ãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã§è¿°ã¹ãããã«ãã¨ã³ãã¨ã³ã¨ã³ãã¯å®å ¨ã«å対ãªã®ã§ããããã®å対æ§ããªããªãã«åããã«ããããã§ããã¨ã³ãã®ä½ãæ¹ã¯ãé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéãæ±ãããè¡çºã«ãªã£ã¦ãã¾ããã³ã¨ã³ããä½ããã¨ã¯ãã®è¡çºã®â¦
ãã¹ã±ããã£ãã¯ãã§è¿°ã¹ãããã«ãã¹ã±ããã£ãã¯éåã¯ãâçµµå³çææ³ã«ããä¸è¬åããã代æ°ç³»âã®å°ãunderlying thing | carrieãã¨ãªãæ§é ã§ããã¹ã±ããã£ãã¯éåã¯ãéåã«çµã¿åããå¹¾ä½çæ§é ãè¼ã£ã対象ç©ã§ããæåã°ã©ããç¡åã°ã©ããçä½éâ¦
YouTubeã®ã¨ããåºåã§ã¿ã¤ãã«ã®ãã¨ãè¨ã£ã¦ããããã«èããããããååã®Webãµã¤ãã«ã¯ããã¬ãã¯ã¹ã®æè¨ãã ã¨ã¯ä¸è¨ãæ¸ãã¦ãªããåºåå ã§ã¢ãã¦ã³ã¹ãã¦ããæè¨ã¯æ¬¡ã®ããã ãã¬ãã¯ã¹ã®å ¬å¼ãªã³ã©ã¤ã³å¹´æ«ã»ã¼ã«ãå§ã¾ãã¾ãããï¼ããã¯æ¬å½ãâ¦
ãã¹ã±ããã£ãã¯ãschematicããã¨ãã形容è©ã®ä½¿ãæ¹ã説æãã¾ããå å®¹ï¼ ä»£æ°æ§é ã¹ã±ããã£ãã¯ç³» ã¹ã±ããã£ãã¯ãªæ§é é 代æ°æ§é å ¸åçãªä»£æ°æ§é ã§ãã群ãèãã¦ã¿ãã¨ã群ã¯åä½å ãéå ï¼ã対å¿ãããååï¼ãäºé æ¼ç®ãä¹æ³ããæã¡ã¾ãã群ã®â¦
åã®ä¸é¨æ§é ã¯æåã°ã©ãã§ããåã«ã¯æçå°ãããã¾ãããæçå°ã«ç¸å½ããç¹å¥ãªè¾ºãåããæåã°ã©ãã¯åå°çæåã°ã©ãã¨å¼ã³ã¾ãããã£ã¦ãåã®ä¸é¨æ§é ã¯åå°çæåã°ã©ãã ã¨è¨ã£ã¦ãããã§ããããåãä¸è¬åããæ§é ã§ããä¸è¬ååãgeneralized câ¦
ãè«çãåçè«ã®åè«çæå³è«ãããï¼ ä»å¹´ãã£ã±ãããããã¾ã¨ã¾ã£ãæéãåãã«ããç¶æ³ãããã®ã§ãé·ãããã°ã¨ã³ããªã¼ã¯æ¸ãããã«ãªããçãã¨ã³ããªã¼ããã§ã³ãã§ã³ã¨æ¸ããã¨ã«ãã¾ããçãã¦å®çµããæ¸ãç©ã¯é£ããã®ã§ãç¶ãç©ã«ãªãå¯è½æ§ãâ¦
ã²ã¨ã¤åã®è¨äºãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã«ããã¦ãâé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéâã¨âé¢ä¿æã®åå¤éå ã«ããåéåâãå対çã ã¨ãã話ããã¾ããããã®å対æ§ã¯ã¡ãã£ã¨ä¸æè°ãªæãããã¾ããæçµçã«ã¯ãååï¼éååã®å°ï¼ã®ä¸¦è¡ãã¢ï¼ä¸¡ç«¯ãâ¦
ã¨ã³ãã¨ã³ã¨ã³ãã¯ããã®ååããå対ãªãã ããã¨ã¯èª°ã§ãæãã§ããããããããå®ç¾©ã®ä»æ¹ã«ãã£ã¦ã¯å対æ§ãè¦ãã«ãããã¨ãããã¾ãããã®è¨äºã§ã¯ãã¨ã³ãã¨ã³ã¨ã³ãã®å対æ§ãåºæ¥ãã ãè¦ãããããªããããªå®ç¾©ã¨è¨æ³ãæ示ãã¾ãã$`\newcommandâ¦
è¤åããªãã©ãããã¯ãã®ä¸é¨æ§é ã«è¤ã°ã©ããæã¡ã¾ããå°åºã·ã¹ãã ãæ¼ç¹¹ç³»ãã¯ãæ¦å¿µçã«ã¯è¤ã°ã©ããã®ãã®ã§ããè¤ã°ã©ããä¾ååçè«ã§å©ç¨ãããã¨ããè¤ã°ã©ãã«ãä¾åæ§ãå°å ¥ããå¿ è¦ãããã¾ãããã®è¨äºã§ãä¾åæ§ãæã¤è¤ã°ã©ããå°å ¥ãã¾ãâ¦
ãè«çãåçè«ã®åè«çæå³è« // å°åºã·ã¹ãã ã®åã¨åã®åãã«ããã¦ãå°åºã·ã¹ãã éã対象ã¨ããåã«è§¦ãã¾ãããããããå°åºã·ã¹ãã ã®ããã ã®æºååå°ï¼ãããåã®å°ã¨ãªãï¼ãç´ æ´ã«èãã¦ãã¦ã¯ãã©ãããã¾ããªãããã§ããå°åºã·ã¹ãã ã¯ãè¤åâ¦
ä¾ãã°ãæåã°ã©ããã©ãã«ä»ãæåã°ã©ãã®èª¬æãããã¨ããå½ç¶ã«è¨å·ç表ç¾ã使ãããã§ãã $`\mathrm{Graph}(A, B)`$ ã¨ãããµã¨ã使ã£ã¦ããè¨å·çè¡¨ç¾ $`\mathrm{Graph}(A, B)`$ ãæèããåãé¢ãã¦çºãã¦ã¿ã¾ããããæèç¡ãã§ã$`\mathrm{Graphâ¦
ä»å¹´ãã£ã±ãããããã¾ã¨ã¾ã£ãæéãåãã«ããç¶æ³ãããã®ã§ãé·ãããã°ã¨ã³ããªã¼ã¯æ¸ãããã«ãªããçãã¨ã³ããªã¼ããã§ã³ãã§ã³ã¨æ¸ããã¨ã«ãã¾ããçãã¦å®çµããæ¸ãç©ã¯é£ããã®ã§ãç¶ãç©ã«ãªãå¯è½æ§ãé«ãã§ãã$`\newcommand{\mrm}[1]{ \maâ¦
éå»è¨äºãç¢å°è¨å·ã®ä½¿ç¨æ³ã¨èªã¿æ¹ 2024ãã«ããã¦ãæ§ã ãªç¢å°è¨å·ã®æå³ã»éç¨ã«ã¤ãã¦è¿°ã¹ã¾ãããæ§æè«ã§ä½¿ãç¢å°è¨å·ã«é¢ãã¦ãå¥ãªèªã¿æ¹ã»ååã追å ãã¦ä¸è¦§è¡¨ãåæ²ãã¾ãã ç¢å°è¨å· èªã¿æ¹ å¥ãªèªã¿æ¹ã»åå $`\Rightarrow`$ å«æãimpliesã â¦
è¨å·ç表ç¾ãè¦ãã¨ããååãã¬ã¼ãã³ã°ããã人ã¯ãå¨å²ã®æèããæ§ã ãªâå¿åº¦âããã¦ãè¨å·ç表ç¾ã解éãã¾ãããè¡éãèªããã¨è¨ã£ã¦ãããã§ããããã½ããã¦ã§ã¢ã«ãã£ã¦ãå¿åº¦ããï¼è¡éãèªããè¡çºãå®è£ ãããã¨ã¯ã¨ã¦ã大å¤ã§ããã½ããã¦ã§ã¢â¦
éä¼´ç³»ãadjunctionãã®å ¸åçä¾ã¨ããã¨ããã¯ãèªç±å¿å´éä¼´ç³»ãfree-forgetful adjunctionãã§ãããããããã¨ãã«ãªã¼åã»åã«ãªã¼åãå ¸åçã ã¨è¨ããã§ããããéååã§èããã¨ãã¦ãã«ãªã¼åã»åã«ãªã¼åã«ãã次ã®ãã ã»ããååãããã¾ãã$`\nâ¦
ã²ã¨ã¤åã®è¨äºãçä½éåã¨çµã¿åããå¹¾ä½ãã§ãçä½éåã®åã«ã¤ãã¦ããããã¯èª¬æãã¾ããããã®è¨äºã§ã¯ã次å ãä½ãçä½éåéã®åã«ã¤ãã¦è¿°ã¹ã¾ããçä½éåã®çµµå³è¡¨ç¤ºã§ãããã¼ã¹ãã£ã³ã°å³ã¨ããã¹ã表示ã§ããææ¨ã«ã¤ãã¦ãè£è¶³ãã¾ããä½æ¬¡å â¦
æè¿ã®2åããã¿ãã³ã»ããªã¼ã®è¨äºãæ¸ãã¾ããã ãã¿ãã³ã»ããªã¼ åè« ãã¿ãã³ã»ããªã¼ã®åèè³æï¼åèæç® ããã¯ãä»å¹´ã®5æé ã®è©±é¡ã®è¸ãè¿ãã§ãã ææ¨ã®çµç¹åã¨è¡¨ç¾æ¹æ³ã¨å¼ã³åã¯è²ã ã ææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ çä½â¦
éå»è¨äºããã¿ãã³ã»ããªã¼ åè«ãã®æåã®ç¯ã«ãã¿ãã³ã»ããªã¼ã®åèæç®ãè¼ãã¾ãããå 容çéè¤ãããã¾ããããã®è¨äºã§ãåèè³æï¼åèæç®ãç´¹ä»ãã¾ããéå»è¨äºããç´°ããã³ã¡ã³ããä»ãã¾ãããããããã®è«æãæ¾ãèªã¿ãããã¦ãªãã®ã§ãæ¾ãâ¦
ãã¿ãã³ã»ããªã¼ã«ã¤ãã¦ã¯ã以ä¸ã®éå»è¨äºã«æ¸ãã¦ãã¾ãã ææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ ãã£ã¼ã³éã®è«æã® p.6 "2 Batanin trees" ã§ããã¿ãã³ã»ããªã¼ãæ±ã£ã¦ãã¾ãã [DFMRV22-24] Title: Computads for weak Ï-categories as aâ¦
$`x = y`$ ã¨æ¸ããã¦ããããããã®æå³ã¯æããã ãã¨å¤ãã®äººã¯æãã§ããããããã¤ã³ã¼ã«ï¼çå¼ã®æå³ãç¨æ³ã¯ãããªã«ç°¡åã§ããªãã§ããã$`\newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\mbf}[1]{\mathbf{#1}} %\newcommand{\mfk}[1]{\mathfrakâ¦
ãå³å¼ããå½¢ç¶ãã¨ããè¨èã¯æ®éã«ä½¿ãæ¥å¸¸èªãªã®ã§ããã¯ãã«ã«ã¿ã¼ã ã¨ãã¦ä½¿ãã®ã¯ããã£ã¦é£ããã§ããããã使ããã¨ã¯ãã£ããããã®ã§ãããç¨åº¦ã¯éç¨æ³ã決ãã¦ããã¾ããç¹ã«ãã©ã¼ã«ã¹ããã®ã¯ããå³å¼ããå½¢ç¶ããçµã¿åããå¹¾ä½ç対象ç©ãcomâ¦
ææ¨ã¯å®£è¨æã®éã¾ãã§ããå宣è¨æã¯ãé çªãä½ç½®çªå·ãã§ãååã§ãä¸æèå¥ã§ãã¾ããå®ç¨ä¸ã¯ãï¼é çªã¯è¦ãã«ããã®ã§ï¼ååã使ããã¾ããããçè«ä¸ã¯ååãéªéã«ãªããã¨ãããã®ã§ãã¨ãã«ãååãåé¤ããå¿ è¦ãããã¾ããååã®åé¤æ¹æ³ã®è¨è¿°â¦
ããæè¿ã®æ¬ããã°ã®ãã¼ãã¯ãã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ãã§ããæè¿ã®è¨äºããã¹ã¦ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã«é¢ä¿ããããã§ã¯ããã¾ãããã9æã®è¨äºãé¢æ°ã®æ§ææ³ (ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ãå°ã)ãããããããã«ãªã¼ï¼â¦
ãææ¨ã®åã¯ã³ã³ããã¹ãã®åã®å対åãã¨ãææ¨ã®åã«å¯¾ããä½ãã£ã¹ãã¬ã¤å å«æ§é ãã§è¿°ã¹ãããã«ãã³ã³ããã¹ãã®åã¨ææ¨ã®åã¯äºãã«å対åã§ãããã®äºå®ãå©ç¨ãããã¨ã«ãããåçè«ã¨ã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ãå¯æ¥ã«çµã³ã¤ãããã¨ãã§ãã¾â¦
å½é¡ã¨åã¯å®è³ªçã«åãæ¦å¿µã§ãããåãæ§é ãæ㤠-- ããã¯ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã®ä¸»å¼µã§ããPropositions-as-Types, Types-as-Propositions ã¨è¡¨ç¾ããããã¨ãããã¾ããã¨ãããããå½é¡ãã¨ããè¨èã¯é常ã«ææ§ã§ããåæ§ã«ãåãã¨ããâ¦
x-y-å¹³é¢ã«ããã¦ã座æ¨è»¸ä¸ã®åç¹ $`(1, 0), (0, 1), (-1, 0), (0, -1)`$ ãé ã«çµãã§éããã¨ã²ãå½¢ï¼æ£æ¹å½¢ï¼ãã§ãã¾ãããã®ã²ãå½¢ã¯ã次ã®ããã«ãã¦ãä½ãåºãã¾ãï¼ äºç¹ $`(1, 0), (0, 1)`$ ãçµã¶ç·åã¯ç¬¬ä¸è±¡éã«ããã¾ãããã®ç·åããx軸ãy軸â¦
ãææ¨ã®åã¯ã³ã³ããã¹ãã®åã®å対åãã§è¿°ã¹ãããã«ãææ¨ã®åã¨ã³ã³ããã¹ãã®åã¯äºãã«å対åã§ããã¾ãã«è¡¨è£ä¸ä½ã®é¢ä¿ã«ããã¾ããã¨ãªãã¨ãã³ã³ããã¹ãã®åã«é¢ããç¥è¦ãç¨ãã¦ææ¨ã®åã調ã¹ãããããã¯éã«ãææ¨ã®åã«é¢ããç¥è¦ãç¨ãã¦â¦
IMEï¼æ¥æ¬èªå ¥åï¼ã«ããã¦é·é³è¨å·ãé³å¼ããã®å ¥åã«ã¯é常ãã¤ãã¹ãã¼ãæ¼ãã§ããããåãå³å°æã§ãã¤ãã¹ãã¼ãæ¼ãã¦é·é³è¨å·ãå ¥åãã¦ããã®ã§ããããã®ã¨ãå³èãå¤ã«å転ãããåä½ãæ°ã«ãªã£ã¦ãã¾ããï¼æ³ã®ããã§ãããï¼ãèã»æã®åä½ãå°â¦
æ¨æ¥ã®è¨äºãã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã¨ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åãã§è©±é¡ã«ãããã¤ãã£ã³ã°åã«ã¤ãã¦ãããå°ããã©ãã¨è¿°ã¹ã¾ãã$` \newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\mbf}[1]{\mathbf{#1}} \newcommand{\cat}[1]{\mathcaâ¦
ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã«ã¤ãã¦ã¯ããã®ããã°å ã§ä½åº¦ãè¨åãã¦ãã¾ãã ãã®ããã°å ãã¯ã¼ã ã®æ¤ç´¢çµæ è«çï¼åçè«ï¼åè«ã®ä¸è ã®ããã ã«ãç²¾å¯ã§ç¶ºéºãªå¯¾å¿ãããã¾ã -- ãããã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã§ããã«ãªã¼ï¼ãã¯ã¼â¦