æ¡å¼µå æ¬æ§é ã«ã¤ãã¦ã¯ããæè¿ã®åçè«ï¼ æ¡å¼µå æ¬æ§é ãæã£ãã¤ã³ããã¯ã¹ä»ãåãã§è¿°ã¹ããã¨ãããã¾ããåçè«çåï¼ãææ¨ã®åã¯ã³ã³ããã¹ãã®åã®å対åãåç §ï¼ã¯ããªãããã®æ¡å¼µå æ¬æ§é ãæã¡ã¾ãã
æ¡å¼µå æ¬æ§é ã®å®å¼åã¯è²ã ã¨ããã¾ããã¸ã§ã¤ã³ãã¹ãBart Jacobsãã®å æ¬åãcomprehension categoryãã¯ãæ¡å¼µå æ¬æ§é ãæ½è±¡åº¦ãé«ãç°¡æ½ãªå½¢ã«å®å¼åããåçè«çåã§ããæ¯è¼çã«å ·ä½çã§ããã«ã¼ãã¡ã«æ§é ï¼ããã«ã ã°ã¬ã³ã«ãããåçè«ã®è¤å層ã¢ãã« // ã«ã¼ãã¡ã«æ§é ãåç §ï¼ããæ½å¨çã«æ¡å¼µå æ¬æ§é ãå«ãã§ãã¾ãã
ãã®è¨äºã§ã¯ãå $`\mathcal{C}`$ ä¸ã®æ¡å¼µå
æ¬æ§é ããã¹ãããã¨ãã£ã¹ãã¬ã¤ã¨ãã2ã¤ã®å層ãä¸å¿ã«å®å¼åãã¦ã¿ã¾ãã$`\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\In}{\text{ in }}
%\newcommand{\base}[1]{ {{#1}\!\lrcorner} }
%\newcommand{\Imp}{\Rightarrow}
\newcommand{\Iff}{\Leftrightarrow}
%\newcommand{\u}[1]{\underline{#1}}
\newcommand{\op}{ \mathrm{op} } % used
\newcommand{\hyp}{\text{ï¼} } % used
\newcommand{\id}{ \mathrm{id} } % used
%\newcommand{\o}[1]{\overline{#1}}
\newcommand{\twoto}{ \Rightarrow } % used
\newcommand{\ILT}{ \triangleleft } % immediately less than
\newcommand{\IGT}{ \triangleright } % immediately greater than
\newcommand{\MC}[1]{ \mathscr{#1} } % Morphism Class
`$
- ãã£ã¹ãã¬ã¤å°ã¨ãã£ã¹ãã¬ã¤å層
- ã¹ãããéåã¨ã¹ãããå層
- æ¡å¼µèªç¶å¤æ
- æ¡å¼µå æ¬æ§é ã¨å°å½±å解
- åçè«ç解é
- ã«ã¼ãã¡ã«æ§é ã¨ã®æ¯è¼
ãã£ã¹ãã¬ã¤å°ã¨ãã£ã¹ãã¬ã¤å層
ããã«ã ã°ã¬ã³ã«ãããåçè«ã®è¤å層ã¢ãã« // ã«ã¼ãã¡ã«æ§é ãã«ããã¦ããã£ã¹ãã¬ã¤å°ã¯æ¨æºå°å½±å°ã®å義èªã¨ãã¦å°å ¥ãã¾ãããããã§ã¯ãå $`\cat{C}`$ ã«æåããåãã£ã¦ããå°ã®ã¯ã©ã¹ï¼ãå°ã®ã¯ã©ã¹ã¨å¶ç´ä»ãã¹ãã³ // åã®å°ã®ã¯ã©ã¹ãåç §ï¼ã¨ãã¦ãã£ã¹ãã¬ã¤å°ã®ã¯ã©ã¹ãèãã¾ãããã£ã¹ãã¬ã¤å°ã¯å ¬ççã«ä¸ããããæ¦å¿µãªã®ã§ãå°å ¥æã«ããã£ã¹ãã¬ã¤å°ã¨ã¯ä½ã§ããããã«ã¯è¨åãã¾ããã
å°ã®ã¯ã©ã¹ã¯çè¨ä½ãã¹ã¯ãªããä½ã大æåã§è¡¨ããã¨ã«ãã¾ãã$`\MC{D}`$ ããå $`\cat{C}`$ ã®å°ã®ã¯ã©ã¹ã¨ãã¾ãã
$`\quad \MC{D} \subseteq \mrm{Mor}(\cat{C})`$
å°ã®ã¯ã©ã¹ $`\MC{D}`$ ããã¡ã¤ãã¼å¼ãæ»ãã«é¢ãã¦éãã¦ãããclosed under fiber pullbacksããã¾ãã¯å®å®ãã¦ãããstable under fiber pullbacksãã¨ã¯ã以ä¸ã®ãã¨ã§ãï¼ æ¬¡ã®å½¢ã®ã³ã¹ãã³ãèãã¾ãã
$`\quad \xymatrix{
{}
& \cdot \ar[d]^{d}
\\
\cdot \ar[r]_f
&\cdot
} \In \cat{C}\\
\text{Where}\\
\quad d \in \MC{D}\\
\quad f \in \mrm{Mor}(\cat{C})
`$
ãã®ãã㪠$`d, f`$ ã«å¯¾ãã¦ã極ééï¼ãã«ããã¯åè§å½¢ã¨è¨ã£ã¦ãåãï¼ãåå¨ãã$`d`$ ã®å¯¾è¾ºã®å°ï¼å¾ã§ $`f^\# d`$ ã¨æ¸ãï¼ãåã³ $`\MC{D}`$ ã«å±ãããªãã$`\MC{D}`$ ã¯ãã¡ã¤ãã¼å¼ãæ»ãã«é¢ãã¦éãã¦ãã¾ãã
ãã¡ã¤ãã¼å¼ãæ»ãã«é¢ãã¦éããå°ã®ã¯ã©ã¹ããã£ã¹ãã¬ã¤å°ã®ã¯ã©ã¹ãclass of display {maps | morphisms}ãããããã¯ãã£ã¹ãã¬ã¤ã¯ã©ã¹ãdisplay classãã¨å¼ã³ã¾ãããã£ã¹ãã¬ã¤ã¯ã©ã¹ã®è¦ç´ ããã£ã¹ãã¬ã¤å°ãdisplay {map | morphism}ãã§ããããã¦ããã£ã¹ãã¬ã¤ã¯ã©ã¹ãåããå $`(\cat{C}, \MC{D})`$ ãããã£ã¹ãã¬ã¤ã¯ã©ã¹ä»ãåãcategory with display classã ã¨å¼ã³ã¾ãã
$`(\cat{C},\MC{D})`$ ããã£ã¹ãã¬ã¤ã¯ã©ã¹ä»ãåã¨ããã¨ãä¸è¨ã®ãããªã¹ãã³ $`d, f`$ ã«å¯¾ãã¦ãã«ããã¯åè§å½¢ã¯åå¨ãã¾ããã²ã¨ã¤ã®ãã«ããã¯åè§å½¢ãé¸ãã§ã$`f^\# d`$ ã以ä¸ã®ãããªå°ã ã¨å®ç¾©ãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r] \ar[d]_{f^\# d}
\ar@{}[dr]|{\text{p.b.}}
& \cdot \ar[d]^{d}
\\
\cdot \ar[r]_f
&\cdot
}\\
\quad \In \cat{C}
`$
$`d, f`$ ã«å¯¾ã㦠$`f^\# d`$ ãä¸æçã«æ±ºã¾ãããã§ã¯ãªãã¦ããã«ããã¯åè§å½¢ã®é¸ã³æ¹ã«ãä¾åãã¾ãããã£ã¹ãã¬ã¤ã¯ã©ã¹ã®å®ç¾©ããã$`f^\# d`$ ã¯ãã£ã¹ãã¬ã¤å°ï¼ãã£ã¹ãã¬ã¤ã¯ã©ã¹ $`\MC{D}`$ ã®è¦ç´ ï¼ã§ãã
$`(\cat{C},\MC{D})`$ ã¨ãé¸æãã $`(d, f) \mapsto f^\# d`$ éã«ãããå¯¾å¿ $`\mrm{Disp}(\hyp)`$ ãå®ç¾©ãã¾ãã
- $`X\in |\cat{C}|`$ ã«å¯¾ãã¦ã$`\mrm{Disp}(X) := \{d\in \MC{D}\mid \mrm{cod}(d) = X\}`$ ã¨å®ç¾©ããã
- $`f:X \to Y \In \cat{C}`$ ã«å¯¾ãã¦ãåå $`\mrm{Disp}(f) : \mrm{Disp}(Y) \to \mrm{Disp}(X) \In {\bf Set}`$ ãã$`\mrm{Disp}(f)(d) := f^\# d`$ ã¨å®ç¾©ããã
ãã®ããã«å®ç¾©ãã $`\mrm{Disp}`$ ã¯ã$`\cat{C}`$ ã®å¯¾è±¡ã«éåãå°ã«ååãï¼éåãã«ï¼å¯¾å¿ããã¾ããããããåå¤é¢æã§ããä¿è¨¼ã¯ããã¾ããã$`\mrm{Disp}`$ ãé¢æã«ãªãã¨ããé¸æãã $`(d, f) \mapsto f^\# d`$ éãããã£ã¹ãã¬ã¤ã¯ã©ã¹ $`\MC{D}`$ ã®åè£åãsplittingãã¨å¼ã³ã¾ãã
åè£åãæã¤ãã£ã¹ãã¬ã¤ã¯ã©ã¹ãåè£å¯è½ãsplittableããåè£å¯è½ãªãã£ã¹ãã¬ã¤ã¯ã©ã¹ã¨âç¹å®ãããåè£åâã®çµãåè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ãsplit display classãã¨å¼ã³ã¾ããåè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ã¯åå¤é¢æ $`\mrm{Disp}`$ ãå®ç¾©ãã¾ãããåè£åããåè£å¯è½ããåè£ãã¯ããã¡ã¤ãã¼ä»ãåã®ç¨èªãæµç¨ãã¦ãã¾ãã
éååã¸ã®åå¤é¢æã¯å層ãªã®ã§ãåè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ $`\MC{D}`$ ããä½ããã $`\mrm{Disp}`$ ã¯å層ã§ãããã®å層ãï¼$`\MC{D}`$ ã®ï¼ãã£ã¹ãã¬ã¤å層ã¨å¼ã³ã¾ãã
ã¹ãããéåã¨ã¹ãããå層
å $`\cat{C}`$ ã«ã«ã¼ãã¡ã«æ§é ï¼ããã«ã ã°ã¬ã³ã«ãããåçè«ã®è¤å層ã¢ãã« // ã«ã¼ãã¡ã«æ§é ãåç §ï¼ãå¨ãã¨ã2ã¤ã®å¯¾è±¡ã®ããã ã®æ¡å¼µé¢ä¿ãextension relationããå®ç¾©ã§ãã¾ãã$`Y`$ ã $`X`$ ã®æ¡å¼µãç´æ¥æ¡å¼µãã§ãããã¨ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad X \ILT Y`$
ã«ã¼ãã¡ã«æ§é ã§ã¯ããæ¡å¼µã«ãªã£ã¦ãããã¨ããéçç¶æ³ãè¨è¿°ãã¦ãã¾ããããæ¡å¼µãããã¨ããè¡çºãåçã«è¨è¿°ãã¦ããããã§ã¯ããã¾ããã対象ãæ¡å¼µãã1ã¹ãããã®è¡çºããããã¯ãªã¹ãã®æ«å°¾ã¸ã®é ç®è¿½å ã®è¡çºã $`\mrm{Step}(\hyp)`$ ã¨ãã対å¿ã§è¡¨ç¾ãã¾ãããã
- $`X\in |\cat{C}|`$ ã«å¯¾ãã¦ã$`\mrm{Step}(X)`$ ã¨ããéåã対å¿ãã¦ããããã®éåã®è¦ç´ ãæ¡å¼µã¹ããããextension stepãããããã¯åã«ã¹ããããstepãã¨å¼ã¶ï¼è§£éã¯å¾è¿°ï¼ã
- $`f:X \to Y \In \cat{C}`$ ã«å¯¾ãã¦ãåå $`\mrm{Step}(f) : \mrm{Step}(Y) \to \mrm{Step}(X) \In {\bf Set}`$ ã¨ããååã対å¿ãã¦ããã
- $`\mrm{Step}`$ ã¯åå¤é¢æã«ãªã£ã¦ããã
$`\mrm{Step}`$ ã¯éååã¸ã®åå¤é¢æãªã®ã§å層ã§ããã¹ãããå層ãstep presheafãã¨å¼ã¶ãã¨ã«ãã¾ãï¼[追è¨]å¾ã®è¨äºãã³ã³ããã¹ãã®åã¨ææ¨ã®åã¨ééåãã§ã¯ãã¹ãããå層ã®ä¸è¬åãã¨ã¹é¢æã¨å¼ãã§ãã¾ããï¼[/追è¨]ï¼ã$`\mrm{Step}`$ ã¯ãååã¯ãã¹ããããã§ãããå®ç¾©ä¸ã¯åãªãå層ã§ããä»ã®ã¨ãããå層以å¤ã®æ¡ä»¶ã¯ä»ãã¾ããã
$`\cat{C}`$ ãã«ã¼ãã¡ã«æ§é ãæã¤åã®ã¨ãã$`\mrm{Step}`$ ã次ã®ããã«å®ç¾©ã§ãã¾ãã
- $`X\in |\cat{C}|`$ ã«å¯¾ãã¦ã$`\mrm{Step}(X) := \{X' \in |\cat{C}| \mid X \ILT X' \}`$
- $`f:X \to Y \In \cat{C}`$ ã«å¯¾ãã¦ã$`\mrm{Step}(f)(Y')`$ ã¯æ¨æºãã«ããã¯åè§å½¢ã«ããä¸ãããã $`X'`$ ã¨å®ç¾©ããã
æ¨æºãã«ããã¯åè§å½¢ã«ã¤ãã¦ã¯ããã«ã ã°ã¬ã³ã«ãããåçè«ã®è¤å層ã¢ãã« // ã«ã¼ãã¡ã«æ§é ããåç §ãã¦ãã ããã
åè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ããå®ç¾©ããã $`\mrm{Disp}`$ ãå層ãªã®ã§ãã¹ãããå層ã¨ãªãã¾ããä»ã¯ãå層ã§ããã°ãä½ã§ããã¹ãããå層ãã¨ãããã¨ã«ãªãã¾ããã次ç¯ä»¥éã§æ¡ä»¶ãä»ãã¾ãã
æ¡å¼µèªç¶å¤æ
$`(\cat{C}, \MC{D})`$ ãåè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ä»ãåã¨ãã¾ãã$`\mrm{Disp}`$ ã¯åè£åã«å¯¾å¿ãããã£ã¹ãã¬ã¤å層ã¨ãã¾ããããã²ã¨ã¤ã® $`\cat{C}`$ ä¸ã®å層 $`\mrm{Step}`$ ãããã次ã®ãããªèªç¶å¤æ $`\rho`$ ãããã¨ãã¾ãã
$`\quad \rho :: \mrm{Step} \twoto \mrm{Disp} : \cat{C}^\op \to {\bf Set} \In {\bf CAT}`$
$`\rho`$ ã®èªç¶æ§åè§å½¢ã¯æ¬¡ã®ããã«ãªãã¾ãã
$`\text{For } f: X \to Y \In \cat{C}\\
\quad \xymatrix{
\mrm{Step}(X) \ar[r]^{\rho_X}
& \mrm{Disp}(X)
\\
\mrm{Step}(Y) \ar[r]_{\rho_Y} \ar[u]^{\mrm{Step}(f)}
& \mrm{Disp}(Y)\ar[u]_{\mrm{Disp}(f)}
}\\
\quad \text{commutative }\In {\bf Set}
`$
次ã®ãããªè¨æ³ã®ç´æããã¾ãã
- éå $`\mrm{Step}(X)`$ ã®è¦ç´ $`A`$ ãã $`(X, A)`$ ã®ãããªä¾åãã¢ã¨ãã¦ãæ¸ãã
- $`\mrm{Step}(f)`$ ã® $`B \in \mrm{Step}(Y)`$ ã¸ã®ä½ç¨ï¼ã®çµæï¼ã $`f^* B \in \mrm{Step}(X)`$ ã¨æ¸ãã
- å° $`\rho_X(A) = \rho_X( (X, A) )`$ ã®åã $`X\cdot A`$ ã¨æ¸ãã次ã®è¨æ³ã使ãã
$`\rho_X( (X, A) ) = (\rho^{X, A} : X\cdot A \to X)`$
ããã¨ãä¸ã®èªç¶æ§åè§å½¢ã®è¦ç´ ã追ããããå³å¼ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \xymatrix{
(X, f^* B) \ar@{|->}[r]^-{\rho_X}
& (\rho^{X, f^* B} : X\cdot f^* B \to X)
\\
(Y, B) \ar@{|->}[r]_-{\rho_Y} \ar@{|->}[u]^{\mrm{Step}(f)}
& (\rho^{Y, B}:Y\cdot B \to Y) \ar@{|->}[u]_{\mrm{Disp}(f)}
}
`$
ä¸ã®å³å¼ã®æ å ±ããæãæ¹ãå°ãå¤ãã¦æãã¦ã¿ãã¨ï¼
$`\quad \xymatrix{
{X\cdot f^* B} \ar[r]^{f^\uparrow} \ar[d]_{\rho^{X, f^* B}}
\ar@{}|{\text{p.b.}}
& {Y\cdot B} \ar[d]^{\rho^{Y, B}}
\\
X \ar[r]_f
& Y
}\\
\quad \In \cat{C}
`$
ããã§ã$`f^* B`$ ã¯ã¹ããã $`B`$ ã® $`f`$ ã«æ²¿ã£ãå¼ãæ»ãï¼åå¤é¢æ $`\mrm{Step}`$ ã«ããéåãä½ç¨ï¼ã$`\cdot`$ ã¯å¯¾è±¡ãæ¡å¼µããæ¼ç®ã$`\rho^\hyp`$ ã¯æ¡å¼µã«ä¼´ãæ¨æºå°å½±ã§ããã£ã¹ãã¬ã¤å°ã«ãªã£ã¦ãããã¨ããç¶æ³ã§ãã
é¢æ $`\mrm{Disp}`$ ã¯ããã£ã¹ãã¬ã¤å°ã¨ä»»æã®å°ï¼ã®ã³ã¹ãã³ï¼ã«å¯¾ãã¦ãé¸æãããæ¨æºãã«ããã¯åè§å½¢ã対å¿ãããã®ã§ããã®æ¨æºãã«ããã¯åè§å½¢ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \xymatrix{
{f^\# (Y \cdot B)} \ar[r]^{f^\uparrow} \ar[d]_{f^\# (\rho^{Y, B})}
\ar@{}[rd]|{\text{p.b.}}
& {Y\cdot B} \ar[d]^{\rho^{Y, B}}
\\
X \ar[r]_f
& Y
}\\
\quad \In \cat{C}
`$
$`f^\#`$ ã¯ãã¡ã¤ãã¼å¼ãæ»ãã表ãã¾ãã
å ã®å³å¼ã¨ä»ã®å³å¼ãæ¯è¼ããã¨æ¬¡ãè¨ãã¾ãã
$`\quad f^\#(Y\cdot B) = X\cdot f^* B\\
\quad f^\# (\rho^{Y, B}) = \rho^{X, f^* B}
`$
æ¡å¼µå æ¬æ§é ã¨å°å½±å解
åè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ä»ãå $`(\cat{C}, \MC{D})`$ ä¸ã«ã$`\cat{C}`$ ã®ãã£ã¹ãã¬ã¤å層 $`\mrm{Disp}`$ ãä½åãã¿ã¼ã²ããå層ãã¨ããèªç¶å¤æ $`\rho`$ ãããã¨ãã¾ãããã®ã¨ãã$`(\cat{C}, \MC{D}, \rho)`$ ãï¼$`\cat{C}`$ ä¸ã®ï¼æ¡å¼µå æ¬æ§é ãextension-comprehension structureããå®ç¾©ãã¾ãã
èªç¶å¤æ $`\rho`$ ã®åãã½ã¼ã¹å層ããã¹ãããå層ãstep presheafãã¨å¼ã³ãèªç¶å¤æ $`\rho`$ ã¯æ¡å¼µèªç¶å¤æãextension natural transformationãã¨å¼ã³ã¾ããããã§ããããã¦ãã¹ãããå層ã¯æ¡å¼µå æ¬æ§é ã®æ§æç´ ã¨ä½ç½®ä»ãã¾ãã
ãã®å½¢ã®æ¡å¼µå æ¬æ§é ã¯ãã¸ã§ã¤ã³ãã¹ã®å æ¬åãcomprehension categoryãã®ç¹æ®ãªå ´åï¼ãã¡ã¤ãã¬ã¼ã·ã§ã³ãé¢æ£ã®å ´åï¼ã¨åå¤ãªã®ã§ãããå¹¾åãããããããæ°ããã¾ãã
ã«ã¼ãã¡ã«æ§é ã®ã¨ãã«å£ã£ã¦ãæ¡å¼µé¢ä¿ $`\ILT`$ ã次ã®ããã«å®ç¾©ãã¾ãã
$`\quad X \ILT X' :\Iff \exists A\in \mrm{Step}(X).\, X' = X\cdot A`$
æ¡å¼µå æ¬æ§é ãåããå $`\cat{C}`$ ã«ããã¦ã$`Y \ILT Y'`$ ã§ãã $`Y, Y'`$ ã«å¯¾ãã¦ã次ã®å° $`g`$ ãèãã¾ãã
$`\quad \xymatrix{
{}
& Y' \ar[d]^{\rho^{Y'}_Y}
\\
X \ar[ru]^g
& Y
}\\
\quad \In \cat{C}
`$
ãæè¿ã®åçè«ï¼ æ¡å¼µå æ¬æ§é ãæã£ãã¤ã³ããã¯ã¹ä»ãåãã§ã¯ããã®å½¢ã®å°ããã¼ãã¼ã³å°ã¨å¼ã³ã¾ããï¼è¨å®ã¯å°ãéãã¾ããï¼ã$`\cat{C}`$ ãã«ã¼ãã¡ã«æ§é ãæã£ã¦ããã°ãä»»æã®å°ããã¼ãã¼ã³å°ã«ãªãã¾ãã
ä¸è¨ã®å° $`g`$ ãã次㮠$`f, h`$ ã«å解ãããã¨æãã¾ãã以ä¸ã§ $`X \ILT X'`$ ã§ãã
$`\quad \xymatrix{
X' \ar[r]^{f^\uparrow} \ar@{.>}@/_1pc/[d]_{\rho^{X'}_X}
& Y' \ar[d]^{\rho^{Y'}_Y}
\\
X \ar[ru]^g \ar[r]_f \ar[u]_{h}
& Y
}\\
\quad \In \cat{C}
`$
ããã§ãå®ç·ã§æãããå°éã¯å¯æã«ãªãã¾ãã$`f^\uparrow`$ ã¯ã対象ã®æ¡å¼µ $`Y\ILT Y', X\ILT X'`$ ã«ä¼´ãå°ã®æ¡å¼µãæã¡ä¸ãã $`f \ILT f^\uparrow`$ ã§ãã$`h`$ ã¯æ¨æºå°å½±ã§ãããã£ã¹ãã¬ã¤å° $`\rho^{X'}_X`$ ã®ã»ã¯ã·ã§ã³ã«ãªã£ã¦ãã¾ããã¤ã¾ãã次ã®çå¼ãæç«ãã¾ãã
$`\quad h ; \rho^{X'}_X = \id_X \;\In \cat{C}`$
ãã®ãããªå解ãå¾ãããã¨ãã$`f`$ ã $`g`$ ã®ç¬¬ä¸å°å½±ãfirst projectionãã$`h`$ ã第äºå°å½±ãsecond projectionãã¨å¼ã³ã¾ãã第ä¸å°å½±ã¨ç¬¬äºå°å½±ããããã¨ã® $`g`$ 㯠$`h; f^\uparrow`$ ã¨ãã¦åç¾ã§ãã¾ãï¼[追è¨]ã第ä¸å°å½±ãã第äºå°å½±ãã¯ç´ããããç¨èªãªã®ã§æ³¨æï¼ ãåçè«ã«åºã¦ãã第ä¸å°å½±ã¨ç¬¬äºå°å½±ãåç §[/追è¨]ï¼ã
$`g`$ ã®ç¬¬ä¸å°å½±ã¯ $`f := g; \rho^{Y'}_Y`$ ã¨ããã°ããã®ã§ç°¡åã§ãã第äºå°å½±ã¯ãåè§å½¢ããã«ããã¯åè§å½¢ã§ãããã¨ããå¾ããã¾ãã次ã®å½¢ã®å³å¼ãèãã¾ãã
$`\quad \xymatrix@R+1pc@C+1pc{
X \ar@/^/[rrd]^g \ar@{=}@/_1pc/[rdd]_{\id_X} \ar@{.>}[dr]|{?}
&{}
&{}
\\
{}
& X' \ar[r]^{f^\uparrow} \ar[d]_{\rho^{X'}_X}
\ar@{}[dr]|{\text{p.b.} }
& Y' \ar[d]^{\rho^{Y'}_Y}
\\
{}
& X \ar[r]_f
& Y
}\\
\quad \In \cat{C}
`$
åè§å½¢ããã«ããã¯ã§ãããã¨ãããçå符ã®å°ã¯ä¸æã«åå¨ãã¾ããããã $`h:X \to X'`$ ã¨ãã¾ãã次ã®çå¼ã¯èªåçã«æºãããã¾ãã
$`\quad g = h; f^\uparrow\\
\quad h; \rho^{X'}_X = \id_X
`$
$`h`$ ããç®çã®ç¬¬äºå°å½±ã§ãã
åçè«ç解é
æ¡å¼µå æ¬æ§é ãåããå $`\cat{C}`$ ã¯ãåçè«çãªåã¨ãªãã¾ãã$`\cat{C}`$ ã¯ãåã·ã¹ãã ã®æ§æè«çæ§é ãã¢ãã«åãã¦ããã¨è§£éã§ãã¾ãã次ã®ããã«è§£éãã¾ãã
- å $`\cat{C}`$ ã®å¯¾è±¡ã¯ã³ã³ããã¹ããcontextãã¨è§£éããã
- å $`\cat{C}`$ ã®å°ã¯ä»£å ¥ãsubstitutionãã¨è§£éããã
- 対象ã®æ¡å¼µ $`(X, A) \mapsto X\cdot A`$ ã¯ãã³ã³ããã¹ãã«å宣è¨ãã²ã¨ã¤è¿½å ãããã¨ã«ããã³ã³ããã¹ãæ¡å¼µãcontext extensionãã¨è§£éããã
- æ¨æºå°å½± $`\rho^{X'}_X`$ ã¯ãæ°ãã«è¿½å ãããå宣è¨ã¯ç¡è¦ãã¦ãæ®ãã¯èªæãªï¼æçãªï¼ä»£å ¥ã¨è§£éããã
- ã¹ãããéå $`\mrm{Step}(X)`$ ã®è¦ç´ ã¯ãã³ã³ããã¹ã $`X`$ ã«ããã¦æ´å½¢å¼ãwell-formedããªåé ãtype termãã¨è§£éããã
- ã»ã¯ã·ã§ã³ã®éå $`\mrm{Sect}(\rho^{X'}_X)`$ ã®è¦ç´ ã¯ãã³ã³ããã¹ã $`X`$ ã«ããã¦æ´å½¢å¼ãwell-formedããªã¤ã³ã¹ã¿ã³ã¹é ãinstance termãã¨è§£éãã
- å° $`g:X \to Y' \:\text{ where }Y\ILT Y'`$ ã®å°å½±å解ã¯ãä»£å ¥ã®å解ãdecomposition of substitutionãã¨è§£éããã第ä¸å°å½±ã¯æ¡å¼µåã®ä»£å ¥ã第äºå°å½±ã¯æ¡å¼µããâå·®åâã表ç¾ããã¤ã³ã¹ã¿ã³ã¹é ã¨è§£éããã
- $`f^*, f^\#`$ ã®é©ç¨ã¯ãä»£å ¥ã®åé ï¼ã³ã³ããã¹ãã¸ã®é©ç¨ãapplicationãã¨è§£éããããã¬çµåå¼ãæ»ã $`f^*`$ ï¼è¨æ³ã¯ãªã¼ãã¼ãã¼ããã¦ããï¼ã¯ãã¤ã³ã¹ã¿ã³ã¹é ã¸ã®é©ç¨ã¨è§£éããã
å¼ã³åã®å°è±¡ãéãã®ã§ãå¥å¦ãªå¯¾å¿ã®ããã«æããããç¥ãã¾ããããå¼ã³åãæ°ã«ããªããã°ãæ§é çã«ã¯ã¾ã£ã¨ããªå¯¾å¿ã§ãã
ã«ã¼ãã¡ã«æ§é ã¨ã®æ¯è¼
å $`\cat{C}`$ ã«ã«ã¼ãã¡ã«æ§é $`({\bf 1}, \ell, \mrm{ft}, \ILT)`$ ãè¼ã£ã¦ããã¨ãã¾ããã«ã¼ãã¡ã«æ§é ã¯æ¡å¼µå æ¬æ§é ãå®ç¾©ãã¾ãããåãªãæ¡å¼µå æ¬æ§é ããå¼·ãæ§è³ªãæã¡ã¾ãã
ã«ã¼ãã¡ã«æ§é ã§ã¯ãããã®ä¸ã®å§ã¾ãã¯ä½ããªãã£ããã¨ããç¥è©±ãäºå®ã«ãªãã¾ããçµå¯¾è±¡ $`{\bf 1}`$ ãããã®ä¸ã®å§ã¾ãããä½ããªãç¶æ ãã空ãªã¹ããã表ãã¾ãã対象ã®é·ã $`\ell`$ ã¨è¦ªé¢æ° $`\mrm{ft}`$ ããããã¨ãã次ãè¨ãã¾ãã
- çµå¯¾è±¡ä»¥å¤ã®ãã¹ã¦ã®å¯¾è±¡ã¯ãæéåã®æ¡å¼µã¹ãããã«ããä½ããããã®ããã®ä½ãæ¹ã¯ä¸æçã§ããã
ãã®ãã¨ã説æãã¾ãããããã®ããã«ãæ¡å¼µé¢ä¿ $`\ILT`$ ã®éåãã®è¨å·ï¼æå³ã¯åãï¼ãå°å ¥ãã¦ããã¾ãã
$`\quad Y \IGT X :\Iff X \ILT Y \Iff \mrm{ft}(Y) = X`$
çµå¯¾è±¡ã§ã¯ãªãä»»æã®å¯¾è±¡ $`X\in |\cat{C}|`$ ãã¨ãã¨ã次ã®ãããªå¯¾è±¡ã®ç³»åãä½ãã¾ãã
$`\quad X \IGT X_1 \IGT \cdots \IGT X_n = {\bf 1}`$
ããã§ã$`n = \ell(X)`$ ã§ããããã¯ã$`|\cat{D}|`$ ä¸ã®é¢ä¿ $`\IGT`$ ãæ´ç¤ãwell-foundedãã§ãããã¨ãããã¨ã§ããçµå¯¾è±¡ï¼ä¸çã®å§ã¾ãï¼ã«è³ãç³»å³ã確å®ã«æéçã«è¾¿ããã®ã§ãæ£ä½ä¸æã®å¯¾è±¡ã¯åå¨ãã¾ããã
対象ã®é·ã $`\ell(X)`$ ã¯ããªã¹ãã®é·ãï¼ããªã¼ã®ãã¼ãã®é«ãã¨ãã¦è§£éã§ãã¾ãããä¸çã®å§ã¾ãããåå®ããä¸ä»£ãgenerationãã®çªå·ã¨ã解éã§ãã¾ããä¾ãã°ã$`\ell(X) = 1`$ ãªãã°ãä½ããªãã£ãä¸çã«åãã¦çã¾ãã第ä¸ä¸ä»£ã®å¯¾è±¡ã§ãã
ã«ã¼ãã¡ã«æ§é ã§ã¯ãæ示çãªã¹ãããï¼åçè«ã§è¨ãã°åï¼ã¯åå¨ãã¾ããããããã$`X \ILT X'`$ ã§ããã㢠$`(X, X')`$ ãã¹ãããã¨èãããã¨ãã§ãã¾ãã次ã®ç³»åãèãã¦ã¿ã¾ãã
$`\quad {\bf 1} \ILT X_1 \ILT \cdots \ILT X_{n - 1} \ILT X_n = X`$
$`A_k := (X_{k - 1}, X_k)`$ ã¨ç½®ãã¨ãä¸è¨ã®åã¯ã¹ãããã®ãªã¹ãã¨ãã¦æ¸ãã¾ãã
$`\quad X = \langle A_1, \cdots, A_n\rangle`$
次ã ã¨æ¡å¼µãããç³»åã¯ãä»®æ³çâå·®åâã§ããã¹ãããã®ãªã¹ãã¨ãã¦æ¸ãããã¨ã«ãªãã¾ãã
ã«ã¼ãã¡ã«æ§é ãæã¤åã¯ãé·ãæéãªãå®å ¨ã«æ£ä½ãåãã£ãã¹ãããã®ãªã¹ãã対象ï¼åçè«ã§è¨ãã°ã³ã³ããã¹ãï¼ã¨ããã®ã§ãå ·ä½çãªæ±ããå¯è½ã¨ãªãã¾ãã