーダーとして、安全で信頼できるEVをお届けします。え?日本市場にももっと出してほしい?了解、準備中です!」
昨今、まことしやかに騒がれてる「EVシフト」であるが、その実現のためには様々な問題があると思う。EVにまつわる問題点にまつわる意見を、備忘録がてらまとめてみたいと思う。
「こんな問題もあるよ!」っといった意見や、文中のどこそこは間違っている、おかしいなどの指摘があれば、教えてください。
EVを広く普及させていくにあたり、電力需要の増大が予想される。では、具体的にどれくらい需要が増えるのか。
乗用車400万台をすべてEV化すると、電力使用量がピークとなる夏の時期に、発電量を10%から15%増やさなければならないという試算が出ている。これは、原子力発電所プラス10基分、火力発電所プラス20基分に相当する規模である[1-1]。もし、原子力発電所の新規建設、稼働することで補おうとすると、放射性廃棄物の問題や、災害時のリスク、テロの標的となる等のリスクが発生し、火力発電所の場合では、CO2排出量の増加を招きかねない。
これは2018年度末のデータであるが、東京電力の火力発電所の熱効率は、石炭、石油、ガスの発電を平均して49.7%[1-2]となっている。それに対し、2020年現在のガソリンエンジン車の熱効率は一般的に40%前後となっており、トヨタ カムリ搭載の2.5Lエンジンが41%[1-3]、マツダSKYACTIV-Xは公式の発表はないものの、43%前後[1-4]と言われている。これを考慮すると、火力発電所が主力といえども、EVの方がCO2排出量が少ないと考えられる。
しかし、研究室ではエンジン単体で熱効率50%を超えるエンジンの開発に成功している[1-5]ことから、将来的に熱効率50〜60%を超えるエンジンが一般的になる可能性も十分にある。そして、電力の送配電に4%ほど送電ロスがある[1-6]点において火力発電所は不利になることを考慮すると、EVを普及させて火力発電所を動かすよりも、内燃機関を搭載した車の方がCO2排出量が少なくなる可能性もある。
EVの普及にあたって、充電ステーションの普及は必要不可欠となる。といってもEVの場合、基本的には自宅で充電するため、既存のガソリンスタンドをまるまる充電施設に改修する必要は薄いと考えられる。充電ステーションを設置しなければならないのは、EVオーナーの自宅駐車場、そしてパーキングエリアや観光地などといった場所である。
自宅が一軒家の場合、比較的簡単に、安価に設置できる。しかし、マンションなどの集合住宅の駐車場の場合、設備費用や工事費用、維持費が高額になるばかりでなく、管理者との合意形成の必要もあるため、充電設備の設置はあまり進んでいないのが現状である。中央電力株式会社が経済産業省のデータを元に作成した資料によると、新築マンションに住むEVオーナーのうち、自宅に充電設備があるオーナーは1%未満である[2-1]。
また、お盆やGWの時期には観光地や高速道路のパーキングエリアが大混雑するが、このような状況下でも、EVの充電ステーションが不足しないように整備しなければならない。特に、パーキングエリアのキャパ不足は長距離トラックにとってさらに深刻で、慢性的に駐車マス不足が続いているパーキングエリアも珍しくない。キャパ不足気味のパーキングエリアで給電設備を充実させるためには、パーキングエリアの簡易的な改修だけでは済まされず、抜本的な改修が必要である。
そして、充電設備の充実のためには、充電時間の短縮も重要になる。短時間で充電できるような充電器の開発や、それに対応するバッテリーの開発も必要となる。
乗用車400万台をEV化した場合、充電設備の投資コストは14〜37兆円掛かると見積もられている[2-2]。そのコストのうち、民間がどれだけ負担できるか分からないが、設備投資を促すために国からの出資や、法整備などが求められることは間違いないだろう。
EVが普及するためには、市場において消費者に受け入れられなければならない。既存のガソリン車と比べ、EVは十分な市場競争力を持ち合わせているのだろうか。
少なくとも2020年現在の日本国内においては、EVが市場で受け入れられているとは言い難い。2020年1月〜6月の新車登録車数は、日産リーフが6,283台なのに対し、同セグメントの日産ノートは41,707台[3-1]と、EVはガソリン車に対して大きく水を開けられている。主な原因は価格で、日産ノートは122.8万円からの販売に対し、日産リーフは332.6万円から。EVであることに魅力を見いだせない限り、消費者がEVを買うことは非常にハードルが高い。しかし、新しいバッテリーの開発や、減税や補助金などによって、価格競争力を獲得していく可能性もあるだろう。
そして、次に消費者がEVを受け入れるにあたって重要となるのが、充電して使うという特徴と航続距離の短さを消費者がどう捉えるかである。
普段使いとして通勤や買い物に使う分には、EVはガソリン車と比べて優位であるといえる。というのも、家に帰ってプラグを挿せば充電されるため、わざわざガソリンスタンドで給油をする必要がなくなるからである。電気代も、ガソリンや軽油と比べて安いことも大きなメリットとなる。さらに、停電時に車から住宅に給電できることも、大きな特徴である。
しかし、自宅で充電できることと、住宅に給電できるという特徴は、プラグインハイブリッド車と共通したものである。したがって、プラグインハイブリッドには無いようなEVのメリットを消費者に示せなければ、EVは選ばれにくくなる。
さらに、長距離のドライブでは航続距離の短さがネックとなる。テスラなどのEVは、残量が減ると自動で最寄りの充電施設に案内してくれる機能が備わっているし、似たようなサービスを行うスマホアプリなども登場しているが、それらが「電池切れを起こしたらどうしよう」という消費者の心理をどれくらい払拭してくれるだろうか。もちろん、パーキングエリアや観光地で充電設備などのインフラ整備が進めば不安はある程度減るだろうが、「お盆の帰省ラッシュ時に、パーキングが大混雑してて充電スタンドが使えなかったらどうしよう」などと言った不安は、考え出せばキリがない。また、今年12月、関越道で大雪のために立ち往生が起こったニュースを見て、EVを敬遠した人も少なくないはずだ。失敗したくない大きな買い物で、未知なる商品に消費者は手を出せるだろうか。
EVが消費者に選ばれるためには、プラグインハイブリッド車にはないEVならではのメリットを持ち、充電インフラと航続距離のデメリットをある程度解消しなければならない。そのためには、低価格で大容量のバッテリーや、短時間で充電可能な設備の整備などが必要である。
災害時のEVのメリットとして、EVから住宅に給電できるというものがあり、これは停電時においてガソリン車にはないメリットである。災害時において、電力の復旧は真っ先に行われるため、災害の規模によってはガソリン車よりもEVの方が有利になることも多い。また、災害時にはガソリンの需要が急速に高まり品薄になることもあるが、電力さえ生きていれば、EVではそのような心配をする必要もなくなる。
しかし、燃料の補給が困難であることは、災害時にEVのリスクとなる。内燃機関の場合、よそから燃料をもってくれば動かすことができるものの、EVの場合それが困難であるからだ。前述の関越道の立ち往生のようなシチュエーションであったり、東日本大震災のように、電力インフラが壊滅的に破壊されてしまった場合には、EVは非常に不利になるだろう。
日本の自動車産業は沢山の中小企業を支える巨大産業である。もし、EVが主流化することで部品の簡素化が進み、中小企業の利益減少、それに伴う倒産が相次げば、日本経済に影響を及ぼす可能性がある。EV化で不要となる自動車部品の出荷額は、2014年の実績によると、5,368億円にのぼるという試算があり、これは自動車関連部品の出荷額のうち、25%に相当する[5-1]。
2020年現在、EVのバッテリーの製造にあたって、リチウムやコバルト等のレアメタルが使われている。しかし、このようなレアメタルは埋蔵量が少ないほか、生産国が限られているため、地政学的なリスクがともなう。たとえば、 全世界のリチウムの産出量のうち、その半分以上をアルゼンチン、ボリビア、チリが担っている[6-1]。 さらに、コバルトに至っては、その産地がコンゴ共和国1国だけに集中している[6-2]。
インフラを担う資源が特定の地域に集中していることは、地政学的なリスクが伴う。かつてオイルショックによって経済混乱が引き起こされたが、EVの主流化は、それと似たような混乱をまねくおそれがある。
このような問題を受け、レアメタルを使用しないバッテリーの開発が各国の自動車メーカーや研究機関によって行われているが、完成・量産化のめどは立っていない。
原油は燃料(ガソリン、軽油)や化学原料の製造など、様々な形で利用されているが、これらは原油を精錬することで作られている。
石油消費量のうち、自動車用燃料の割合は40%ほどであり[7-1]、仮に自動車がすべてEVになったとしても、原油の需要がゼロになるわけではない。つまり、EVが自動車の主流になった場合、原油を精錬する過程で生じる軽油や、ガソリンの原料となる重質ナフサが余る可能性がある。
余った石油燃料やその原料は、火力発電などで消化できればよいが、それができない場合は何らかの利用法を考えなければならない。
ざっくりまとめると、EVが普及するためには、新しいバッテリーの開発と、電力需要の増大に対する対応が求められる。新型バッテリーは、市場競争力の獲得、地政学的なリスクの回避のために必要であるが、その実現の見通しは立っていない(バッテリーの開発は半導体の研究と異なり、運頼みのような要素が強いためである)。しかし、優れたバッテリーが開発されてしまえば、EVシフトは一気に現実味を増してくるだろう。
しかし、それ以上に困難な問題が、電力需要を何らかの方法で賄わなければならないことである。自然エネルギーを利用する場合、ランニングコストと供給が不安定になりがちなこと、場合によっては自然破壊につながることを考慮しなければならない。原子力発電所を主力とする場合、再稼働するだけではなく、新たに発電所を設けなければならないうえ、放射性廃棄物の問題や災害時のリスクは解決されていない。また、火力発電所を主力とする場合、こちらも発電所を建設する必要があるほか、ガソリン車の方がCO2排出量が少なくなる可能性も否定できない。そして、EV化を進めるにあたって様々な領域において設備投資が必要であり、莫大なコストが掛かるほか、その過程でもCO2が排出されることを考慮しなくてはならない。
個人的な考えとしては、無理してEVにシフトさせていく理由はないと思う。バッテリーの開発の見通しが全く立っていないのに対し、内燃機関の開発はある程度見通しが効いていることをふまえると、ハイブリッドカーによってCO2削減を目指すほうが建設的なのではないか。もちろん、「EVなんていらん!」と言いたいわけじゃないけど、「内燃機関は消滅するんだ!」っていうのはあまりにも行き過ぎなんじゃないかなと。また、世界各国が将来的にガソリン車の販売禁止を行うとしているが、どの国もEVにまつわる問題解決の道筋を明確に示せていない以上、事実上は達成目標にすぎないのではないかと思う。
市場競争力などを考えると、EVもセカンドカーとしてある程度は普及すると思うけど、主流になるのは高熱効率エンジンを積んだプラグインハイブリッドカーなんじゃないかな。
はてなブックマークにてこのような内容の批判をいただきました。
これが世界の潮流であり、北米、欧州、中国という日本よりはるかに大きな市場がEVに舵を切っている。というのが抜けてますよ/日本だけで細々と売ってくならいいけど、世界に車を売たきゃ潮流に乗らないと。
どんな国内事情があろうとも、EUと中国がガソリン車全廃と言っているんだから、限られた時間の中解決していくしかないでしょ。解決出来なければ、日本の自動車産業は淘汰されるだけ。
このようなはてなブックマークの批判に加え、「EV化は環境問題の解決のためというよりも、自動車産業における次世代の覇権をかけた競争となっているため、否応がナシにEV化は進む」
という論を度々見かけます。しかし、このような論調は「欧米各国や中国では、EV化と内燃機関全廃が必ず 実現される」という前提の上に成り立っており、欧米各国や中国における、EV化の実現可能性にまつわる議論が欠けているものだと思います。政治的に圧力をかければ、何でもかんでも上手くという論はあまりにも乱暴です。
たとえば電力にまつわる問題。中国の場合、貿易戦争によって石炭の輸入量が低下し、2020年末から大規模な電力不足が発生しています。また、ドイツでは自然エネルギーの大規模な利用に成功していると言われていますが、実際は自然エネルギーを安定的に供給できておらず、不足した際はフランスから原発由来の電力を輸入している状況です。電力不足や自然エネルギーの利用にまつわる問題は、日本のみならずありとあらゆる国でも課題となっています。
他にも、本文において書いたようなバッテリーにまつわる問題や市場競争力にまつわる問題は、あらゆる国において共通するような問題であるといえるでしょう。そして、このような問題の解決にあたり、まだ形にさえなっていないような新しい技術が必要とされています。
「世界各国ではEV化を進めるための具体的な 算段や道筋がついており、非常に高い可能性で実現できそうである。このままでは日本は出遅れるだろう。」という話であれば、私もEV化と内燃機関の淘汰に異論はありません。しかし、実際はどうでしょうか。どの国も具体的な道筋を示せておらず、問題は山積み。そのような状況で、政治的に舵をとりさえすれば実現するようなものだと言えるでしょうか。欧米各国や中国が、EV化に失敗することはないと断言できるでしょうか。
私は、将来的にEV化することを完全に否定するわけではありません。本文に書いたとおり、現在と比べてEVのシェアは大きく伸びると思いますし、想像もつかないような技術が開発されることによって、本当に内燃機関が淘汰されるかもしれません。しかし、本文に上げたような問題が現在あることを考えると、「内燃機関は必ず淘汰されることになる」とは言い切れないこともまた事実であり、現実だと思うのです。
そして、EV化と内燃機関車の廃止を実現できるかどうか不明瞭で、失敗する可能性も多いにあるのにもかかわらず、「世界中がそういう潮流になっているから、これに乗り遅れるな!」というのはあまりにも安易な考えであると言わざるを得ません。そのような場当たり的な判断では、今まで積み重ねてきた日系メーカーの技術的なリードを失い、国際競争力を失うことになるでしょう。
EV化やエネルギー問題は、潮流に流されず、事実や実現可能性をしっかりと見極めて方針を決めていくべきだと思います。少なくとも、「他国がこう言っているから」という安易な理由で舵取りしていくべき問題ではありません。
ICEは効率の点ではEVに遥かに及ばないよ。印象だけでは語るとデマになるので、少し計算した方が良い。
原油⇒精製(90%)⇒輸送(98%)⇒エンジン(30-40%)⇒変速機(80-90%)
=20%-35%程度
一番の問題は、熱機関は最良でもカルノーサイクルの壁を超えられないこと。つまり入力と出力の温度差による限界が来るわけ。
エンジンの素材は金属なので、良くても数百度とかにしかできないわけで、予算度外視でどんなに効率をよくしても量産車で60%に至ることはありえない。
エンジンはアルミか鉄なわけで、そこまで高温にできない。それで30-40%止まりと言うわけ。最近50%近いエンジンができたーとか言うニュースもあるが、もう熱力学上、天井は見え始めている。これは物理学なので、どうしようもならない。
(ちなみに、燃焼温度を上げると今度はNOxなどの問題が顕在化してくる。そのため、むしろEGRなどにより温度を下げるのがトレンド。エンジン開発はいろいろなトレードオフなのだ。)
ディーゼルエンジンは効率が比較的高く、CO2の排出もガソリンエンジンよりも少ないとされるが、NOx/PMなどの排出が多い問題がある。NOxについてはマツダが頑張って尿素SCRなしのエンジン作ったけど、結局、PMについては、DPFを用いて微粒子を捕獲している。そのDPFの煤焼き運転必要だったりするので、その分の燃料は無駄になるわけだよね。
で、エンジン車の問題として、トルクバンドが上のほうにあるので、クラッチ、トルクコンバーター等と変速機が必ず必要となる。その際にロスが出てしまう。AT/MT/DCTは段数が少ないとパワーバンドを生かしきれない。段数が多いと重い。CVTは滑るし、CVTフルードは温まるまで粘度が高くてロスになる(ダイハツはCVTサーモコントローラーとかで頑張ってるけど)。
エンジンの熱効率が50%に達したという記事(JSTの「革新的燃焼技術」)で反論する方がいらっしゃるが、そのエンジンは実験室の563cc単気筒エンジンだ。もちろん単気筒なんて自動車では振動などで使い物にならないから、最低でも3気筒からとなる。そうしたときに、気筒が増えて動弁系などのフリクションの発生によって効率は下がるはずなので、そのまま量産車に適用することは難しい。実用車では気筒数増加による動弁系の負荷、オルタネーターなど補機系の負荷などもかかってくることも頭に入れておきたい。
日産が45%のエンジンを開発しているとの記事もあるが、これはe-Powerの「発電専用」エンジンだ。ハイブリッドなので、こういう芸当が可能だ。
45%からは数%上げるだけでも相当血のにじみ出るような開発の労力がいるだろう。
燃焼温度はアルミや鋳鉄の融点よりも遥かに高いと言う指摘があった。その通りです。
しかし、熱力学を説明したかっただけで、例えば入口・出口の温度差を数万度にしたならば、熱効率はかなりのものとなるが、そんなものは物性的に不可能ということを示したかった。
原油⇒火力発電(超臨界発電) 50-60%⇒送電 (95%) ⇒バッテリへ充電(90%)⇒変換(96%)⇒モーター(95%)
=39-45%
PHEV, BEVの場合、上に示したうちで一番効率の悪い「火力発電」の部分を再生エネルギーや水力に転嫁することで、CO2削減を目指せる。もちろん、原発にしてもCO2は減らせる。
なお日本の火力発電所のSOx/NOx排出は海外に比べてもとても少なく、優秀である。
発電所の部分では、現状でも50-60%の効率は稼げる。なぜ熱機関なのにここまで効率が出せるかと言うと、巨大なプラントで高温に耐えるコストの高いタービンを回してるから。
それによって熱機関の効率が高められるから。車のエンジンは小さくてスケールメリットが働かないよね。でも発電所レベルなら巨大で、コストも充分かけられるのでこう言う芸当ができる。
で、電気の輸送に関しては送電線なので一度つなげたらしばらくはCO2を出さない。送電の効率も超高圧送電(100万ボルト以上)によって高まっている。
また、インバーターとかモーターに電気を流す部分はパワーデバイス(GaN等)の発展によってどんどん効率が上がっている。
なお、モーターのトルク特性としてエンジン車のように変速は不要のため、クラッチ・トルコン・変速機などによるロスはない。将来、インホイールモーターが実用化されれば、モーター→タイヤへの伝達効率はさらに上昇する。
ちなみに、xEVは回生充電もできるために、ブレーキ時に運動エネルギーがICEほど熱に変わらない。
(一方ICEはエンジンブレーキを使ったとしてもエネルギーに変えているわけではないので(多少オルタネータの充電制御は入るが)、ブレーキ時には運動エネルギーを熱にしてしまう。せっかく石油を燃やして運動エネルギーを得たのに、そのエネルギーを回収しないで熱に変えるわけ。)
まあxEVが回生できるとはいえ回生時にパワーデバイスとかの充電ロスがあるから、実はコースティング(回生も何もしない)で空走した方が距離を稼げる。なので、前の信号が赤にかわったとき、EVに関していえば、ブレーキも何も踏まないで空走状態を維持し、空気抵抗だけで0kmにするのが一番効率が高い。まあ、そんなことしていたらノロノロすぎてウザがられるので、妥協点として回生ブレーキを使ってちょっとはロスするけど、エネルギーを回収しながら止まるってことだね。
(ICEだと、エンジンブレーキを積極的に使って、ブレーキを踏まない運転を心がければ良い。やってはいけないのは、Nに入れて空走すること。Nに入れるとエンジンはアイドリングを維持するために燃料を消費する。ギアを入れたままエンジンブレーキをかけると、その間は燃料噴射をやめても回転が維持できるので、エンジンは燃料噴射をやめて、実質消費はゼロとなる。)
バッテリーの製造時の負荷は確かに高い。しかし、製造には電気を使っているので、電力構成によりCO2の排出は変わる。つまりグリーンなエネルギーを使えば問題なくCO2を減らせると言うこと。
なお id:poko_pen がマツダのWell-to-Wheel理論を持ち出しているが、あれば古い時代のバッテリー製造時のCO2データを使っていて、CO2排出を過大評価している。最近のテスラのLi-ion電池工場では、再エネを利用して製造しているのでCO2は少なくできる。こうした、製造時のCO2排出の問題は工場や電源構成をアップデートしていけば減らせる問題だ。
(マツダはBEVよりもICE派で、SPCCI(圧縮着火)とかで頑張ってるから、バイアスがかかってるのは仕方ないと思うね。私は内燃機関とデザイン周りで頑張るマツダは大好きだけど、SKYACTIV-Xが思ったよりも微妙だったから株売っちゃったわ。)
Li-ion電池に10%含まれるリチウムは、採掘時に水を大量に使ったりする問題はある。ただ、これは「製造時」に限った話であり、内燃機関を使うたび、原油のために油田をあちこち掘り返したり、オイルタンカーが座礁して原油を撒き散らしたりするのに比べれば遥かにマシというものだろう。
xEVには必要となる貴金属類には依然として供給リスクとか採掘時の「児童労働」とかの問題を孕んでいる。ここら辺は全世界的に解決するしかなさそう。需要が増えれば、世界の目がこう言う問題に向くはずなので、我々技術者はそれを期待するしかない。
例えば沖縄は石炭火力の比率が高いため、EVの効率を持ってしてもCO2の排出がHVとかより高くなる。しかし、それ以外の都道府県ではICEよりBEVの方がCO2が低い。原発が動いていない現時点でもね。
PHEVはもちろんICEより遥かにCO2を出さないが、BEVには勝てない。ただ、電力構成によっては逆転もありうるが、ほとんどの都道府県ではBEVの方がCO2を出さない。
(追記: anond:20200211034316 に FCEV vs BEV の効率比較を書いた)
燃料電池車に関していえば、無用の長物と言える。水素を製造する場合にも電力が必要だが、まあこれを再エネで行ったとしても、水素の輸送とタンクに注入する際の水素の圧縮時のロスは非常に大きい。その圧縮の際に再エネを使ったとしても、結局そのエネルギーでBEVを充電した方が効率がいいのだ。
そもそもBEVならば、送電線さえあればいいわけで、わざわざ水素のように輸送する必要がない。
また燃料電池は化学反応なので、アクセルレスポンスが遅いと言う欠点があり、反応のラグを補うために燃料電池車には結局バッテリーが積まれている。
ただ、航続距離は長いために、俺は現代におけるタクシーとかのLPG車みたいに細々と残るとは思う。航続距離が重要なトラックやバス、タクシーなどには燃料電池が使われるかもしれない。
効率以外にも、めんどくさい高圧タンクの法定点検とか、割と問題は多い。水素ステーションは可燃性の水素を貯蔵するわけだから、EVの充電スタンドよりも法的なめんどくささがあるのも確か。
これは燃料電池車より論外。カルノーサイクルに縛られてしまうので、電気分解よりも効率が悪くなる。水素の使い方としては燃料電池よりも悪い。
再エネは不安定と言われる。確かに自然相手なので、予測も難しい。しかし将来的にEVが普及すれば、EVをバッファとして利用することで、不安定さを吸収しグリッドを安定させられる。
これは再エネを導入する動機にもなる。職場に着いたらEVにCHAdeMOを挿しておいて、電力の需給バランスに応じて充電開始、とかが普通になるかもね。
BEVは寒さに弱い。リチウムイオン電池の特性上、寒くなると容量が可逆的ではあるが減る。そのためテスラにはバッテリーヒーターが搭載されている。(ちなみに、寒いノルウェーでもテスラが爆売れしているし、なんと新車の半分くらいの売り上げがBEVという。もはや寒さは問題ではないのかも?(まぁ優遇政策があるからだけどね))
FCEVも寒いと反応が弱まって出力が減るので、そこらへんは考慮されている。
一方ICEも、冬になると燃費が悪化するとされる。US DoEによると、理由は、オイルの粘度低下、温度上昇までの暖機、ガソリンの配合が夏と違う(日本でも同じかは謎)など。他には空気密度によるエアロダイナミクスの悪化とかがあるがこれはEVでも同じだ。オイルなどが原因となって燃費が悪化するのはICE特有だろう。
BEVはまた暑さにも弱い。Li-ionは熱によって不可逆的なダメージを受けて、寿命が縮む。そのためテスラにはエアコンを利用する水冷バッテリークーラーが搭載されている。リーフは空冷で、これが問題だったのか、劣化の問題でざわついていたリーフオーナーも多かった。今は改善されているらしい。
URLを多く貼るとスパム認定されるから貼れないけど、US DoEとかCARB、日本だと日本自動車研究所あたりの公開資料を見ればソースに当たれる。
一つだけ、EV vs ICEの効率について、13分程度で詳説してある動画のURLを貼っておく。英語で字幕もないが、割と平易なので、見てみてほしい。論文ソースは動画の中でよく書かれている。
「製造時の負荷」「化石燃料の発電でEVを使うのは利点あるのか?」「リチウム採掘の負荷」の3つで説明されている。簡単に箇条書きにすると:
https://www.youtube.com/watch?v=6RhtiPefVzM
前述のようにマツダはEVと自社のICEについて、Well-to-Wheelでライフサイクルアセスメントで比較している。その比較におけるLi-ion製造時のCO2排出量のデータだが、2010年〜2013年のデータとなっており古い。しかも、Li-ion製造時のCO2の排出量は研究によってばらつきが大きく、いろいろな見方があり正確性があまりないのが現状。また現状を反映していないと考えられる。例えばテスラ「ギガファクトリー」のように太陽電池をのせた自社工場の場合などについては考慮されていないのが問題だ(写真を見ると良い、広大な敷地がほとんど太陽光で埋まっている)。
また、マツダの研究はバッテリー寿命を短く見積りすぎている点で、EVのライフサイクルコストが大きく見える原因となっている。テスラのようにバッテリーマネジメントシステム(BMS)がしっかりとしたEVは寿命が長く、またLi-ionの発展によって将来は寿命を伸ばすことは可能だろう。事実、今まで電極や電解質の改善によってサイクル寿命は伸びてきた。
テスラは現時点で最も売れているわけだし、このことを考慮しないのは少々ズルいと言える。
"Why Hydrogen Engines Are A Bad Idea" でYouTube検索したらわかりやすいが、噛み砕くと
あと補足すると「エンジン」は爆発によるエネルギーを使っているが、全てを使い切れていないこと。十分に長いシリンダーを使って、大気圧まで膨張させるならエネルギーをかなり取り出せるが、そんなものは実用上存在できないので、爆発の「圧力」を内包したまま、排気バルブを開けることになる。この圧力をターボチャージャーで利用することも可能ではあるが、全て使い切れるわけではない。
あーでも、水素エンジンのメリットが1つあった。燃料電池(PEFC)は白金を必要とするため Permalink | 記事への反応(16) | 01:34