表é¡ã®è¨èéãå°å½±ããå
¥å°ããã»ã¯ã·ã§ã³ããã¬ãã©ã¯ã·ã§ã³ããªã©ã®æå³ãããããªããã¦ããã¾ãããããããã®è¨èãç¹ã«ãå°å½±ããå
¥å°ãã¯ææ§å¤ç¾©èªã§ãç¶æ³ã»å ´é¢ã»äººã«ããæ§ã
ãªæå³ã§ä½¿ããã¾ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\o}[1]{ \overline{#1} }
\newcommand{\u}[1]{ \underline{#1} }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
%\newcommand{\On}{ \text{ on }}
\newcommand{\Iff}{ \Leftrightarrow }
\newcommand{\Imp}{ \Rightarrow }
\newcommand{\op}{ \mathrm{op}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\twoto}{\Rightarrow }
`$
å 容ï¼
- ä½ã®ååï¼
- 極é対象ããã®å°ã¨ãã¦ã®å°å½±
- ããçèªå·±å°ã¨ãã¦ã®å°å½±
- å°å½±ã¨ã»ã¯ã·ã§ã³
- å ¥å°ã¨ã¬ãã©ã¯ã·ã§ã³
- èªå·±ã»ã¯ã·ã§ã³ã¨èªå·±ã¬ãã©ã¯ã·ã§ã³
- åãè¾¼ã¿å°å½±ãã¢
- ãã®ä»ã®å°å½±
ä½ã®ååï¼
å¼ã³åãããã¨ããããã¯ä½ã«å¯¾ãã¦ä»ããããååã§ãããã¯ãããããèããå¿ è¦ãããã¾ãã
ã¾ããåå¥ç¹å®ã®ã¢ããåæãååãããã¾ããããã¯åºæåãproper nameãã§ãã
次ã«å½¹å²åãroll nameããããã¾ããå½¹å²åã¯æ§é ãstructureãã«é¢é£ãã¦ä½¿ãã¾ããæ§é ã¨ã¯ãå¹¾ã¤ãã®ã¢ãéãè¤åããã¦å½¢æãããã¢ãã§ããæ§é ãæ§æããåã ã®ã¢ãã¯æ§æç´ ãconstituentãã¨å¼ã³ã¾ããæ§æç´ ã¯ãæ§é ã®ãªãã§ç¹å®ã®å½¹å²ãæ ãã¨èããããã®ã§ããã®å½¹å²ã«ä»ããååãå½¹å²åã§ããçµç¹ã«ãããè©æ¸ã¨ãå½¹è·åã¨ãã¨åæ§ãªååã§ãã
ã¢ãã®ç¨®é¡ãéã¾ãã«ä»ããååã¯ä¸è¬åãgeneral nameãã§ããè±ææ³ãªãæ®éåè©ãcommon nounãã§ããããã³ä¸è¬ã表ã cat ããåä¸è¬ã表ã category ï¼cat ã¨ç¥ããã¨ãããï¼ã¯ä¸è¬åã§ããä¸è¬å㯠is a ã¨å ±ã«ä½¿ãã¨è¿°èªã¨ãªãã¾ããx is a cat ã y is a category ã¯ãx, y ãå¼æ°ï¼ä¸»èªï¼ã¨ããè¿°èªã¨ã㦠is a cat ãis a category ã使ã£ã¦ãã¾ãã
åºæåï¼å½¹å²åï¼ä¸è¬åã¨åé¡ãã¾ããããæèã«ãã解éã代ããã¾ããä¾ãã°ãããæèã§ã¯ $`1`$ ã¯âèªç¶æ°ã®ä¸âã表ãåºæåã§ãããããããã群ã®åä½å ã $`1`$ ã¨å¼ã¶ã¨ç´æããã¨ã$`1`$ ã¯â群ã®åä½å âã¨ããâæ§é ã«ãããå½¹å²ã表ãå½¹å²åâã§ããããæèã§ã¯ $`1, \sqrt{2}, \pi`$ ãªã©ã¯åå¥ç¹å®ã®å®æ°ã表ãåºæåã§ããå®æ°ãã¨ããè¨èã¯åå¥ç¹å®ã§ã¯ãªãã¦ä¸è¬çãªå®æ°ï¼ã¨ãã種é¡ã®ã¢ãï¼ã表ãä¸è¬åã§ããããããå®æ°å ¨ä½ã®éåã $`\mbf{R}`$ ã¨è¡¨ããã¨ãã太åã®ã¢ã¼ã«ã¯åå¥ç¹å®ã®éåã表ãåºæåã§ãã
ãå°å½±ããå ¥å°ããªã©ã®è¨èãå¼ã³åãªã®ã§ãæèã«å¿ãã¦ä½ãæãã®ããä½ã«å¯¾ãã¦ä»ããããååã§ãããã¯ãããããèããå¿ è¦ãããã¾ãã
極é対象ããã®å°ã¨ãã¦ã®å°å½±
ãå°å½±ãã§ä¸çªæåã«æãèµ·ããã¢ãã¯ããããï¼äººã«ãããã¾ããï¼ç´ç©ã®å°å½±ãprojection of direct productãã§ãããã$`A, B`$ ãéåã®ã¨ããç´ç©éå $`A\times B`$ ãã $`A`$ ã¾ã㯠$`B`$ ã¸ã®æ¬¡ã®ãããªååãåå¨ãã¾ãã
$`\quad \pi_1 : A\times B \to A\\
\quad \text{where }\pi_1( (a, b)) = a
`$
$`\quad \pi_2 : A\times B \to B\\
\quad \text{where }\pi_2( (a, b)) = b
`$
丸æ¬å¼§ãäºéã«ãªã£ã¦ã¾ãããå å´ã®æ¬å¼§ã¯ãã¢ã®å²ã¿è¨å·ãå¤å´ã®æ¬å¼§ã¯ååãé¢æ°ãã¸ã®å¼æ°æ¸¡ããargument passingãã®æ¬å¼§ã§ããé常ãäºéã鬱é¶ããã®ã§çç¥ãã¾ããã
$`\pi_1`$ ã第ä¸å°å½±ãfirst projectionãã$`\pi_2`$ ã第äºå°å½±ãsecond projectionãã¨å¼ã³ã¾ãã
ç´ç©ã¨ãã®å°å½±ã¯ãéåå以å¤ã§ãèãããã¨ãããã¾ããç´ç©ã¨å°å½±ãæã¤åããããããã«ã«ãåã§ããç´ç©ã¨å°å½±ããå ¥ããã«ã«ãåå ¥éã¨ãã¦ä»¥ä¸ã®éå»è¨äºãããã¾ãã
ç´ç©ã¯ãç¹æ®ãªæ¥µéã§ããä¸è¬çãªæ¥µéã«ããã¦ãã極é対象ï¼æ¥µééã®é ç¹ï¼ããåºé¢ã®å¯¾è±¡ã¸ã®å°ãå°å½±ã¨å¼ã³ã¾ããå³å¼ï¼ãããã¯é¢æï¼ $`F : S \to \cat{C}`$ ã®æ¥µé対象ã $`\lim F`$ ã¨æ¸ãã¨ãã¦ã極éã®å°å½±ã¯æ¬¡ã®ãããªå°ã§ãã
$`\text{For }a \in |S|\\
\quad \pi_a : \lim F \to F(a) \In \cat{C}
`$
極éã«ã¤ãã¦ã¯ä»¥ä¸ã®éå»è¨äºã§è¿°ã¹ã¦ãã¾ãã
å対æ¦å¿µã表ãç¨èªã«ã¯æ©æ¢°çã«ãä½ããä»ãããã¨ã«ãã¦ãä½æ¥µéã®ä½å°å½±ãèãããã¨ãåºæ¥ã¾ããä½å°å½±ãcoprojectionãã¯ãä½åºé¢ã®å¯¾è±¡ããä½æ¥µé対象ï¼ä½æ¥µéä½éã®ä½é ç¹ï¼ã¸ã®å°ã§ãã
$`\text{For }a \in |S|\\
\quad \iota_a : F(a) \to \mrm{colim}\, F \In \cat{C}
`$
å ¥å°ãinjectionãã¯ä½å°å½±ã®å義èªã§ãããã ããè±èªã® injection ã¯åå°ï¼éååã®ã¢ãå°ï¼ã®æå³ãããã¾ãã幸ãã«ãæ¥æ¬èªãªããå ¥å°ãã¨ãåå°ãã¨ä½¿ãåãããã¨ãåºæ¥ã¾ãã
ããçèªå·±å°ã¨ãã¦ã®å°å½±
$`p`$ ãå $`\cat{C}`$ ã®ããçèªå·±å°ãidempotent endomorphismãã ã¨ãã¾ããããçèªå·±å°ã¨ã¯æ¬¡ã®ãããªå°ã§ãã
$`\quad p : A \to A \In \cat{C}\\
\quad \text{where }p;p = p
`$
ãã®ã¨ãã$`p`$ ãå°å½±ãprojectionãã¨ãå¼ã³ã¾ããã¤ã¾ãããã®æèã§ã®å°å½±ã¯ããçèªå·±å°ã®å義èªã§ãã
ãã¯ãã«ç©ºéã®åã«ãããå°å½±ãããçèªå·±å°ããã馴æã¿ããç¥ãã¾ãããï¼ä½ $`K`$ ä¸ã®ï¼ãã¯ãã«ç©ºé $`V`$ ã«å¯¾ãã¦ãç·å½¢åå $`P:V \to V`$ 㧠$`P;P = P`$ ãæºããã¢ããï¼ãã¯ãã«ç©ºéã®åã«ãããï¼å°å½±ã§ãã$`P`$ ããã¯ãã«ç©ºé $`V`$ ã®å°å½±ãªãã$`\id_V - P`$ ãå°å½±ã«ãªãã¾ãããã¯ãã«ç©ºé $`V`$ ã $`P`$ ã®æ ¸ç©ºé㨠$`\id_V - P`$ ã®æ ¸ç©ºéã®ç´åã«å解ã§ãã¾ã*1ã
$`\quad V \cong \mrm{Ker}(P) \oplus \mrm{Ker}(\id_V - P) \In \mbf{Vect}_K`$
$`V`$ ã«å ç©ãå ¥ã£ã¦ãªãã¦ããæ°æã¡ã¨ãã¦ã¯ã$`\mrm{Ker}(P)`$ 㨠$`\mrm{Ker}(\id_V - P)`$ ã¯âç´äº¤âãã¦ããã¨ã¿ãªãã¾ãã
ä¸è¬ã«ãèªå·±åå $`f: X \to X \In \mbf{Set}`$ ãããçèªå·±ååã®ã¨ãã$`f`$ ã¯æ£è¦åãnormalization | canonicalizationãã¨ã¿ãªãã¾ããä¾ãã°ãè²ã ãªåæ°è¡¨ç¾ãç´åãã¦æ¢ç´åæ°ã®å½¢ã«ããã¨ããè²ã ãªå¤é å¼ãæ¨æºçãªå½¢ã«å¤å½¢ããã¨ãã®æä½ã¯æ£è¦åã§ããå ç©ç©ºéã®éã¼ããã¯ãã«ãé·ã 1 ã«ãããã¨ãæ£è¦åã§ããæ£è¦åãäºåº¦è¡ã£ã¦ãä¸åº¦ããã®ã¨åãã§ã -- æ£è¦å½¢ãæ£è¦åãã¦ãä½ãå¤ãããªãã®ã§ããå°å½±ã¯ããçèªå·±å°ã®å義èªããªããæ£è¦åãå°å½±ã¨å¼ãã§ããã¯ãã§ããããã¾ãããããªãã®ã¯æèãéãããã§ãããã
ããçèªå·±å°ã¨ãã¦ã®å°å½±ã¯ãã«ãã¦ãå±éåãã«ãã¦ãå 絡å | Karoubi envelopeãã®æ§æã«ç»å ´ãã¾ããã«ãã¦ãå±éåã«é¢ãã¦ã¯ä»¥ä¸ã®éå»è¨äºãããã¾ãã
- ã«ãã¦ãå±éå
- ã«ãã¦ãå±éåï¼å®ä¾
- ã«ãã¦ãå±éåï¼é¢æã¨ãã¦ã®ã«ãã¦ãå±é
- ã«ãã¦ãå±éåã®ç¹å¾´ä»ã
å°å½±ã¨ã»ã¯ã·ã§ã³
å $`\cat{C}`$ ã«ããã¦ãäºãã«éåãã®å° $`p:A \to B`$ 㨠$`s:B \to A`$ 㧠$`s;p = \id_B`$ ã§ãããã®ãèãã¾ããããããä¸ç·ã«ãã¦ã²ã¨ã¤ã®æ§é ã¨ã¿ãªãã¾ãã
$`\quad \xymatrix{
A \ar@/^/[r]^{p}
& B \ar@/^/[l]^{s}
}\\
\quad \text{where }s; p = \id_B\\
\quad \In \cat{C}
`$
ãã®æ§é ã«ããã¦ã$`p`$ ãå°å½±ãprojectionãã$`s`$ ãã»ã¯ã·ã§ã³ãsectionãã¨å¼ã³ã¾ãããå°å½±ããã»ã¯ã·ã§ã³ãã¯ããã®æ§é ã«ãããæ§æç´ å½¹å²åã§ããæ§é èªä½ã¯å°å½±ã»ã¯ã·ã§ã³ã»ãã¢ãprojection-section pairãã¨å¼ã¶ãã¨ã«ãã¾ãã
å $`\cat{C}`$ ã®å° $`f:A \to B`$ ããããã¼ã«åã£ã¦ããã¨ãã$`(f, s)`$ ãå°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã¨ãªããããªï¼ã¤ã¾ãã$`s;f = \id_B`$ ãæºãããããªï¼$`s`$ ããã¹ã¦å¯ãéããéåã $`\mrm{Sect}(f)`$ ã¨æ¸ãã¾ãã$`s\in \mrm{Sect}(f)`$ ãªãã$`(f, s)`$ ã¯å°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã«ãªãã¾ãã$`\mrm{Sect}(f)`$ ã®è¦ç´ ã¯ã$`f`$ ã®ã»ã¯ã·ã§ã³ãsectionãã¨å¼ã³ã¾ãããã®æå³ã®ã»ã¯ã·ã§ã³ã¯ã$`s`$ is a section of $`f`$ ã¨ãã使ãæ¹ï¼éç¨ï¼ãã§ãã¾ããis a section of $`f`$ ãè¿°èªã¨ãªã£ã¦ããã®ã§ãsection of $`f`$ ã¯ä¸è¬åã§ãã
åãåé¢ã®ãã»ã¯ã·ã§ã³ãsectionããããæ§é ã®æ§æç´ å½¹å²åã¨ãã¦ä½¿ããããã$`f`$ ããã©ã¡ã¼ã¿ã¨ããä¸è¬åã¨ãã¦ä½¿ããããããã®ã§ããªããæ°æã¡æªãæãããããããã®ã§ãããè¨èã®éç¨ã«æ´åæ§ãæ±ãã¦ãç¡çãªã®ã§ãæ°æã¡æªãæãã¯å¸¸ã«ä»ãçºãã¨å²ãåã£ãã»ããããã§ãã
ãã¦ã$`f:A \to B \In \cat{C}`$ ããããã¼ã«åã£ã¦ããå ´åã$`\mrm{Sect}(f)`$ ã空éåã«ãªããã¨ãããã¾ããéåå $`\mbf{Set}`$ ã§ã¯æ¬¡ãæç«ãã¾ãã
$`\text{For }f:A \to B \In \mbf{Set}\\
\quad \mrm{Sect}(f) \ne \emptyset \Iff f \text{ ã¯å
¨å°}\\
\quad \mrm{Sect}(f) = \emptyset \Iff f \text{ ã¯å
¨å°ã§ã¯ãªã}
`$
å ¥å°ã¨ã¬ãã©ã¯ã·ã§ã³
å $`\cat{C}`$ ã«ããã¦ãäºãã«éåãã®å° $`i:A \to B`$ 㨠$`r:B \to A`$ 㧠$`i;r = \id_A`$ ã§ãããã®ãèãã¾ããããããä¸ç·ã«ãã¦ã²ã¨ã¤ã®æ§é ã¨ã¿ãªãã¾ãã
$`\quad \xymatrix{
A \ar@/^/[r]^{i}
& B \ar@/^/[l]^{r}
}\\
\quad \text{where }i; r = \id_A\\
\quad \In \cat{C}
`$
ãã®æ§é ã¯ãåç¯ã®å°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã®å対ã§ãããã®æ§é ã«ããã¦ã$`i`$ ãå ¥å°ãinjectionãã$`r`$ ãã¬ãã©ã¯ã·ã§ã³ãretractionãã¨å¼ã³ã¾ãããå ¥å°ããã¬ãã©ã¯ã·ã§ã³ãã¯ããã®æ§é ã«ãããæ§æç´ å½¹å²åã§ããæ§é èªä½ã¯å ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ãinjection-retraction pairãã¨å¼ã¶ãã¨ã«ãã¾ãã
å°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã¨å ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã¯ä¼¼ã¦ãã®ã§ãåãããã«è¦ããããç¥ãã¾ããããã¡ããã¨èª¿ã¹ãã¨å ¨ç¶å¥ç©ã§ãã
å $`\cat{C}`$ ã®å° $`f:A \to B`$ ããããã¼ã«åã£ã¦ããã¨ãã$`(f, r)`$ ãå ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã¨ãªããããªï¼ã¤ã¾ãã$`i;r = \id_A`$ ãæºãããããªï¼$`r`$ ããã¹ã¦å¯ãéããéåã $`\mrm{Retr}(f)`$ ã¨æ¸ãã¾ãã$`r\in \mrm{Retr}(f)`$ ãªãã$`(f, s)`$ ã¯å ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã«ãªãã¾ãã$`\mrm{Retr}(f)`$ ã®è¦ç´ ã¯ã$`f`$ ã®ã¬ãã©ã¯ã·ã§ã³ãretractionãã¨å¼ã³ã¾ãã
ãã¦ã$`f:A \to B \In \cat{C}`$ ããããã¼ã«åã£ã¦ããå ´åã$`\mrm{Retr}(f)`$ ã空éåã«ãªããã¨ãããã¾ããéåå $`\mbf{Set}`$ ã§ã¯æ¬¡ãæç«ãã¾ãã
$`\text{For }f:A \to B \In \mbf{Set}\\
\quad \mrm{Retr}(f) \ne \emptyset \Iff f \text{ ã¯åå°}\\
\quad \mrm{Retr}(f) = \emptyset \Iff f \text{ ã¯åå°ã§ã¯ãªã}
`$
$`\mrm{Sect}(f)`$ ã¯ã$`f`$ ã®å ¨å°æ§ãç¹å¾´ä»ããéåã§ããã$`\mrm{Retr}(f)`$ ã¯ã$`f`$ ã®åå°æ§ãç¹å¾´ä»ããéåã§ãããã®çµæãè¦ãã°ãå°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã¨å ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ãå¥ç©ã ã¨åããã§ãããã
èªå·±ã»ã¯ã·ã§ã³ã¨èªå·±ã¬ãã©ã¯ã·ã§ã³
$`(p, s)`$ ãå $`\cat{C}`$ å ã®å°å½±ã»ã¯ã·ã§ã³ã»ãã¢ã ã¨ãã¾ãã
$`\quad \xymatrix{
A \ar@/^/[r]^{p}
& B \ar@/^/[l]^{s}
}\\
\quad \text{where }s; p = \id_B\\
\quad \In \cat{C}
`$
$`p;s : A \to A \In \cat{C}`$ ãï¼$`(p, s)`$ ã®ï¼èªå·±ã»ã¯ã·ã§ã³ãendo-sectionãã¨å¼ã¶ãã¨ã«ãã¾ã*2ãèªå·±ã»ã¯ã·ã§ã³ã¯ $`A`$ ã®èªå·±å°ãendomorphismãã«ãªã£ã¦ãã¾ããããã¦ã次ã®è¨ç®ã§åããããã«ãããçèªå·±å°ãªã®ã§ãã
$`\quad (p;s ); (p; s)\\
= p; (s ; p); s\\
= p; \id_B ; s\\
= p; s
`$
ãããçèªå·±å°ãå°å½±ã¨å¼ã¶ãã¨ããç¨èªæ³ã ã¨ããèªå·±ã»ã¯ã·ã§ã³ã¯å°å½±ã§ãããã¨è¨ãã¾ããããããã$`p;s`$ 㯠$`p`$ ã§ãããã¨è¨ã£ã¦ããããã§ã¯ããã¾ãããã$`p;s`$ ã¯ããçèªå·±å°ã§ãããã¨è¨ã£ã¦ããã®ã§ãã
ä»åº¦ã¯ $`(i, r)`$ ãå $`\cat{C}`$ å ã®å ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã ã¨ãã¾ãã
$`\quad \xymatrix{
A \ar@/^/[r]^{i}
& B \ar@/^/[l]^{r}
}\\
\quad \text{where }i; r = \id_A\\
\quad \In \cat{C}
`$
$`r;i : B \to B \In \cat{C}`$ ãï¼$`(i, r)`$ ã®ï¼èªå·±ã¬ãã©ã¯ã·ã§ã³ãendo-retractionãã¨å¼ã¶ãã¨ã«ãã¾ããèªå·±ã¬ãã©ã¯ã·ã§ã³ã¯ $`B`$ ã®èªå·±å°ãendomorphismãã«ãªã£ã¦ãã¾ããããã¦ã次ã®è¨ç®ã§åããããã«ããããããçèªå·±å°ãªã®ã§ãã
$`\quad (r;i ); (r; i)\\
= r; (i ; r); i\\
= r; \id_A ; i\\
= r; i
`$
ãèªå·±ã¬ãã©ã¯ã·ã§ã³ã¯å°å½±ã§ãããã¨è¨ãã¾ãã
èªå·±ã»ã¯ã·ã§ã³ $`p; s`$ ã¯å°å½± $`p`$ ã§ããªãã»ã¯ã·ã§ã³ $`s`$ ã§ãããã¾ãããããããããçèªå·±å°ã¨ããæå³ãªãå°å½±ã§ããèªå·±ã¬ãã©ã¯ã·ã§ã³ $`r; i`$ ã¯å ¥å° $`i`$ ã§ããªãã¬ãã©ã¯ã·ã§ã³ $`r`$ ã§ãããã¾ãããããçèªå·±å°ã¨ããæå³ãªãå°å½±ã§ããããã¦ãèªå·±ã¬ãã©ã¯ã·ã§ã³ãã¬ãã©ã¯ã·ã§ã³ã¨å¼ã¶ç¿æ £ãããã¾ãã
ãã¬ãã©ã¯ã·ã§ã³ãã«é¢ãã¦ã¯ä»¥ä¸ã®éå»è¨äºãåèã«ãªãã§ãããã
åãè¾¼ã¿å°å½±ãã¢
åãè¾¼ã¿å°å½±ãã¢ãembedding-projection pair | EP pairãã¨ããæ¦å¿µãããã¾ãã以ä¸ã®éå»è¨äºã«è¨è¿°ãããã¾ãã
- ãåå¨çã¯3ãã«ã¤ãã¦ããããªèãã¦ã¿ã -- EPãã¢ã®ä¾ã¨ãã¦
- 空èãªæç¸ã¨EPãã¢
åãè¾¼ã¿å°å½±ãã¢ãEPãã¢ãã¯ãå ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã¨å義èªã§ãã
å ¥å°ãinjectionããåãè¾¼ã¿ãembeddingãã¨å¼ã¶ãã¨ãããã¾ããåãè¾¼ã¿ãå ¥å°ãã«å¯¾ããã¬ãã©ã¯ã·ã§ã³ãå°å½±ã¨å¼ã¶ãã¨ãããã¾ããã¾ãå¥ãªãå°å½±ãã®ç¨æ³ã§ããã¬ãã©ã¯ã·ã§ã³ãå°å½±ã¨å¼ã¶å ´åã¯ãèªå·±ã¬ãã©ã¯ã·ã§ã³ã®ã»ããã¬ãã©ã¯ã·ã§ã³ã¨å¼ã¶ãã¨ãå¤ãããã§ãã
ããªãã§ãããªãã¨ã«ãªã£ã¦ãã®ï¼ãã¨èãããããæ´å²ççµç·¯ã¨ããçãããããªãã§ããããããªãªãããã§ãçµæã¨ãã¦ã«ãªã¹ã«ãªããã ãã¨ãããã¨ã§ãã
ç¨èªãEPãã¢ãã使ãã¨ãã®æèã§ã¯ã$`i:A \to B`$ ã® $`A, B`$ ãé åºéåã®ãã¨ãå¤ãã§ãããã®å ´åãå ¥å°ã¬ãã©ã¯ã·ã§ã³ã»ãã¢ã®æ¡ä»¶ã§ãã $`i; r = \id_A`$ ã ãã§ã¯ãªãã¦ã$`r; i \le \id_B`$ ãè¦è«ããã®ãæ®éã§ããããã§ä¸çå· $`\le`$ ã¯ã$`B`$ ã®é åºã«åºã¥ãã¦å®ç¾©ããé¢æ°ãååãã®ããã ã®é åºã§ãã
ããåå¨çã¯3ãã«ã¤ãã¦ããããªèãã¦ã¿ã -- EPãã¢ã®ä¾ã¨ãã¦ãã§ã®EPãã¢ã¯ãä¸çå¼ã®æ¡ä»¶ã課ãã¦ãã¾ãã
[/追è¨]
ãã®ä»ã®å°å½±
å®ã¯ããã£ã¨åä»ãªãå°å½±ãã®ç¨æ³ãããã¾ãããã³ãã«ããã¡ã¤ãã¼ä»ãéåãããã¡ã¤ãã¼ä»ãåã®å°å½±ã§ãããã®æèã§ã®ãå°å½±ãã®ç¨æ³ã¯ããã¸ã«ã«ãªèª¬æã¯ç¡çã§ãæ´å²ççµç·¯ã¨ã¡ã³ã¿ã«ã¢ãã«ã«å¸°çããããã説æã®ãããããªãã§ãã人éã«ã¨ã£ã¦ã®ãç´å¾ãããã表ç¾ã»è¡¨ç¤ºã®å½¢å¼ãã¨ããè¨èªéç¨ãã®è©±ã«ãªã£ã¦ãã¾ãã®ã§ãä»æ¥ã¯ããã¨ãã¾ã*3ã
*1:å空éã®ç´åã«å解ãããã¨ãåºæ¥ã¾ãã
*2:ãã»ã¯ã·ã§ã³ãã¨ãã¬ãã©ã¯ã·ã§ã³ãã®å¯¾å¿ãèæ ®ãã¦ãèªå·±ã»ã¯ã·ã§ã³ãã¨å¼ã³ã¾ããããæå³çã«ã¯ãèªå·±å°å½±ãã®ã»ãããµããããã§ããã
*3:ãéåã®ãã³ãã«ã¨åã®ãã³ãã«ãã¨ãã¢ãã¼å ï¼ ãã³ãã«ã®åãã«ãããã³ãã«ãããå°å½±ãã¨ããè¨èãã©ãããæ°æã¡ã§ä½¿ãã®ããã«ã¤ãã¦æ¸ãã¦ãã¾ãã