æ¨æ¥ã®è¨äºãå ¨ç§°ã»åå¨ééåã®è²ã ãã¾ã¨ããçµµãã«å¯¾ãããªãã±ã®ãããªãã®ã§ããããæ¨æ¥ã®è¨äºã¨ã¯ç¬ç«ã«èªãã¾ãã
空èãªæç¸ãvacuous quantificationãã®è©±ããã¾ããéä¼´é¢æ対ã®è¦³ç¹ããã®èª¬æã§ãã
å 容ï¼
- 空èãªæç¸ã¨ã¯
- éä¼´ãã¢ã¨EPãã¢
- å¤æ°æ°´å¢ãã¨ç©ºèãªæç¸
- å°å½±ã®éåã¨åã¯EPãã¢
空èãªæç¸ã¨ã¯
PããéåXÃYä¸ã®è¿°èªã ã¨ãã¾ããæ§æçã«ã¯ãPã¯å¤æ°x, yãå«ãï¼å¯è½æ§ãããï¼ã¨ãã¾ããæ£ç¢ºã«ã¯ãæå³é åã®è¿°èªï¼çå½å¤ãã¨ãé¢æ°ï¼ P:XÃYâ{True, False} ã¨ãããã表ç¾ããæ§æé åã®åå¨ç©ã§ããè«çå¼ã¯å¥ç©ãªãã§ãããããã§ã¯ãã¾ãåºå¥ããªãã§ãåãè¨å·ã§è¡¨ãã¾ãããå½é¡ãã¨ããè¨èããæå³é åã®è¿°èªã ã£ãããæ§æé åã®è«çå¼ã ã£ãããæèã§æããã®ãå¤ããã¾ãã
ãã¦ãå ¨ç§°å½é¡ âxâX.P(x, y) ãåå¨å½é¡ âxâX.P(x, y) ãä½ãã¨ãå¤æ°xã¯æç¸ãbindããããã®ã§ãèªç±å¤æ°ã¯yã ãã«ãªããéåYä¸ã®è¿°èªã¨ãªãã¾ããééåï¼âãâï¼ã®æç¸ä½ç¨ã«ãããè¿°èªã®é åãdomain of discourseããå¤ããã¾ã -- æç¸ä½ç¨ã¨ã¯ãããããã®ã§ãã
Pã«å¤æ°xãåºç¾ãã¦ãªãå ´åã¯ã©ãã§ãããããä¾ãã°ãX = Y = R ã¨ãã¦ã
- P â¡ (y2 = 2)
ããã§ã'â¡'ã¯è«çå¼ï¼æ§æç表ç¾ï¼ã¨ãã¦åããã¨ã§ããæ§æçãªè«çå¼ãé¢æ°ã¨ã¿ãªãã®ã«åä»ãã©ã ãè¨æ³ã使ããªãã
- P = λ(x, y)âRÃR.(y2 = 2 : {True, False})
åé ã§ããã¾ãåºå¥ããªããã¨è¨ã£ãã®ã¯ãè«çå¼ã¨ãã¦ã® y2 = 2 ã¨ãé¢æ°ã¨ãã¦ã® λ(x, y)âRÃR.(y2 = 2 : {True, False}) ãã©ã¡ããåãPã§è¡¨ãããã¨ããææ表示ã§ãã
è«çå¼ P â¡ (y2 = 2) ãééåã§æç¸ããã¨ï¼
- âxâR.P â¡ âxâR.(y2 = 2)
- âxâR.P â¡ âxâR.(y2 = 2)
å½¢ã®ä¸ã§ã¯æç¸ãã¦ã¾ãããæç¸å¤æ°ãåºç¾ããªãã®ã§ãæç¸ã¯ç¡æå³ã«ã¿ãã¾ãããã®ãããªæç¸ã空èãªæç¸ãvacuous quantificationãã¨å¼ã³ã¾ãããè¿°èªè«çã¨ã¤ã³ããã¯ã¹ä»ãåã¨éééä¼´æ§ãã§ã¯ãè¥å¹²æ訳ãã¦ãç¡æå³ééãã¨è¨ã£ã¦ã¾ããã
ããã¯ååéãã空èã§ç¡æå³ã«æãã¾ãããå®ã¯ãªããªãé¢ç½ããã®ã§ãã空èãªæç¸ãåæããããã«ãé åºéåï¼ããããã¬é åºéåï¼ã«ãããéä¼´æ§ã復ç¿ãã¾ãããï¼æ¬¡ç¯ï¼ã
éä¼´ãã¢ã¨EPãã¢
A = (A, â¦), B = (B, â¦) ããã¬é åºéåã¨ãã¾ãããã¬é åº'â¦'ã¯æ¬¡ãæºããã¾ãã
- a ⦠a ---(åå°å¾)
- a ⦠b, b ⦠c â a ⦠c ---(æ¨ç§»å¾)
åå f:AâB ãå調ãmonotoneãã ã¨ã¯ã
- a ⦠b â f(a) ⦠f(b)
ã§ãããã¨ã§ãã
f:AâB, g:BâA ãå調ååã ã¨ãã¦ã次ã®æ¡ä»¶ã«ã¤ãã¦èãã¾ãã
- âaâA. a = g(f(a))
- âaâA. a ⦠g(f(a))
- âbâB. f(g(b)) = b
- âbâB. f(g(b)) ⦠b
ãã®ãªããã2ã¤ã®æ¡ä»¶ãé¸ãã§çµã¿åããã¾ããã¾ãï¼
- (âaâA. a = g(f(a))) ⧠(âbâB. f(g(b)) = b)
ãã®ã¨ããfã¨gã¯äºãã«éã§ããfã¨gã¯éãã¢ã¨å¼ãã§ããã§ãããã
次ã«ï¼
- (âaâA. a ⦠g(f(a))) ⧠(âbâB. f(g(b)) ⦠b)
ãã®ã¨ããfã¨gã¯éä¼´ãã¢ã§ãã詳ããã¯æ¬¡ã®è¨äºãåç §ãã¦ãã ããã
éãã¢ã¨éä¼´ãã¢ã®ä¸éã®åå¨ã¨ãã¦ï¼
- (âaâA. a = g(f(a))) ⧠(âbâB. f(g(b)) ⦠b)
ãã®ã¨ããfã¨gã¯EPãã¢ãEP pairãã¨å¼ã³ã¾ããEPã¯"embedding-projection"ã®ãã¨ã§ãfãåå°åãè¾¼ã¿ãgãããã«å¯¾ããå ¨å°å°å½±ã¨è§£éã§ãã¾ããâaâA. a = g(f(a)) ã ããªããgãã¬ãã©ã¯ã·ã§ã³ãå¼ãè¾¼ã¿ãã¨å¼ã¶ã®ã§ãERãembedding-retractionããã¢ã§ããï¼ãã£ã¨ããEPãã¢ã¨ERãã¢ã¯æ確ã«åºå¥ãããªãããã§ããï¼è©³ããã¯æ¬¡ã®è¨äºãåç §ãã¦ãã ããã
- ã¬ãã©ã¯ã·ã§ã³ã¨ããçèªå·±å°
- ãåå¨çã¯3ãã«ã¤ãã¦ããããªèãã¦ã¿ã -- EPãã¢ã®ä¾ã¨ãã¦
å¤æ°æ°´å¢ãã¨ç©ºèãªæç¸
éåï¼è°è«ã®é åï¼Yä¸ã®è¿°èªå ¨ä½ã®éåãPred[Y]ã¨æ¸ãã¾ãã'Pred'ã¨å¤ªåã«ããã»ããåè«ã¨ç¸æ§ãããã§ãããé¢åãªãã§å¤ªåã«ãã¾ãããPred[XÃY]ãåã解éã§ãã
Ï2:XÃYâY ã¯ç¬¬äºå°å½±ã¨ãã¾ãããã®ç¬¬äºå°å½±ã«ãããè¿°èªï¼çå½å¤ãã¨ãé¢æ°ï¼ã®å¼ãæ»ã Ï2*:Pred[Y]âPred[XÃY] ãèªå°ããã¾ãã
- Ï2*(Q) := Ï2;Q = QÏ2
ããä¸ã®å®ç¾©ã¯ãæå³çã«èãããã®ã§ãããæ§æçã«Ï2*ãèããã¨ãå¤æ°yã ããå«ãï¼å¯è½æ§ãããï¼è«çå¼Qãããå¤æ°x, yã®è«çå¼ã ã¨âæãç´ãâãã¨ã§ããâæãç´ãâã ããªã®ã§ãå®éã«ã¯ä½ãèµ·ãããåããã«ããæä½ã§ãã
ä¾ãã°ãQ â¡ (y2 = 2) ã¨ãã¦ãÏ2*(Q) ã¯ãè¦ãç®ã¯Qã¨ã¾ã£ããå¤ããã¾ãããè¦ã¦åºå¥ã§ãã¾ãããããããå¤æ°xã¨yãæã¤è«çå¼ã¨ã¿ãªãã y2 = 2 ãªã®ã§ãÏ2*(Q) = P ãªã®ã§ããããã§ãPã¯åç¯ã§å®ç¾©ããããã¾ãã¾xãå«ã¾ãªãäºå¤æ°è«çå¼ãã§ãã
P, Qãæå³çã«èãã¦ãçå½å¤ãã¨ãé¢æ°ã¨è§£éãããªãï¼
- Q = λyâR.(y2 = 2)
- P = λ(x, y)âR.(y2 = 2)
å®éã«ã¯åºç¾ããªãå¤æ°ã足ãã¦ãããã¨ãå¤æ°æ°´å¢ããvariable thinningãã¨å¼ã³ã¾ããå®æ°ãé¢æ°ã¨ã¿ãªãã®ãå¤æ°æ°´å¢ãã§ãã
- C0 = 3 ï¼ã»ãã¨ã®å®æ°ï¼
- C1 = λxâR.3 ï¼ä¸å¤æ°ã®å®æ°é¢æ°ï¼
- C2 = λ(x, y)âRÃR.3 ï¼ãå¤æ°ã®å®æ°é¢æ°ï¼
空èãªæç¸ãå¤æ°æ°´å¢ãã¯ãæ§æçãªæä½ã§ãããæ§æçã«èãã¦ããã¨åããã«ããæ£ä½ä¸æã§ããæå³çã«èãã¾ããããéåXä¸ã®å½é¡Pã¯ãP:Xâ{True, False} ã¨ããçå½å¤é¢æ°ã¨ã¿ãªãã°æå³ç解éã«ãªãã¾ãããããã«ãå¤å»¶çã«èã㦠{xâX | P(x)} ã®ãããªéåãå½é¡ã®æå³ã¨ãã¾ãããã
ããã¨ãÏ2:XÃYâY ã«ä¼´ã£ã¦ãéåé¢æ° Ï2*:Pow(Y)âPow(XÃY) ãå®ç¾©ã§ãã¾ããããã§ãPow(-) ã¯ããéåã表ãã¾ãã
- Ï2*(B) := {(x, y)âXÃY | Ï2(x, y)âB} = {(x, y)âXÃY | yâB}
åå¨è¨å·âã«å¯¾å¿ããåå㯠Ï2*:Pow(XÃY)âPow(Y) ã§ã次ã®ããã«å®ç¾©ãããåé¢æ° Ï2*:Pow(XÃY)âPow(Y) ã§ãã
- Ï2*(A) := {yâY | âxâX.(Ï2(x, y) = y ⧠(x, y)âA)} = {yâY | âxâX.((x, y)âA)}
ãã®ç¶æ³ãªãã°ãÏ2*, Ï2* ã®éä¼´æ§ãè¦ãããããªãã¾ãã次ã®å³ã¯ãåå¨è¨å·ã®é¤å»è¦åã«ã¤ãã¦èãããã§åºãããã®ã§ãè¨å®ãå°ãéãã¾ãï¼ç¬¬äºå°å½±ãããªãã¦ç¬¬ä¸å°å½±ï¼ãããã³ãã«ãªãã§ãããã
å°å½±ã®éåã¨åã¯EPãã¢
ããããå ã¯ãXÃYâY ã¨ããå°å½±ãåã«Ïã¨æ¸ããã¨ã«ãã¾ããæ¯åä¸ä»ã'2'ãæ¸ãã®ã¯ããã©ããããã第ä¸å°å½±ã§ã第äºå°å½±ã§ã話ã¯å¤ãããªãã®ã§ã
åç¯ã§è¿°ã¹ãéåååã¯ãÏ*:Pow(Y)âPow(XÃY) ã§ããéåååãå¼ãæ»ããpullbackãã¨ãå¼ã³ã¾ãããÏã¨éæ¹åã«é¨åéåã移ãããã§ããè¿°èªï¼çå½å¤é¢æ°ï¼Pã«å¯¾ããÏã®åçµå PÏ ããé¨åéåBã®éå {(x, y)âXÃY | Ï(x, y)âB} ããã©ã¡ããå¼ãæ»ãã¨å¼ã³ãÏ*(-) ã§è¡¨ãã¾ããåè«ã®ãã¡ã¤ãã¼ç©ãå¼ãæ»ããªã®ã§ããå¼ãæ»ããã¯å¤ç¾©èªã§ãã
AâPow(XÃY) ã«å¯¾ããå Ï*(A) ã¯ã
- Ï*(A) = {yâY | (x, y)âA ã§ãã xâX ãåå¨ãã}
åã対å¿ãããÏ*ããã®å¤ Ï*(A) ãåéããpushuout | push-forwardãã¨ãå¼ã³ã¾ãã
Ï*ã¨Ï*ã®ããã ã«æ¬¡ã®é¢ä¿ãããã®ã¯ããã«åããã§ãããã
- BâPow(Y) ã«å¯¾ãã¦ãÏ*(Ï*(B)) = B
- AâPow(XÃY) ã«å¯¾ãã¦ãA â Ï*(Ï*(A))
ããã¯ãÏ*ã¨Ï*ãEPãã¢ã«ãªã£ã¦ãããã¨ã§ããÏ*ãembeddingã§ãÏ*ãprojectionã§ãã
Ï*ã®è«ççæ§æç解éãåå¨ééåâãªã®ã§ãÏ*ã¨âãEPãã¢ã¨è¨ã£ã¦ãåãã§ããããã«ãÏ*ã®è«ççæ§æç解éãå¤æ°æ°´å¢ããªãã¬ã¼ã¿ãªã®ã§ãå¤æ°æ°´å¢ããªãã¬ã¼ã¿ã¨åå¨ééåãEPãã¢ã¨ãè¨ãã¾ããEPãã¢ã¯ãéä¼´ãã¢ã®ç¹æ®ãªãã®ã ã£ãã®ã§ãå¤æ°æ°´å¢ããªãã¬ã¼ã¿ã¨åå¨ééåã¯å®éã«éä¼´ãã¢ã§ãã
ä¸è¨ã®äºå®ããè«ççæ§æçã«ããã°ï¼
- âxâX.Q(y) â Q(y)
- P(x, y) â âxâX.P(x, y)
å¤æ°æ°´å¢ããªãã¬ã¼ã¿ã¯è¡¨é¢ã«ç¾ããªãã®ã§ã[x, y]ã¨ããå½¢ã§ç¡çã«è¡¨ç¾ããã°ï¼
- (âxâX.[x, y]Q(y)) â Q(y)
- P(x, y) â [x, y](âxâX.P(x, y))
å ¨ç§°ééåã®å ´åã¯ãå°ãè¤éã«ãªãã¾ãããåãã¹ã¸ããããã©ã£ã¦ã次ãå¾ããã¾ãã
- P(x, y) â ([x, y]âxâX.P(x, y))
- ([x, y]âxâX.P(x, y)) â P(x, y)
ããã¾ã§è©±ããå 容ã¯ãå°å½±ãåãéåãè£éåãªã©ã®æå³çï¼éåè«çï¼ãªäºå®ããEPãã¢ãéä¼´æ§ãä»ãã¦è«ççæ§æçã«å解éãã¦ã¿ãã®ã§ããè«çã§ã¯æ§æè«ï¼è«çå¼ã¨è¨¼æï¼ã®ã¦ã§ã¤ããé«ãã§ãããæ§æè«ã ãã§ã¯ãªããªãç解ãã«ãããã¨ãããã®ã§ãæå³ç解éãä½µç¨ãã¾ããã -- ã¨ããããã·ã§ããã