2023-07-01ãã1ã¶æéã®è¨äºä¸è¦§
ã代æ°çãªéä¼´ç³»ããèªç¶ãªãã ã»ããååã¸ãã«ããã¦ã次ã®ããã«æ¸ãã¾ããã âèªç¶ãªãã ã»ããååâããâåä½ã¨ä½åä½ãå«ã代æ°ç³»âãä½ãã»ãã¯ãï¼åã¯ï¼ãã¾ãã¹ããªã³ã°å³ãæããªãã¦æ¯åè¡ãè©°ã¾ãã¾ãããªã®ã§ãããã¾ããï¼ãã¾ããã£ããå ±åâ¦
å $`\mathcal{C}`$ ã®å¯¾è±¡ãã¡ããªã¼ãfamily of objectsãã対象ã¨ãã¦ã対象ãã¡ããªã¼ã®ããã ã®æºååå°ãå°ã¨ããåãæ§æã§ãã¾ãããã®åã $`\mathrm{Fam}(\mathcal{C})`$ ã¨ãã¾ããå $`\mathcal{C}`$ ãå¼æ°å¤æ°ã¨èããã¨ã$`\mathrm{Fam}`$ ã¯â¦
å¿ç¨åè«ã§ã¯ãå¤é å¼é¢æãæ§ã ãªåéã§ä½¿ããã¨ãå§ã¾ã£ã¦ãã¾ããå¤é å¼é¢æã®åã¯ãéååä¸ã®ä½å層ã®å ï¼èªå·±é¢æåã«ããªãï¼ã®é¨ååã§ãããéååãä¸è¬ã®åã«ããå¤é å¼é¢æãå®ç¾©ã§ãã¾ããå対çã«ä½å¤é å¼é¢æãå®ç¾©ã§ãã¾ãã$`\newcommand{â¦
ä½ã®å¿ ç¶æ§ããªãå½åããããå·¦ããå³ããæ¶ããã®ã¯å¤§å¤ã§ãããã¬ã¼ã! ã¾ãå·¦ã¨å³ããã«ã³æ¡å¼µãããï¼ ä»¥åããã«ã³æ¡å¼µã«ãããä¸ä¸å·¦å³ï¼ å ¥éã®åã«æ´çãã¹ããã¨ãã¨ãããã£ããé·ãè¨äºãæ¸ããã«ããããããã -- ã«ããããããã§ãããã«ã³â¦
ããæè¿ãç±³ç°ã®è£é¡ã«é¢é£ããè¨äºãå¹¾ã¤ãæ¸ãã¦ãã¾ãã 07-06 大åç±³ç°ã®è£é¡ 07-11 é¢æã»èªç¶å¤æã®ã«ãªã¼å 07-13 å層ãç¹å®å¯¾è±¡ã§è©ä¾¡ããé¢æã®è¡¨ç¾ 07-20 å対åã¨åå¤é¢æã¯ããããã 07-21 é«éé¢æã®è¨ç®ï¼ ç±³ç°ã¨æ·¡ä¸ã®å¨è¾º åæ©ã¯ãªããªã®â¦
é«éé¢æãhigher-order functorãã¯ãé«æ¬¡åã®n-é¢æãn-functor | higher functorãã®ãã¨ã§ã¯ãªãã¦ãé«éé¢æ°ã¨åæ§ã«ãé¢æï¼ã¾ãã¯èªç¶å¤æï¼ãå¼æ°ã«ããããé¢æï¼ã¾ãã¯èªç¶å¤æï¼ãè¿ããããªé¢æã®ãã¨ã§ããé«éé¢æ°ã®è¨ç®ããé¢æ°ãå°ã¨ããåâ¦
大åç±³ç°ã®è£é¡ãªã©ãæ±ãå ´åã¯ãé¢æãèªç¶å¤æã®åãã«æ³¨æããå¿ è¦ãããã¾ããåããã©ããªç´æã§æ±ºãã¦ããããåããä¿åããããï¼å¤æ´ãããããã¡ããã¨è¿½è·¡ããªãã¨æ··ä¹±ãã¾ããåãã®ç´æãä¿åï¼å¤æ´ã®æ³åã¯ãæ§ã ãªè¦å ã絡ãã§ãã¦æãã®ã»â¦
2ã¤ã®ãããã ãªè§£èª¬ã¨ã¯ï¼ ãã¨ãºã®"Should know" ã¬ã³ã¹ã¿ã¼ã®"Basic bicat" æ¸èªæ å ±ãã¡ããã¨æ¸ãã°ä»¥ä¸ã®ã¨ããã Title: Some Definitions Everyone Should Know Author: John C. Baez Date: May 13, 2010 Pages: 6p URL: http://math.ucr.edu/home/bâ¦
大åç±³ç°ã®è£é¡ã使ã£ãè¨ç®ç·´ç¿ããã¦ã¿ã¾ãã$`\newcommand{\cat}[1]{\mathcal{#1}} %\newcommand{\Imp}{ \Rightarrow } \newcommand{\In}{ \text{ in } } \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\op}{\mathrm{op}} \newcommand{\id}{\mathrm{id}â¦
é¢æ°ã¯ã«ãªã¼åã§ãã¦ãããã¯ä¾¿å©ãªéå ·ã«ãªãã¾ããåæ§ã«ãé¢æãã«ãªã¼åãããã¨ãã§ãã¾ããé¢æã®ã«ãªã¼åã¯å²ã¨ã馴æã¿ããç¥ãã¾ãããããã ãã§ãªããèªç¶å¤æãã«ãªã¼åãããã¨ãã§ãã¾ãã$`\newcommand{\cat}[1]{\mathcal{#1}} %\newcommandâ¦
å $`\mathcal{C}`$ ããã¡ã¤ãã¼ç©ãæã¤ãªãã$`\mathcal{C}`$ ã®ã¹ãã³ã®åãæ§æã§ããã¨è¨ããã¦ãã¾ããããã£ã¦ãã»ãã¨ãã§ããããï¼$`\newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\id}{\mathrm{id} } %\newcommand{\op}{\mathrm{op} } \newcoâ¦
æ¨æ¥ã®è¨äºã大åç±³ç°ã®è£é¡ãã«ããã¦ã大åç±³ç°ã®è£é¡ã«é¢ããè¨ç®ã«ã¤ãã¦ã次ã®ããã«æ¸ãã¾ããã ããã¹ãã§è¨ç®ãã¦ããã¨ä½ããªãã ãã¯ã±ã¯ã«ã¡ã«ãªããã¨ãããã®ã§ãçµµç®ã{pictorial | graphical} calculusããå©ç¨ããã®ãå¾çã§ãããããç±³ç°â¦
é常ãç±³ç°ã®è£é¡ã¨å¼ã°ãã¦ããå®çã¯å±æçãlocalãããããã¯ç¹ãã¨ãpoint-wiseãã®ä¸»å¼µã§ãããã£ã¨åºç¯å²ã»å¤§è¦æ¨¡ãªæ§é ã«é¢ãã主張ãè¨ãã¾ãããã®åºç¯å²ã»å¤§è¦æ¨¡ãªä¸»å¼µããããã§ã¯å¤§åç±³ç°ã®è£é¡ãglobal Yoneda lemmaãã¨å¼ãã§ããã¾ããããâ¦
æè¿ï¼2023-06ï¼ã®è¨äºãåç·å½¢ååéåé¢æã®è¡¨ç¾å¯è½æ§ã¨ãã³ã½ã«ç©ã®æ®éæ§ãã«ããã¦ã2ã¤ã®æé次å ãã¯ãã«ç©ºé $`A, B`$ ããã®åç·å½¢ååéåã対å¿ãããå ±å¤é¢æ $`T_{A, B}(\text{ï¼})`$ ã®è¡¨ç¾å¯¾è±¡ããã³ã½ã«ç©ç©ºé $`A\otimes B`$ ã«ãªããã¨ãâ¦