åä¸ã®æ¦å¿µã«ããããã®å¼ã³åãããã®ã¯ããããããã¨ã§ããå¼ã³åãéããã¨ã§åä¸æ§ã«æ°ä»ããªãã£ããæ··ä¹±ããããã¾ãã表é¡ã«ããæ¦å¿µã®åä¸æ§ã«ã¤ãã¦æ´çãã¦ããã¾ãã$`\newcommand{\In}{\text{ in }}
\newcommand{\mrm}[1]{\mathrm{#1} }
\newcommand{\cat}[1]{\mathcal{#1} }
\newcommand{\mbf}[1]{\mathbf{#1} }
%\newcommand{\u}[1]{\underline{#1} }
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\Iff}{\Leftrightarrow}
\newcommand{\twoto}{\Rightarrow }
\newcommand{\op}{ \mathrm{op} }
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\base}[1]{ {{#1}\!\lrcorner} }
\newcommand{\Vtimes}{\mathop{!\!{\times}} }
`$
å 容ï¼
ã¢ãã¼å
ã¢ãã¼åã«ã¤ãã¦ã¯ã以ä¸ã®éå»è¨äºã§æ¸ãã¦ãã¾ãã
ãã¢ãã¼ãã¯ãå° ï¼ 1-å°ãã®å義èªã§ãã$`\cat{C}`$ ã®ã¢ãã¼å $`\mrm{Arr}(\cat{C})`$ ã®å¯¾è±¡ã¯ $`\cat{C}`$ ã®ã¢ãã¼ãå°ãã§ããã¢ãã¼åã®å°ã¯ã$`\cat{C}`$ ã®å¯æåè§å½¢ã§ãããã®ãã¨ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad |\mrm{Arr}(\cat{C})| = \mrm{Mor}(\cat{C})\\
\quad \mrm{Mor}(\mrm{Arr}(\cat{C})) = \mrm{CommSq}(\cat{C})
`$
ããã§ã$`\mrm{CommSq}(\cat{C})`$ ã¯å¯æåè§å½¢ãcommutative squareãéã®éåã§ãã$`\mrm{CommSq}(\cat{C})`$ ã®è¦ç´ ã¯æ¬¡ã®å½¢ããã¦ãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{=}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad \In \cat{C}`$
åè§å½¢ã®ãªãã«æ¸ãè¾¼ã¾ããã¤ã³ã¼ã«ã¯ãåè§å½¢ãå¯æã§ãããã¨ã示ãã¾ããå¯ææ§ãçå¼ã§æ¸ãã°ï¼
$`\quad f;q = p;g\\
\text{Or}\\
\quad p; g = f;q
`$
ä¸ã®2ã¤ã®çå¼ã¯åããã¨ã§ãé常ã¯åºå¥ãã¾ãããããçå¼ãåããæã£ã¦ããï¼ã¤ã¾ã2-å°ï¼ã¨èãã¦ã以ä¸ã®ããã«åºå¥ãã¾ãã
$`\quad f;q \twoto p;g \In \cat{C}\\
\text{Or}\\
\quad p; g \twoto f;q \In \cat{C}
`$
å¯æåè§å½¢ã2種é¡ããã¨èãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{ {_\nearrow =} \:}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad f;q \twoto p;g \In \cat{C}\\
\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{ {^\swarrow =} \:}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad p;g \twoto f;q \In \cat{C}
`$
ãã®çå¼ã®åãã«ãããåè§å½¢ã®åãã決ãã¾ããåè§å½¢ã®åãã¯ç¸¦æ¹åã横æ¹åãã«ãªãã¾ããã縦横ã¯å³ã®æãæ¹ã®ç´æã§å¤ãã£ã¦ãã¾ãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{ {_\nearrow \twoto} \:}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad f;q \twoto p;g \In \cat{C}\\
\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{ {^\swarrow \Downarrow} \:}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad p;g \twoto f;q \In \cat{C}
`$
åããã©ã£ã¡ã«æ±ºãã¦ãåã話ãåºæ¥ãã®ã§ãããããããåããã種é¡ãããã¨ãæ··ä¹±ã®åå ã¨ãªãã¾ãããèªç¶å¤æã¯é¢æãã§ã¯ãåè§å½¢ã®åãã縦æ¹åã«åãã¾ãããããã®è¨äºã§ã¯ï¼ããã¦ï¼æ¨ªæ¹åã«ã¨ã£ã¦ã¿ã¾ãã
ã¢ãã¼åã®å°ãã¢ãã¼å°ãarrow morphismãï¼å°ã®ããã ã®å°ã¨ããæå³ï¼ã¨å¼ã¶ãã¨ã«ãã¦ãã¢ãã¼å°ã®ååã¯ã®ãªã·ã£æåå°æåã¨ãã¾ãããã
$`\quad \xymatrix{
\cdot \ar[r]^{p} \ar[d]_{f} \ar@{}[dr]|{ \alpha\, \twoto}
& \cdot \ar[d]^{g}
\\
\cdot \ar[r]_q
& \cdot
}\\
\quad \alpha : f \to g \In \mrm{Arr}(\cat{C})
`$
å®éã«æ··ä¹±ãèµ·ããä¾ã¨ãã¦ã次ã®è³ªåãèãã¦ã¿ã¾ãã
- å° $`\alpha`$ ã®ã³ãã¡ã¤ã³ãä½åãã¯ã©ãï¼
$`\alpha : f \to g \In \mrm{Arr}(\cat{C})`$ ãªã®ã§ãå½ç¶ $`\alpha`$ ã®ã³ãã¡ã¤ã³ã¯ $`g`$ ã§ããã¨ãããã$`\alpha`$ ã®ã³ãã¡ã¤ã³ã¯ $`q`$ ã ã¨ã¿ãªããã¨ãããã¾ãã$`\alpha`$ ã縦æ¹åã ã¨ã¿ãªãã®ãï¼ ãããéãã¾ãã$`\alpha`$ ã®åãã¯ï¼ä¸ã®å³ã®ã¨ããï¼æ¨ªæ¹åã ã¨ãã¦ãããã§ãã$`\alpha`$ ã®ã³ãã¡ã¤ã³ã¯ $`q`$ãã¨è¨ããã¨ãããã®ã§ãã
ãã®ä¸ä¾ã¯ãã³ãã¡ã¤ã³ã»ãã¡ã¤ãã¬ã¼ã·ã§ã³ãcodomain fibration | ä½åãã¡ã¤ãã¬ã¼ã·ã§ã³ãã§ãã
- nLabé ç®ï¼https://ncatlab.org/nlab/show/codomain+fibration
ã³ãã¡ã¤ã³ã»ãã¡ã¤ãã¬ã¼ã·ã§ã³ã«ãããã³ãã¡ã¤ã³é¢æãcodomain functorã $`\mrm{cod} : \mrm{Arr}(\cat{C}) \to \cat{C}`$ ã¯ã次ã®ããã«ä¸ãããã¾ãã
$`\quad |\mrm{Arr}(\cat{C})| \ni f \mapsto \mrm{cod}(f) \in |\cat{C}|\\
\quad \mrm{Mor}(\mrm{Arr}(\cat{C})) \ni \alpha \mapsto q \in \mrm{Mor}(\cat{C})
`$
ã³ãã¡ã¤ã³é¢æã®å¯¾è±¡ãã¼ããã$`\cat{C}`$ ã®ã³ãã¡ã¤ã³ååãªã®ã§ããã³ãã¡ã¤ã³ãã¨å¼ãã§ããããã§ãã
- ã¢ãã¼åã®ã³ãã¡ã¤ã³ååï¼ $`\mrm{cod}: \mrm{Mor}(\mrm{Arr}(\cat{C})) \to |\mrm{Arr}(\cat{C})| \In \mbf{SET}`$
- ã¢ãã¼åããã®ã³ãã¡ã¤ã³é¢æï¼ $`\mrm{cod}: \mrm{Arr}(\cat{C}) \to \cat{C} \In \mbf{CAT}`$
- ã³ãã¡ã¤ã³é¢æã®å¯¾è±¡ãã¼ãï¼ $`\mrm{cod}_\mrm{obj} : \cat{C} \to |\cat{C}| \In \mbf{SET}`$
åããã種é¡ãããã¨ããããããããã¨ãèµ·ãã¦ãã¾ãã®ã§ãã
ã¨ãããããé¢æã¨ãã¦ã®ãã¡ã¤ã³ï¼ã³ãã¡ã¤ã³ã¯å¤§æåå§ã¾ã㧠$`\mrm{Dom}, \mrm{Cod}`$ ã¨æ¸ããã¨ã§æ··ä¹±ãåé¿ãã¾ãããã
$`\quad \xymatrix{
\cdot \ar[r]^{\mrm{Dom}(\alpha)} \ar[d]_{\mrm{dom}(\alpha)} \ar@{}[dr]|{ \alpha\, \twoto}
& \cdot \ar[d]^{\mrm{cod}(\alpha)}
\\
\cdot \ar[r]_{\mrm{Cod}(\alpha)}
& \cdot
}\\
\quad \In \mrm{Arr}(\cat{C})
`$
ãã«ã©ã¼ã¸æ§æ
ã¢ãã¼åã®å°ã¯ããã¨ã®å $`\cat{C}`$ ã®å¯æåè§å½¢ã§ãããåè§å½¢ã®ä¸è¾ºï¼ä»ã®å³ã®æãæ¹ã§ä¸ã®è¾ºï¼ãæçå°ã§ããåè§å½¢ãèãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r]^{\mrm{Dom}(\alpha)} \ar[d]_{\mrm{dom}(\alpha)} \ar@{}[dr]|{ \alpha\, \twoto}
& \cdot \ar[d]^{\mrm{cod}(\alpha)}
\\
\cdot \ar@{=}[r]
& \cdot
}\\
\quad \In \mrm{Arr}(\cat{C})
`$
ãã®å½¢ã®åè§å½¢ã¯ã$`\cat{C}`$ å ã®å¯æä¸è§å½¢ã ã¨ãè¨ãã¾ãã
$`\quad \xymatrix{
\cdot \ar[rr]^{\mrm{Dom}(\alpha)} \ar[dr]_{\mrm{dom}(\alpha)}
& {}
& \cdot \ar[dl]^{\mrm{cod}(\alpha)}
\\
{}
& \cdot
&{}
}\\
\quad \text{commutative } \In \cat{C}
`$
ä¸ã®è¾ºï¼ä»ã®å³ã®æãæ¹ã§ï¼ãæçå°ã§ããåè§å½¢ï¼ãããã¯ä¸è§å½¢ï¼ã®å ¨ä½ãå°ã¨ããåãæ§æã§ãã¾ãããã®åã $`\cat{C}`$ ã®ãã«ã©ã¼ã¸åãdécalage categoryãã¨å¼ã³ã¾ãã$`\mrm{Decal}(\cat{C})`$ ã¨æ¸ããã¨ã«ãã¾ããåãããã®ãã«ã©ã¼ã¸åãä½ãæ§æããã«ã©ã¼ã¸æ§æãdécalage constructionãã¨ããã¾ãã
"décalage" ã¯ããããééãã¨ãã£ãæå³ã®ãã©ã³ã¹èªã§ãããã«ã©ã¼ã¸æ§æã«ã¤ãã¦ã¯ãä¾ãã°æ¬¡ã®è«æã«è¨è¿°ãããã¾ãã
- [GKW18-]
- Title: Operadic categories and décalage
- Authors: Richard Garner, Joachim Kock, Mark Weber
- Submitted: 4 Dec 2018
- Pages: 20p
- URL: https://arxiv.org/abs/1812.01750
ãã«ã©ã¼ã¸åã¯ãã¹ã©ã¤ã¹åããªã¼ãã¼åããå¯ãéãããã®ã§ãã
$`\quad \mrm{Decal}(\cat{C}) = \sum_{X\in |\cat{C}|}\cat{C}/X`$
åã«å¯ãéããã ãã§ããã¡ã¤ãã¬ã¼ã·ã§ã³ããã¡ã¤ãã¼ä»ãåãã®æ§é ã¯æã£ã¦ãã¾ããããã¡ã¤ãã¼ããã©ã³ãã©ã³ã®ãã¡ã¤ãã¼ä»ãåã ã¨è¨ããªãã¯ãªãã§ããã
ä¸ã®è¾ºï¼ä»ã®å³ã®æãæ¹ã§ï¼ãæçå°ã§ããåè§å½¢ï¼ãããã¯ä¸è§å½¢ï¼ã®å ¨ä½ãå°ã¨ããåãåæ§ã«èãããã¨ãã§ãã¾ããããã¯ä½ãã«ã©ã¼ã¸åãco-décalage categoryãã¨è¨ããã§ãããï¼co-décalage ã¯è¦ããã¨ããªãã®ã§ããï¼ã$`\mrm{CoDecal}(\cat{C})`$ ã¨æ¸ããã¨ã«ãã¾ãã
ä½ãã«ã©ã¼ã¸åã¯ãä½ã¹ã©ã¤ã¹åãã¢ã³ãã¼åããå¯ãéãããã®ã§ãã
$`\quad \mrm{CoDecal}(\cat{C}) = \sum_{X\in |\cat{C}|} X/\cat{C}`$
ãã¨ã®å $`\cat{C}`$ ã«çµå¯¾è±¡ããªãã¦ããã¹ã©ã¤ã¹å $`\cat{C}/X`$ ã«ã¯çµå¯¾è±¡ $`\mrm{id}_X`$ ãããã¾ãããããã£ã¦ãã¹ã©ã¤ã¹å $`\cat{C}/X`$ ã¯é£çµåãconnected categoryãã«ãªãã¾ãããã«ã©ã¼ã¸åã«ããã¦ãç°ãªã対象 $`X, Y`$ ä¸ã®2ã¤ã®ã¹ã©ã¤ã¹åã¯åé¢ãã¦ãã¾ãããã£ã¦ããã«ã©ã¼ã¸åã®é£çµæåã¯ããã¨ã®åã®å¯¾è±¡ã¨ä¸å¯¾ä¸ã«å¯¾å¿ãã¾ãã
$`\quad \pi_0(\mrm{Decal}(\cat{C})) \cong |\cat{C}| \In \mbf{SET}`$
ããã§ã$`\pi_0(\hyp)`$ ã¯ãåã®é£çµæåã®éåãä½ãååã§ãããã«ã©ã¼ã¸åã¯ãé£çµæåãã¨ã«çµå¯¾è±¡ãæã¤åã¨ãªãã¾ããä½ãã«ã©ã¼ã¸åã¯ãé£çµæåãã¨ã«å§å¯¾è±¡ãæã¤åã¨ãªãã¾ãã
ã¹ã©ã¤ã¹æ§æ
$`\cat{C}`$ ããä½ã£ã $`\mrm{Decal}(\cat{C})`$ ã¯ãé£çµæåãã¨ã«ç¹å®ãããçµå¯¾è±¡ãæã¡ãé£çµæåã $`|\cat{C}|`$ ã«ä¸è´ããåã§ãããããã¯ã次ã®ãããªååã¨ã¿ãªãã¾ãã
$`\quad \mrm{Decal}_\cat{C} : |\cat{C}| \to |\mbf{CATwDTO}| \In \mathbb{SET}`$
ãã㧠$`\mbf{CATwDTO}`$ ã¯æ¬¡ã®ãããª2-åã§ãã
- ç¹å®ãããçµå¯¾è±¡ãdistinguished terminal object | DTOããæã¤åãcategory with DTOãã対象ã¨ãã¦ã
- ç¹å®ãããçµå¯¾è±¡ãå³å¯ã«ä¿åããé¢æã1-å°ã¨ãã¦ã
- èªç¶å¤æã2-å°ã¨ãã2-åã
対象éå $`|\mbf{CATwDTO}|`$ ãã使ã£ã¦ãªãã®ã§ã2-åã®æ§é ã¯å®ã¯ã©ãã§ãããã¨ãè¨ãã¾ããã
ç¹å®ãããçµå¯¾è±¡ã®ãã¨ãå¿ãã¦ãã¾ãã°ã次ã®ãããªååã¨ãªãã¾ãã
$`\quad \mrm{Decal}_\cat{C} : |\cat{C}| \to |\mbf{CAT}| \In \mathbb{SET}`$
ãã«ã©ã¼ã¸æ§æã¨é¡ä¼¼ã®æ§æã«ã¹ã©ã¤ã¹æ§æãããã¾ããã¹ã©ã¤ã¹æ§æã«ã¤ãã¦ã¯ä»¥ä¸ã®è¨äºã§æ¸ãã¦ãã¾ãã
- ã¹ã©ã¤ã¹åã®å¤§åçãªå®ç¾©ï¼ ã¹ã©ãã·ã¥è¨å·ã®è§£é
- ã¹ã©ã¤ã¹æ§æï¼ ããã©ããªã¹ã©ãã·ã¥ã»ã¢ã¹ã¿ãªã¹ã¯
å $`\cat{C}`$ ã«ãããã¹ã©ã¤ã·ã³ã°é¢æã¨åå¤ã¹ã©ã¤ã·ã³ã°é¢æã以ä¸ã®ããã«æ¸ãã¾ããï¼æé»ã«ã1-åã2-åã¨ã¿ãªãã¦ãã¾ããï¼
$`\quad \mrm{Slice}_\cat{C} = (\cat{C}{/_*}\hyp) : \cat{C} \to \mbf{CAT} \In \mathbb{2CAT}\\
\quad \mrm{Slice}^*_\cat{C} = (\cat{C}{/^*}\hyp) : \cat{C}^\op \to \mbf{CAT} \In \mathbb{2CAT}
`$
å½¢ãæãã¦æ¸ãã¦ã¾ããã$`\mrm{Slice}_\cat{C}`$ 㨠$`\mrm{Slice}^*_\cat{C}`$ ã¯ã ãã¶éãã¾ããå ±å¤ã¨åå¤ã¨ããã ãã§ãªãï¼
- $`\mrm{Slice}_\cat{C}`$ ã¯ã©ã㪠$`\cat{C}`$ ã«å¯¾ãã¦ãå®ç¾©ã§ãããã$`\mrm{Slice}^*_\cat{C}`$ ã¯ãã«ããã¯ããã¡ã¤ãã¼ç©ããæã¤åã«å¯¾ãã¦ããå®ç¾©ã§ããªãã
- $`\mrm{Slice}_\cat{C}`$ ã¯å³å¯2-é¢æã ãã$`\mrm{Slice}^*_\cat{C}`$ ã¯ã¹ã¼ã2-é¢æã§ããã
ã ãã¶éãããã $`\mrm{Slice}_\cat{C}`$ 㨠$`\mrm{Slice}^*_\cat{C}`$ ã§ããã$`|\cat{C}|`$ ä¸ã«å¶éããï¼å¯¾è±¡ãã¼ãã ãã¨ãï¼ã¨åãååã«ãªãã¾ããããã¯ãã«ã©ã¼ã¸ã®ååã§ãã
$`\quad (\mrm{Slice}_\cat{C})_\mrm{obj} = \mrm{Decal}_\cat{C} : |\cat{C}| \to |\mbf{CAT}| \In \mathbb{SET}\\
\quad (\mrm{Slice}^*_\cat{C})_\mrm{obj} = \mrm{Decal}_\cat{C} : |\cat{C}^\op| \to |\mbf{CAT}| \In \mathbb{SET}
`$
ãã³ãã«ã®å
ãã³ãã«ã®åã¯ã¢ãã¼åã¨åããã®ã§ãã
$`\quad \mrm{Bun}(\cat{C}) = \mrm{Arr}(\cat{C})\\
\quad (\mrm{Base} : \mrm{Bun}(\cat{C}) \to \cat{C}) =
(\mrm{Cod} : \mrm{Arr}(\cat{C}) \to \cat{C})
`$
ç¨èªã®å¯¾å¿ã¯ä»¥ä¸ã®ã¨ããã§ãã
ãã³ãã«ã®å | ã¢ãã¼å |
---|---|
ãã³ãã« | ã¢ãã¼ |
ãã³ãã«å° | ã¢ãã¼å° |
ãã³ãã«ã®ãã¼ã¹å¯¾è±¡ | ã¢ãã¼ã®ä½åãã³ãã¡ã¤ã³ã |
ãã³ãã«ã®ãã¼ã¿ã«å¯¾è±¡ | ã¢ãã¼ã®åããã¡ã¤ã³ã |
ãã¼ã¹é¢æ | ã³ãã¡ã¤ã³é¢æ |
ãã³ãã«ã¨å¼ãã å ´åã¯ããã³ãã«ã®ãã¡ã¤ãã¼ãããã³ãã«ã®ãã¡ã¤ãã¼å¼ãæ»ãï¼ããã¡ã¤ãã¼ã®è¨ç®ã®åæ©ã¨ãã¦ã®ãã«ããã¯å ¬å¼ // ãã«ããã¯ã£ã¦ãªã«ï¼ãåç §ï¼ãèãããã®ã§ããã¨ã«ãªãå $`\cat{C}`$ ã¯çµå¯¾è±¡ã¨ãã«ããã¯ããã¡ã¤ãã¼ç©ããæã¤åã ã¨ä»®å®ããå ´åãå¤ãã§ãããã
ä¾ãã°ã$`\mbf{1}`$ ã $`\cat{C}`$ ã®çµå¯¾è±¡ã¨ãã¦ãã$`A`$ ã®âç¹â $`a:\mbf{1} \to A`$ ã«ããããã³ãã« $`b`$ ã®ãã¡ã¤ãã¼ $`F`$ãã¯æ¬¡ã®å³å¼ã§å®ç¾©ã§ãã¾ãã
$`\quad \xymatrix{
F \ar[r] \ar[d]
\ar@{}[dr]|{\text{p.b.}}
& \cdot \ar[d]^b
\\
\mbf{1} \ar[r]_a
& A
}\\
\quad \In \cat{C}
`$
ããã³ãã«ã®åãã¨ãã¢ãã¼åãã¯ãåºæ¬çã«ã¯å義èªã§ããã以ä¸ã§ã¯ããã¨ã«ãªãå $`\cat{C}`$ ããã«ããã¯ãæã¤ã¨ä»®å®ãã¾ãããã®ä»®å®ã®ãã¨ã§ã¯ããã³ãã«å°ãå¼ãæ»ãæ¹å¼ãpullback-styleãã§æ¸ããã¨ãã§ãã¾ããå¼ãæ»ãæ¹å¼ã®ãã³ãã«å° $`\varphi`$ ã¯æ¬¡ã®æ§æç´ ãæã¡ã¾ãã
$`\quad \xymatrix{
\cdot \ar[r] \ar[d]_f
\ar@{}[dr]|{\varphi^\flat\, \twoto}
& \cdot \ar[r] \ar[d]
\ar@{}[dr]|{\text{p.b.}}
& \cdot \ar[d]^g
\\
\cdot \ar@{=}[r]
& \cdot \ar[r]_{\base{\varphi}}
& \cdot
}\\
\quad \In \cat{C}
`$
- $`f`$ ï¼ $`\varphi`$ ã®å
- $`g`$ ï¼ $`\varphi`$ ã®ä½å
- $`\base{\varphi}`$ ï¼ $`\varphi`$ ã®ãã¼ã¹ãã¼ããbase partã
- $`\varphi^\flat`$ ï¼ $`\varphi`$ ã®ãã¡ã¤ãã¼ãã¼ããfiber partã
ãã¼ã¹ãã¼ãï¼ãã¡ã¤ãã¼ãã¼ãã®æ¸ãæ¹ã¯ãDiagæ§æã®å¤ç¨®ã¨ãã®æ¸ãæ¹ãã§å°å ¥ããè¨æ³ã§ãã
å¯æåè§å½¢ã§ä¸ããããå° $`\alpha`$ ããã©ã®ããã«ãã¦å¼ãæ»ãã¹ã¿ã¤ã«ã®å° $`\varphi`$ ã«å¤æãããã説æãã¾ãããã$`\alpha`$ ã¯ä»¥ä¸ã®ããã ã¨ãã¾ãã
$`\quad \alpha : f \to g \In \mrm{Bun}(\cat{C})\\
\text{i.e.}\\
\quad \xymatrix{
A \ar[r]^p \ar[d]_f
\ar@{}[dr]|{\alpha\,\twoto}
&\cdot \ar[d]^g
\\
B \ar[r]_q
& \cdot
}\\
\quad \In \cat{C}
`$
ã¾ãã次ã®ãããªãã«ããã¯åè§å½¢ãä½ãã¾ãã
$`\quad \xymatrix{
\cdot \ar[r]^{q'} \ar[d]_{g' }
\ar@{}[dr]|{\text{p.b.} }
& \cdot \ar[d]^g
\\
B \ar[r]_q
& \cdot
}\\
\quad \In \cat{C}
`$
ããã¯ãã³ã¹ãã³ $`(q, g)`$ ã®ãã«ããã¯åè§å½¢ã®ã²ã¨ã¤ãé¸ãã ãã®ã§ããåè§å½¢ã¯ãã«ããã¯ãªã®ã§ã以ä¸ã®å³å¼ã®ç¹ç·ã®å°ãä¸æçã«åå¨ãã¾ãã
$`\quad \xymatrix{
A \ar@/^/[drr]^p \ar@/_/[ddr]_f \ar@{.>}[dr]
& {}
& {}
\\
{}
& {\cdot} \ar[r]^{q'} \ar[d]_{g'}
\ar@{}[dr]|{\text{p.b.} }
& {} \ar[d]^g
\\
{}
& {B} \ar[r]_q
& {}
}\\
\quad \In \cat{C}
`$
ç¹ç·ã®å°ã $`f'`$ ã¨ããã¨ã次ã®å³å¼ãä½ãã¾ãã'$`\twoto`$' ã¯ãåããæã£ãå¯æåè§å½¢ãæå³ãã¾ãã
$`\quad \xymatrix{
A \ar[r]|{f'} \ar@/^1pc/[rr]^{p} \ar[d]_f
\ar@{}[dr]|{\twoto }
& {\cdot} \ar[r]|{q'} \ar[d]|{g'}
\ar@{}[dr]|{\text{p.b.} }
& {\cdot} \ar[d]^{g}
\\
B \ar@{=}[r]
& {B} \ar[r]_{q}
& {\cdot}
}\\
\quad \In \cat{C}
`$
$`q`$ ããã¼ã¹ãã¼ã $`\base{\varphi}`$ ãå·¦ã®å¯æåè§å½¢ããã¡ã¤ãã¼ãã¼ã $`\phi^\flat`$ ã¨ç½®ããã¨ã«ãã£ã¦ãç®çã®å¼ãæ»ãæ¹å¼ã®ãã³ãã«å° $`\varphi`$ ãå¾ããã¾ãã
$`\quad \xymatrix{
A \ar[r]|{f'} \ar[d]_f
\ar@{}[dr]|{\varphi^\flat\,\twoto }
& {\cdot} \ar[r]|{q'} \ar[d]|{g'}
\ar@{}[dr]|{\text{p.b.} }
& {\cdot} \ar[d]^{g}
\\
B \ar@{=}[r]
& {B} \ar[r]_{\base{\varphi} }
& {\cdot}
}\\
\quad \In \cat{C}
`$
ãã¡ã¤ãã¼ãã¼ãã¯ãã¹ã©ã¤ã¹å $`\cat{C}/B`$ ã®å°ã«ãªãã¾ããå¯¾å¿ $`\alpha \leftrightarrow \varphi`$ ã¯ã次ã®ãããªéåã®ååãä¸ãã¾ãã
$`\quad \mrm{Bun}(\cat{C})(f, g) \cong
(q\in \cat{C}(\mrm{cod}(f), \mrm{cod}(g)) ) \Vtimes \cat{C}/\mrm{cod}(f)(f, q^\#g)`$
ããã§ï¼
- '$`\Vtimes`$' ã¯ããåçè«ã§åºã¦ããå°å½±ã®æ´çã¨ç´æãã§å®ç¾©ããã·ã°ãåã表ãäºé æ¼ç®åè¨å·ããã¨ãã¨ã¯ããã·ã°ãåã¨ãã¤åã®ç縮è¨æ³ï¼ä¾¿å©ï¼ã㧠'$`\ltimes`$' ã¨ãã¦å°å ¥ãããã®ãæå符ã«å¤æ´ããã®ã¯ã$`!\!{+},\, !\!{\to}`$ ãªã©ã使ãããããã
- $`q^\#g`$ ã¯ã$`q`$ ã«ãã $`g`$ ã®ãã¡ã¤ãã¼å¼ãæ»ããä¸ã®å³ã® $`g'`$ ã®ãã¨ãããã¡ã¤ãã¼å¼ãæ»ããã¯ãããã¡ã¤ãã¼ã®è¨ç®ã®åæ©ã¨ãã¦ã®ãã«ããã¯å ¬å¼ // ãã«ããã¯ã£ã¦ãªã«ï¼ãã§è²ã ãªãå¼ãæ»ãããåºå¥ããããã«å°å ¥ããè¨èã
ä¸ã®ãã ã»ããååå ¬å¼ã使ãã¨ã$`\mrm{Mor}(\mrm{Bun}(\cat{C}))`$ ã¯æ¬¡ã®ããã«æ¸ãããã¨ãåããã¾ãã
$`\quad \mrm{Mor}(\mrm{Bun}(\cat{C})) \cong \\
\quad (B, Y \in |\cat{C}| ) \Vtimes \\
\quad ( (q \in \cat{C}(B, Y) ) \times (f\in |\cat{C}/B|) \times (g\in |\cat{C}/Y)|) \Vtimes \\
\quad \cat{C}/B(f, q^\#g)
`$
ãã®ãããªååã¯å®å ¨ã«ä¸æçã«æ±ºã¾ãããã§ã¯ããã¾ããã$`q^\#g`$ ãä¸æçã«æ±ºã¾ãã¨ã¯éãããé¸æãå ¥ãããã§ãã
æå¾ã«ããä¸åº¦ç¹°ãè¿ãã¨ããã³ãã«ã®åã¯ã¢ãã¼åã¨åããã®ã§ããããããã³ãã«ãã¨ããè¨èã使ãã¨ãã«ããã¨ã«ãªãåããã«ããã¯ãæã¤ãã¨ãæ³å®ãã¦ããããç¥ãã¾ããã