ã«ãã¦ãå±éåï¼Karoubi envelopeï¼ã®è©±ã¯ããããã¨ãã¦ããã¤ããã
ã«ãã¦ãå±éåã®å®ä¾ã¯èªåã§ä½ã£ã¦ãã ãã -- ã¨è¨ãããã¨ããã§ãããããã¤ãã®å®ä¾ãæ示ãã¦ããã¾ããéåã®åSetãé åºéåã®åOrdã®ã«ãã¦ãå±éåã¯ãè¨ç®ï¼ã³ã³ãã¥ã¼ã¿ãããã°ã©ã ï¼ã¸ã®å¿ç¨ã§æ±ãã¤ãããªã®ã§ãããã§ã¯ãããã¨ã¯å¥ãªä¾ãåºãã¾ãã
å ã®åã¨ã«ãã¦ãå±éåãå¤ãããªãä¾
ä¾ãä½ãã¨ãã¯ãã¾ãã¯æ¥µç«¯ãªåã§èããã®ãããæ¹æ³ã§ããç©ããåCã®å ´åãèãã¾ããããç©ããåã§ã¯ãC(A, A) = {idA}ã§ããidAã¯ããçå°ã§ããããã以å¤ã«ããçå°ã¯ï¼ã¤ãããèªå·±å°ãï¼åå¨ããªãã®ã§ã|KE(C)| = |C| ã¨ãªãã¾ããã©ããªå° f:AâB ã§ã idA;f;idB = f ãæºããã®ã§ãKE(C)(A, B) = C(A, B) ã¨ãªããçµå±ãKE(C) = C ã§ããç©ããåã§ãªãã¦ããããçå°ãæçå°ä»¥å¤ã«åå¨ããªãåCã§ã¯ãKE(C) = C ã¨ãªããã«ãã¦ãå±éåãä½ã£ã¦ããå ã®åã¨åããã®ããåºã¦ãã¾ããã
次ã«ã対象ã1ã¤ãããªãåãã¤ã¾ãã¢ãã¤ããèãã¾ããã¢ãã¤ãã®è©±ã§ã¯ãa;b ã®ä»£ããã« ab ã¨æ¸ããã¨ã«ãã¾ããã¢ãã¤ãã®åä½å ï¼åã®æçå°ï¼ãeã¨æ¸ãã¾ããããä¸ã®è°è«ãããåä½å 以å¤ã«ããçå ããªãã¢ãã¤ãMã§ã¯ãKE(M) = M ã§ããä¾ãã°ãæ£èªç¶æ°ã®å ¨ä½ã«æãç®ãèããã¢ãã¤ãï¼åä½å ã¯1ï¼ã®ã«ãã¦ãå±éåã¯ããèªèº«ã§ãã
å³èªæã¢ãã¤ã
ç ´å£çä»£å ¥ã®ã¢ãã«ã¨ãªãå³èªæã¢ãã¤ãã®ã«ãã¦ãå±éåã¯ã©ããªãã§ããããå³èªæã¢ãã¤ãMã¯æ¬¡ã®ããã«å®ç¾©ããã¾ããã
- bâ e ãªãã°ãä»»æã® aâM ã«å¯¾ãã¦ãab = b
- ä»»æã® aâM ã«å¯¾ãã¦ãae = a
ãã®å®ç¾©ããããã¹ã¦ã®å ãããçã«ãªãã|KE(M)| = M ã¨ãªãã¾ããã«ãã¦ãå±éåãä½ã£ããã対象ãã¡ã¤ããã¤å¢ãã¾ããããå°ã¯ãã ã»ãããã¨ã«èãã¦ã¿ã¾ãã以ä¸ãK = KE(M) ã¨ç¥è¨ãã¾ãã
- xâK(a, b) â axb = x
bâ e ãªãã°ãaxb = (ax)b = bã§ããããaxb = b 㯠x = b ãæå³ãã¾ããã¤ã¾ãã
- bâ e ãªãã° K(a, b) = {b}
Kã®å½¢ç¶ã¯å®å ¨ã°ã©ãã®ããã«æãã¾ããããåä½å ã®ã¨ããã§ã¯å°ãéãã¾ããx â eãªãã° axe = x ãæç«ããã®ã§ï¼
- K(a, e) = Mï¼¼{e} ï¼a â e ã®ã¨ãï¼
- K(e, e) = M
ã¨ãªããåä½å eã«åãããã ã»ããã¯å¤ªã£ã¦ãã¾ãã
ããéåã®ãã¼ãã«ããã¢ãã¤ã
[è¿½è¨ date="ç¿æ¥"]oto-oto-otoããã®ãææã«ãããå å«ã®åãã®ééããè¨æ£ãã¾ãããééãé¨åã«ã¯åãæ¶ãç·ã[/追è¨]
éåTï¼total setï¼ã1ã¤åºå®ãã¦ãTã®é¨åéåã®å ¨ä½Pow(T)ã«ãéåã®å ±éé¨åï¼ãã¼ãï¼ãåãæ¼ç®â©ãèãã¾ããPow(T)ã¯ãâ©æ¼ç®ã«å¯¾ãã¦åä½å ãTã¨ããã¢ãã¤ãã«ãªãã¾ãããã®ã¢ãã¤ããMã¨ç½®ãã¾ãã
ä»»æã® AâMï¼ã¤ã¾ã AâTï¼ã«å¯¾ã㦠Aâ©A = A ãªã®ã§ãMã®å ¨ã¦ã®å ãããçå ã§ãã|KE(M)| = M ã¨ãªãã¾ããåã³ãK = KE(M) ã¨ç¥è¨ãã¦ããã ã»ããK(A, B)ãèãã¾ãã
- XâK(A, B) â Aâ©Xâ©B = X
Aâ©Xâ©B = X ã¯ã(Aâ©B)â©X = X ã¨æ¸ããã®ã§ã(Aâ©B) â X X â (Aâ©B) ãæå³ãã¾ããã¤ã¾ãï¼
- XâK(A, B) â
(Aâ©B) â XX â (Aâ©B)
ç¹ã«ãK(T, T) = {T}ã0ã空éåã¨ã㦠K(A, 0) = K(0, A) = M ãK(T, T) = Mã0ã空éåã¨ã㦠K(A, 0) = K(0, A) = {0} ãªã©ãåããã¾ãã
æé次å ãã¯ãã«ç©ºéã®å
æé次å ãã¯ãã«ç©ºéã®åFdVectã®ã«ãã¦ãå±éåãèãã¦ã¿ã¾ããç¡é次å ã§ã話ã¯åãã§ãããç¡é次å ã¯æãããã®ã§è¨åãã¾ãããå®ã¯ãåã¯ãã®è©±ããã¾ããã£ã³ãèãã¦ãªãã®ã§ãç·å½¢ä»£æ°ããåç¥ã®æ¹ãééãã»èª¤è§£ããã£ããæãã¦ãã ããã
FdVectã®ãªãã®ããçå°ã¯ããã¯ãã«ç©ºéVä¸ã®å°å½±ä½ç¨ç´ ã§ããP:VâV ãå°å½±ä½ç¨ç´ ã®ã¨ããå空éIm(A)ã決ã¾ãã¾ããä¸è¬çã«ã¯ãå°å½±ä½ç¨ç´ ã¨å空éã¯1ï¼1ã«å¯¾å¿ãã¾ããããã ãããã®ã¨ãããVä¸ã®å°å½±ä½ç¨ç´ ã¯Vã®é¨å空éã表ãã¨ã¿ã¦ããã§ãããã
P:VâV 㨠Q:WâW ãå°å½±ä½ç¨ç´ ã®ã¨ããA:VâW ã P;A;Q = A ãæºããã¨ããAã¯ã©ããªç·å½¢ååãã¨ããã¨ï¼ãã¶ãï¼ã
- Ker(P) â Ker(A)
- Im(A) â Im(Q)
é°å²æ°ã¨ãã¦ã¯ãAã¯ãIm(P) 㨠Im(Q) ã«å¶éãã¦ãæå³ãæã¤ç·å½¢ååã§ããå ç©ï¼è¨éï¼ç´äº¤æ§ã¨ããèããã¨ãã£ã¨é¢ç½ã話ã«ãªãã¨æãã®ã§ãããããã¾ãèãã¦ã¾ããã
ããçå°ã¨é¨å対象
ãã¯ãã«ç©ºéã®ä¾ã§è§¦ããããã«ãããçå°ï¼å°å½±ï¼ã¯ãã ãããé¨å対象ã«å¯¾å¿ãã¾ã -- ãã®ãã¨ãï¼é°å²æ°ãããªãã¦ï¼æ£ç¢ºã«è¿°ã¹ããã¨ãã§ãã¾ããä»æ¥ã¯æ£ç¢ºãªè¨è¿°ã¯ãã¾ããããé åºã®è©±ããã¦ããã¾ãï¼ é¨å対象ã®ããã ã«ã¯å å«é åºãããã¾ãããããçå°ã®ããã ã«ã次ã®ããã«é åºãå®ç¾©ã§ãã¾ãã
- a ⦠b â a;b = a
a, bãããçã§ãããã¨ããããa ⦠aã㨠ãa ⦠b, b ⦠c ãªãã° a ⦠cãã¯å®¹æã«ç¤ºãã¾ãããããããa ⦠b, b ⦠a ãªãã° a = bãã¯ãã¾ããããªãã¨æãã¾ããããä¸ã§ãé åºãã¨æ¸ãã¾ããããå®ã¯ãã¬é åºã«ãããªãã¾ããã
ãa ⦠b, b ⦠a ã ããa = b ã§ã¯ãªããä¾ãåºãã¾ããããã/ããæ¹è¡ã®ä»£ããã«ä½¿ã£ã¦ã2è¡2åã®è¡åã [1, 0/ 0, 1] ã®ããã«æ¸ããã¨ã«ãã¾ããA = [1, 0/ 0, 0], B = [1, 1/ 0, 0] ã¨ããã¨ãé常ã®è¡åã®æãç®ã§ã©ã¡ããããçã«ãªãã¾ããåç´ãªè¨ç®ã§ãA;B = BA = A 㨠B;A = AB = B ã示ãã¾ããã¤ã¾ããA ⦠B ã㤠B ⦠A ã§ããããã¡ãã A = B ã§ã¯ããã¾ããã
ãã®ä¾ãè¦ãã¨ãããçå°ã«ã¯åã«å¤å»¶ã¨ãã¦ã®é¨å対象ããæ·±ãæ å ±ãç¹ãè¾¼ã¾ãã¦ããããã§ãããa ⦠b, b ⦠aãã«ãé¢ããããa = bããå°ããªãäºæ ã«ã¯ãéå¯ææ§ãé¢ãã£ã¦ãã¾ããå®éãããçå°ã®ããã ã«å¯ææ§ a;b = b;a ãä»®å®ããã°ããa ⦠b, b ⦠a ãªãã° a = bããåºã¦ãã¾ãã
ãããã¸ãã¯ãå象ã®å°»å°¾ã®ããã«å
ã£ã½ã触ã£ã¦ãããããªæãã§ãèå¾ã«ãªã«ãããã°ãã¯ãã£ã¼ãããããã§ãããµãããªè¦ãã¾ãããã§ãã¾ã¼ãã«ãã¦ãå±éåã®è©±ã¨ãã¦ã¯æ¨ªéã«é¸ããã®ã§ããã®ã¸ãã«ãã¦ããã¾ãã