ãææ¨ã®åã¯ã³ã³ããã¹ãã®åã®å対åãã¨ãææ¨ã®åã«å¯¾ããä½ãã£ã¹ãã¬ã¤å å«æ§é ãã§è¿°ã¹ãããã«ãã³ã³ããã¹ãã®åã¨ææ¨ã®åã¯äºãã«å対åã§ãããã®äºå®ãå©ç¨ãããã¨ã«ãããåçè«ã¨ã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ãå¯æ¥ã«çµã³ã¤ãããã¨ãã§ãã¾ãã
ã¾ãããã¼ã´ã§ã¢æµã®ééåã®å®å¼åãã³ã³ããã¹ãã®åï¼ææ¨ã®åã§ãããï¼ã«çµã¿è¾¼ããã¨ãã§ãã¾ãããã®ã¨ããã³ã³ããã¹ãã®åã®æ§é ã®ä¸é¨ã¯ããã¤ãã¼ãã¯ããªã³ã¨ãã¦ã®å½¹å²ããæã¡ã¾ãã$`
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\cat}[1]{\mathcal{#1}}
%\newcommand{\msf}[1]{\mathsf{#1}}
%\newcommand{\mbb}[1]{\mathbb{#1}}
%\newcommand{\hyp}{\text{ï¼} }
%\newcommand{\twoto}{\Rightarrow }
\newcommand{\In}{ \text{ in } }
%\newcommand{\ot}{\leftarrow}
\newcommand{\op}{\mathrm{op}}
\newcommand{\id}{\mathrm{id}}
%\newcommand{\Imp}{\Rightarrow }
\newcommand{\F}[1]{\mathscr{#1}} % remarkable functor
`$
å 容ï¼
- å ¨ä½ã®æ§é
- ã³ã³ããã¹ãï¼ææ¨ã®å
- ã¨ã¹é¢æ
- ã»ã¯ã·ã§ã³ã¨ã¬ãã©ã¯ã·ã§ã³
- ã¨ã¹é¢æã¨ãã¤ãã¼ãã¯ããªã³
- å¤é¨ã·ã°ãã»ãã¤ã¨å é¨ã·ã°ãã»ãã¤
- ããã¦ãããã
å ¨ä½ã®æ§é
åçè«ã§åºã¦ããã³ã³ããã¹ãã®åï¼ã³ã³ããã¹ãã対象ã¨ããåï¼ã¨ãã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ã§åºã¦ããææ¨ã®åï¼ææ¨ã対象ã¨ããåï¼ã¯äºãã«å対åã«ãªã£ã¦ãã¾ãããã®ãã¨ã¯éå»è¨äºãææ¨ã®åã¯ã³ã³ããã¹ãã®åã®å対åãã«æ¸ãã¦ãã¾ãã
ã³ã³ããã¹ãã®åã $`\cat{C}`$ ãææ¨ã®åã $`\cat{S}`$ ã¨ãã¾ããããã¨ï¼
$`\quad \cat{S} = \cat{C}^\op\\
\quad \cat{C} = \cat{S}^\op
`$
ã³ã³ããã¹ãã®åã¨ææ¨ã®åã¯è¡¨è£ä¸ä½ã§ããã©ã¡ãã表ãè£ãã¯æ±ºãããã¾ããããã³ã³ããã¹ãã®å $`\cat{C}`$ ã表ã¨ãããªããææ¨ã®å $`\cat{S}`$ ã¯â$`\cat{C}`$ ãè£ããè¦ããã®âã§ããææ¨ã®å $`\cat{S}`$ ã表ã¨ãããªããã³ã³ããã¹ãã®å $`\cat{C}`$ ã¯â$`\cat{S}`$ ãè£ããè¦ããã®âã§ãã
ã«ã¼ãã¡ã«ï¼ã´ã©ã¨ã´ã©ãã¹ãã¼ï¼ãã«ã ã°ã¬ã³ã®åçè«ï¼ã ã«ã¼ãã¡ã«ï¼ã´ã©ã¨ã´ã©ãã¹ãã¼ï¼ãã«ã ã°ã¬ã³ã®åçè«ãåç §ï¼ãæ¡ç¨ãããªããã³ã³ããã¹ãã®å $`\cat{C}`$ ã¯æ¡å¼µå æ¬æ§é ã¨ã«ã¼ãã¡ã«ããªã¼æ§é ï¼ãC-ã·ã¹ãã ãåè£ãã£ã¹ãã¬ã¤ã¯ã©ã¹ãã«ã¼ãã¡ã«ããªã¼æ§é ãåç §ï¼ãæã¡ã¾ãã
ä¸æ¹ãã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ã§ã¯ãææ¨ã®å $`\cat{S}`$ ã«å å«æ§é ãinclusion structureããè¼ãããã¨ãããããã¾ãï¼ãææ¨ã®åã«å¯¾ããä½ãã£ã¹ãã¬ã¤å å«æ§é ãåç §ï¼ã
$`\cat{C}`$ 㨠$`\cat{S}`$ ã¯ä¸ä½ãªã®ã§ãããã$`\cat{C}`$ ä¸ã®æ§é 㯠$`\cat{S}`$ ä¸ã«ãåå¨ãã¾ãã$`\cat{S}`$ ä¸ã®æ§é 㯠$`\cat{C}`$ ä¸ã«ãåå¨ãã¾ãã2ã¤ã®åãâä¸ä½åããåä¸ã®è¤åç©âã®ä¸ã«æ§é ãè¼ã£ã¦ãããã¨èãããã¨ãéè¦ã§ãã
ã³ã³ããã¹ãï¼ææ¨ã®å
2ã¤ã®åãä¸ä½åããåä¸ã®è¤åç©ãã³ã³ããã¹ãï¼ææ¨ã®åãcategory of contexts/signaturesãã¨å¼ã¶ãã¨ã«ãã¾ããã³ã³ããã¹ãï¼ææ¨ã®åã«ã¯æ¬¡ã®æ§é ãè¼ã£ã¦ãã¾ãã
ã³ã³ããã¹ãã®å | ææ¨ã®å |
---|---|
ç¹å®ãããçµå¯¾è±¡ | ç¹å®ãããå§å¯¾è±¡ |
ãã£ã¹ãã¬ã¤ã¯ã©ã¹ | ä½ãã£ã¹ãã¬ã¤ã¯ã©ã¹ |
å æ¬æ§é | ä½å æ¬æ§é |
æ¨æºãã«ããã¯åè§å½¢ | æ¨æºããã·ã¥ã¢ã¦ãåè§å½¢ |
ä½åãã¡ã¤ãã¬ã¼ã·ã§ã³ | ååãã¡ã¤ãã¬ã¼ã·ã§ã³ |
æ¡å¼µæ§é | æ¡å¼µæ§é |
æ¨æºå°å½± | æ¨æºå ¥å° |
ä½å å«æ§é | å å«æ§é |
ã«ã¼ãã¡ã«ããªã¼æ§é | ã«ã¼ãã¡ã«ããªã¼æ§é |
- ç¹å®ãããçµå¯¾è±¡ã¨ç¹å®ãããå§å¯¾è±¡ã¯åä¸ã®å¯¾è±¡ã§ã空ã³ã³ããã¹ãï¼ç©ºææ¨ã
- ãã£ã¹ãã¬ã¤ã¯ã©ã¹ã¯ããã¡ã¤ãã¼å¼ãæ»ãã«é¢ãã¦éããå°ã®éåï¼ãæ¡å¼µå æ¬æ§é ã®ããã²ã¨ã¤ã®å®å¼åãåç §ï¼ãåãéåããå対åã§ã¯ä½ãã¡ã¤ãã¼æ¼ãåºãã«é¢ãã¦éããéåï¼ä½ãã£ã¹ãã¬ã¤ã¯ã©ã¹ï¼ã
- å æ¬æ§é ã¯ããã£ã¹ãã¬ã¤å°ã¨ä»»æã®å°ã®ã³ã¹ãã³ã«ã²ã¨ã¤ã®æ¨æºãã«ããã¯åè§å½¢ã対å¿ãããé¢æãã¢ãã¼å $`\mrm{Arr}(\cat{C})`$ ã®ä½åé¢æãä½ãä½åãã¡ã¤ãã¬ã¼ã·ã§ã³ã®åè£åãsplittingãã«ãªã£ã¦ãããä½å å«æ§é ã¯ãä½ãã£ã¹ãã¬ã¤å°ã¨ä»»æã®å°ã®ã¹ãã³ã«ã²ã¨ã¤ã®æ¨æºããã·ã¥ã¢ã¦ãåè§å½¢ã対å¿ãããé¢æãã¢ãã¼å $`\mrm{Arr}(\cat{C})`$ ã®åé¢æãä½ãååãã¡ã¤ãã¬ã¼ã·ã§ã³ã®åè£åã«ãªã£ã¦ããã
- æ¡å¼µæ§é ã¯ãå $`\cat{C}`$ ä¸ã®å層ã¨æ¡å¼µæ¼ç®ã®çµã¿åããã§ãæ¡å¼µã«ä¼´ãæ¨æºå°å½±ã¯å æ¬æ§é ã¨å調ãããå対å $`\cat{S}`$ ä¸ã®æ¡å¼µæ§é ã¯ãå $`\cat{S}`$ ä¸ã®ä½å層ã¨æ¡å¼µæ¼ç®ã®çµã¿åããã§ãæ¡å¼µã«ä¼´ãæ¨æºå ¥å°ã¯ä½å æ¬æ§é ã¨å調ããããæ¡å¼µå æ¬æ§é ãããæ¡å¼µä½å æ¬æ§é ãã¨ããè¨èã使ãé½åã§ãã©ã¡ããï¼å対ã ãï¼æ¡å¼µæ§é ã¨å¼ã¶ã
- å å«æ§é ã¯ãä½ãã£ã¹ãã¬ã¤ã¯ã©ã¹ã«é¢ããå¶ç´ã§ãåºããããéª¨æ ¼çé¨ååãå½¢æãããã¨ãè¦æ±ãããä½å å«æ§é ã¯ããã£ã¹ãã¬ã¤ã¯ã©ã¹ã«é¢ããå¶ç´ã§ãåãããåºããããéª¨æ ¼çé¨ååãå½¢æãããã¨ãè¦æ±ããã
- ã«ã¼ãã¡ã«ããªã¼æ§é ã¯ãåã®å¯¾è±¡ã®éåã«ããªã¼æ§é ãä¸ããã$`\cat{C}`$ 㨠$`\cat{S}`$ ã§ãã«ã¼ããçµå¯¾è±¡ãå§å¯¾è±¡ãã®éãããããããã以å¤ã®éãã¯ãªãã®ã§ãã©ã¡ããï¼å対ã ãï¼ã«ã¼ãã¡ã«ããªã¼æ§é ã¨å¼ã¶ã
ã³ã³ããã¹ãã®å $`\cat{C}`$ ã«ããã¦ãä½å å«æ§é ãé¤ããæ§é éã¯ãC-ã·ã¹ãã ãC-systemãã®æ§é ã¨ãªãã¾ããä½å å«æ§é ãå«ããã¨ä½å å«çC-ã·ã¹ãã ãcoinclusive C-systemãã¨è¨ããã§ããããææ¨ã®å $`\cat{S}`$ ã¯ãã®å対åã§ãå対çãªæ§é ãè¼ãã®ã§ãå å«çä½C-ã·ã¹ãã ãinclusive co-C-systemãã¨è¨ãã¾ãã
ä½å å«æ§é ï¼å å«æ§é ãè¦æ±ããã¨ãè°è«ã極端ã«åç´åããã¾ããã³ã³ããã¹ãã®åã®ä½å å«æ§é ã使ããã¨ã¯ã»ã¨ãã©ãªãã®ã§ãããææ¨ã®åã®å å«æ§é ã¯ãã使ãã¾ããç¹ã«ä½¿ãäºå®ããªãã¦ããå対åã®æ§é ã¯å«ã§ãåãã£ã¦ãã¾ãã¾ãï¼è¡¨è£ä¸ä½ãªã®ã§ï¼ã
ä½å å«çC-ã·ã¹ãã ï¼åããã¨ã ãå å«çä½C-ã·ã¹ãã ï¼ã¯é常ã«å¼·ãæ§é ã§ããããæ§æçã»å ·ä½çã«å®ç¾©ãããã³ã³ããã¹ãã®åï¼åããã¨ã ãææ¨ã®åï¼ã¯ä½å å«çC-ã·ã¹ãã ã«ãªãã¾ãã
ä½å å«çC-ã·ã¹ãã ã§ã¯ã2ã¤ã®å¯¾è±¡ã®ããã ã«ä½å å«ãããã°ãããã¯ãã£ã¹ãã¬ã¤å°ã§ããã£ã¹ãã¬ã¤å°ã¯å¿ ãä½å å«ãä½å å«å°ãã§ãããããã£ã¦ãä½å å«ã¨ãã£ã¹ãã¬ã¤å°ãåºå¥ããå¿ è¦ã¯ããã¾ãããä½å å«ã¯ä¾åå°å½±ãdependent projectionãã¨ãå¼ã°ãã¾ããæ¨æºå°å½±ãcanonical projectionãã¯ãã³ã³ããã¹ãæ¡å¼µãcontext extensionãã«ããèªå°ãããä¾åå°å½±ã§ãããã¹ã¦ã®ä¾åå°å½±ãä½å å«ããæ¨æºå°å½±ã¨ã¯éãã¾ããããä»»æã®ä¾åå°å½±ããã£ã¹ãã¬ã¤å° | ä½å å«å°ãã¯å¹¾ã¤ãã®æ¨æºå°å½±ã®çµåã¨ãã¦æ¸ãã¾ãã
ä¸è¨ã®ç¹å¾´ã¯ä½å å«çã ããã§ãä¸è¬ã®C-ã·ã¹ãã ã§æç«ããããã§ã¯ãªãã®ã§æ³¨æãã¦ãã ããã
ã¨ã¹é¢æ
ã³ã³ããã¹ãï¼ææ¨ã®åã $`\cat{C}\& \cat{S}`$ ã¨ãã¾ãã$`\cat{C}`$ 㨠$`\cat{S}`$ ã¯äºãã«å対åã§ã$`\cat{C}`$ ã¯ä½å å«çC-ã·ã¹ãã ã§ããç¶æ³ãèãã¾ãã
C-ã·ã¹ãã ã¯ï¼å®ç¾©ããï¼æ¡å¼µå æ¬æ§é ãæã¡ã¾ãã$`\F{S}:\cat{C}^\op \to \mbf{Set}`$ ï¼$`\F{S}`$ ã¯çè¨ä½ã®ã¨ã¹ï¼ã¯ãæ¡å¼µå æ¬æ§é ã®ä¸é¨ã§ããé¢æï¼å層ï¼ã ã¨ãã¾ãã対象 $`\Gamma \in |\cat{C}|`$ ãã¨ã«ã次ã®ãããªæ¡å¼µé¢æ°ãããã¾ãã
$`\quad \mrm{Ext}_\Gamma : \F{S}(\Gamma) \to |\cat{C}|`$
ä¸ä»ãã® $`\Gamma`$ ã«æ¸¡ã£ã¦å¯ãéããã¨ã$`\mrm{Ext}`$ ã®ç·ä½ãå®ç¾©ã§ãã¾ãã
$`\quad \mrm{Ext} \in \prod_{\Gamma \in |\cat{C}|} \mrm{Map}( \F{S}(\Gamma), |\cat{C}|)`$
ããã¯æ¬¡ã®ããã«ãæ¸ãã¾ãã
$`\quad \mrm{Ext} : (\sum_{\Gamma\in |\cat{C}|} \F{S}(\Gamma)) \to |\cat{C}| \In \mbf{SET}
`$
ä¾åã㢠$`(\Gamma, A) \in \sum_{\Gamma\in |\cat{C}|} \F{S}(\Gamma)`$ ã«å¯¾ããæ¡å¼µã®å¤ã¯ãä¸ç½®æ¼ç®åè¨å· '$`\cdot`$' ãç¨ã㦠$`\Gamma\cdot A`$ ã¨æ¸ãã¾ãã
$`\text{For }\Gamma \in |\cat{C}|, A\in \F{S}(\Gamma)\\
\quad \Gamma \cdot A := \mrm{Ext}(\Gamma, A) = \mrm{Ext}_{\Gamma}(A)
`$
åçè«ã®æèã§ã¯ã$`\F{S}(\Gamma)`$ ã®è¦ç´ ã¯ãã³ã³ããã¹ã $`\Gamma`$ ã§è¨±å®¹ã§ããåé ãã¨èãã¾ããåé ã¯å®éã¯åãã¡ããªã¼é *1ã§ã$`\Gamma`$ ããã¡ããªã¼ã®ãã©ã¡ã¼ã¿é åãä¸ãã¾ãã
ä¸æ¹ãã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ã§ã¯ã$`\F{S}(\Gamma)`$ ã®è¦ç´ ã¯ãææ¨ $`\Gamma`$ ã«è¿½å ã§ããè«çæãã¨èãã¾ããè«çæãlogical sentenceãããããã¯åã«æãsentenceãã¨ã¯ãéããè«çå¼ï¼èªç±å¤æ°ãæããªãè«çå¼ï¼ã¨åããã¨ã§ããæã¨ã¯ãææ¨ $`\Sigma`$ ã«å¯¾ãã¦æå³ãæã¤å½é¡ã¨ãããã¾ãã
åé ã¨æã§ã¯å ¨ç¶éããã®ã«æãã¾ãããã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã«ããã°ãåã¨å½é¡ã¯åããã®ãã§ããææ§èªãåãã¯åé ã¨è§£éã§ããããææ§èªãå½é¡ãã¯æãè«çå¼ãã¨è§£éã§ããï¼ãå½é¡ãã¨ãåãã®ææ§æ§ãå³ç¤ºãåç §ï¼ã®ã§ãåé ã¨æãåããã®ã§ãããã¨ã¯ããã»ã©é©ããã¨ã§ã¯ããã¾ããã
$`\F{S}`$ ã¯ã³ã³ããã¹ãã®å $`\cat{C}`$ ä¸ã®åå¤é¢æãå層ãã§ãããææ¨ã®å $`\cat{S}`$ ä¸ã§ã¯å ±å¤é¢æãä½å層ãã§ããã³ã³ããã¹ãï¼ææ¨ã®å $`\cat{C}\& \cat{S}`$ ä¸ã§å®ç¾©ãããé¢æ $`\F{S}`$ ãã¨ã¹é¢æãess functorãã¨å¼ã¶ãã¨ã«ãã¾ãã'S' ã¯æ¬¡ã«ç±æ¥ãã¾ãã
- åçè«ã«ãããã½ã¼ããsortããã½ã¼ãã¨åã¯å義èªã
- ã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ã«ãããæãsentenceããæã¨å½é¡ã¯å義èªã
- æ¡å¼µã«ãããã¹ããããstepãï¼ãæ¡å¼µå æ¬æ§é ã®ããã²ã¨ã¤ã®å®å¼åãåç §ï¼ã
æ§æçã»å ·ä½çã«å®ç¾©ãããææ¨ $`\Gamma`$ ï¼ãå®ç¨ã«ãªãåçè«ã®è¨æ³ãåç §ï¼ã«ããã¦ã¯ã$`\F{S}(\Gamma)`$ ã¯ææ¨ã«è¿½å å¯è½ãªå®£è¨æã®éåã¨ã¿ãªãã¾ããã½ã¼ããåãããªãã¬ã¼ã·ã§ã³ãé¢æ°ããå°å ¥ãã宣è¨æã®å ´åãããã°ãæ³åã®å®£è¨æãå ¬çã®å½é¡ãã®å ´åãããã¾ãã
ã»ã¯ã·ã§ã³ã¨ã¬ãã©ã¯ã·ã§ã³
ä¸è¬çã«ãåã®å° $`f:A \to B`$ ã«å¯¾ãã¦ã$`f`$ ã®ã»ã¯ã·ã§ã³ãsectionã $`s`$ ã$`f`$ ã®ã¬ãã©ã¯ã·ã§ã³ãretraction | ãªãã©ã¯ã·ã§ã³ã $`r`$ ã¨ã¯æ¬¡ãæºããå°ã§ãã
- ã»ã¯ã·ã§ã³æ¡ä»¶ï¼ $`s:B\to A,\; s;f = \id_B`$
- ã¬ãã©ã¯ã·ã§ã³æ¡ä»¶ï¼ $`r:B\to A,\; f;r = \id_A`$
ä»»æã®å°ã«ã»ã¯ã·ã§ã³ãã¬ãã©ã¯ã·ã§ã³ãåå¨ããããã§ã¯ããã¾ãã -- ä¾ãã°ãéååã§èãã¦ã¿ã¦ãã ãããã»ã¯ã·ã§ã³ã¯ãå対åã§ã¯ã¬ãã©ã¯ã·ã§ã³ã«ãªãã¾ããã³ã³ããã¹ãã®åã®ã»ã¯ã·ã§ã³ã¯ææ¨ã®åã®ã¬ãã©ã¯ã·ã§ã³ã«ãªãã¾ãã
ã³ã³ããã¹ãï¼ææ¨ã¨è¨ã£ã¦ãåãï¼$`\Gamma`$ 㨠$`A\in \F{S}(\Gamma)`$ ã«å¯¾ãã¦ãã³ã³ããã¹ãæ¡å¼µ $`\Gamma\cdot A`$ ã¨æ¨æºå°å½± $`\rho^{\Gamma, A}`$ ã決ã¾ãã¾ãã
$`\quad \rho^{\Gamma, A} : \Gamma\cdot A \to \Gamma \In \cat{C}`$
æ¨æºå°å½±ï¼å対åã§ã¯æ¨æºå ¥å°ï¼ $`\rho^{\Gamma, A}`$ ã®ã»ã¯ã·ã§ã³ï¼å対åã§ã¯ã¬ãã©ã¯ã·ã§ã³ï¼ã¯éè¦ã§ããé常ãåçè«ã§ãã¤ã³ã¹ã¿ã³ã¹ãã¨è¨ã£ãå ´åãæ¨æºå°å½±ã®ã»ã¯ã·ã§ã³ãæããã¨ãå¤ãã§ãããããã¤ã³ã¹ã¿ã³ã¹ãã¯ææ§å¤ç¾©èªãªã®ã§ãã»ã¯ã·ã§ã³ã¤ã³ã¹ã¿ã³ã¹ãsection instanceãã¨å¼ãã ã»ããç´ãããªãã§ãããããã®ä»ã®ãã¤ã³ã¹ã¿ã³ã¹ãã®ç¨æ³ã«ã¤ãã¦ã¯ãåçè«ã®ã¤ã³ã¹ã¿ã³ã¹ã¨ã¯ããè¦ã¦ãã ããã
åçè«ã§ã¯ãæ§æè«ã¨æå³è«ããã¾ãåºå¥ããªãï¼ãããã¯åºå¥ãé£ãï¼ã®ã§ãæ§æè«çãªã»ã¯ã·ã§ã³ã¤ã³ã¹ã¿ã³ã¹é ã¨æå³è«çãªã»ã¯ã·ã§ã³ã¤ã³ã¹ã¿ã³ã¹å®ä½ãã¨ãã«ãé ãã¨å¼ã¶ãã¨ãå¤ãã§ãï¼èªå°¾ã®ãé ããå®ä½ãã¯ããå½é¡ãã¨ãåãã®ææ§æ§ãå³ç¤ºãåç §ï¼ããã®ç¥èªã¯ã ãã¶çä¸å°½ã§ããå¤æ°æ´¾ã§ããè«çã§âé âã«å¯¾å¿ããã®ã¯å®çã®è¨¼æã§ãããã®ãã¨ã¯ãProofs-as-Terms, Terms-as-Proofs ã¨ãããã£ãããã¬ã¼ãºã§è¡¨ç¾ããã¾ãï¼ãã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã¨ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åãåç §ï¼ã
æ¨æºå°å½±ã®ã»ã¯ã·ã§ã³å ¨ä½ã®éåã¯ã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{Sect}(\rho^{\Gamma, A}) = \mrm{Sect}(\rho^{\Gamma, A}: \Gamma\cdot A \to \Gamma)`$
æ¨æºå°å½±ã®ã»ã¯ã·ã§ã³ãã»ã¯ã·ã§ã³éã®éåã«ã¯æ§ã ãªå¼ã³åãããã¾ããããä»ããããåæããã®ã¯æå³ããªãã¨æãã®ã§ãã¾ãããã²ã¨ã¤ã ã注æãã¦ããã¨ã$`s\in \mrm{Setc}(\rho^{\Gamma, A})`$ ã§ãããã¨ããåçè«ã®æ¨æºçè¨æ³ã§ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \Gamma \vdash s : A`$
ä¸è¨ã®æ§æå½¢å¼ãsyntactic formãã¯åå¤æã{type | typing} judgementãã¨å¼ã³ã¾ãã
æ¨æºå°å½±ã®ã»ã¯ã·ã§ã³ $`\rho^{\Gamma, A}`$ ã®å対åã«ããã対å¿ç©ï¼åããéã«ããã ãï¼ã $`\tau^{\Gamma, A}`$ ã¨ãã¾ãã
$`\quad \tau^{\Gamma, A} : \Gamma \to \Gamma \cdot A \In \cat{S}`$
$`\tau^{\Gamma, A}`$ ã¯ææ¨ã®å $`\cat{S}`$ ã®æ¨æºå ¥å°ãcanonical injectionãã§ãã$`\cat{S}`$ ã¯å å«çãinclusiveãã¨ä»®å®ãã¦ããã®ã§ãæ¨æºå ¥å°ã¯å å«ãå å«å°ãã§ãããä½ãã£ã¹ãã¬ã¤å°ã§ãããã¾ãã
æ¨æºå ¥å°ã®ã¬ãã©ã¯ã·ã§ã³å ¨ä½ã®éåã¯ã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{Retr}(\tau^{\Gamma, A}) = \mrm{Retr}(\tau^{\Gamma, A}: \Gamma \to \Gamma\cdot A)`$
ããã§ãåãæ¦å¿µã«å¼ã³åï¼å義èªï¼ããã«ã¿ããã«å¢ããäºæ ã«è§¦ãã¦ããã¾ããã³ã³ããã¹ãã®å $`\cat{C}`$ ã«é¢ãããªãããã®æ¦å¿µããã£ãã¨ãï¼
- åçè«ã®æèã§ãæ§æè«ç観ç¹ãã $`\cat{C}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- åçè«ã®æèã§ãæå³è«ç観ç¹ãã $`\cat{C}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- è«çã®æèã§ãæ§æè«ç観ç¹ãã $`\cat{C}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- è«çã®æèã§ãæå³è«ç観ç¹ãã $`\cat{C}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- åçè«ã®æèã§ãæ§æè«ç観ç¹ãã å対å $`\cat{S}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- åçè«ã®æèã§ãæå³è«ç観ç¹ãã å対å $`\cat{S}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- è«çã®æèã§ãæ§æè«ç観ç¹ãã å対å $`\cat{S}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
- è«çã®æèã§ãæå³è«ç観ç¹ãã å対å $`\cat{S}`$ ä¸ã®æ¦å¿µã«ååãä»ããã
ãããããã¼ãã³ã°ã«ã¼ã«ãçµ±å¶ããã¦ããããã§ã¯ãªãã®ã§ãçµæã¨ãã¦ã°ãã£ã°ãã£ã«ãªãã¾ãã
ã¨ã¹é¢æã¨ãã¤ãã¼ãã¯ããªã³
ã³ã³ããã¹ãï¼ææ¨ã®å $`\cat{C}\& \cat{S}`$ ã®ã¨ã¹é¢æ $`\F{S}`$ ã¯æ¬¡ã®ãããªé¢æã§ããã
$`\quad \F{S} : \cat{C}^\op \to \mbf{Set} \In \mbf{CAT}`$
ãããã¯ï¼åããã¨ã§ããï¼ï¼
$`\quad \F{S} : \cat{S} \to \mbf{Set} \In \mbf{CAT}`$
ã¨ã¹é¢æã®ä½åããéåå $`\mbf{Set}`$ ããé åºéåã®å $`\mbf{Ord}`$ ã«å¤æ´ãã¾ãã
$`\quad \F{S} : \cat{C}^\op \to \mbf{Ord} \In \mbf{CAT}`$
ããå¤æ´ããã¨ã$`\F{S}(\Gamma)`$ ã¯åãªãéåã§ã¯ãªãã¦é åºé¢ä¿ $`\le`$ ãæã¡ã¾ããåçè«ã§è¨ãã°ãµãã¿ã¤ãé¢ä¿ãè«çã§è¨ãã°ã¨ã³ãã¤ã«ã¡ã³ãé¢ä¿ã§ã -- ããã¯å ¸åä¾ã§ãå¥ã«ã©ããªé åºé¢ä¿ã§ããã¾ãã¾ãããã©ãã
$`\varphi`$ ãå $`\cat{C}`$ ã®ä¾åå°å½±ããã£ã¹ãã¬ã¤å°ãï¼æ¨æºå°å½±ã§ãªãã¦ãããï¼ã®ã¨ãã$`\F{S}(\varphi)`$ ãæ°´å¢ããthinningãã¨å¼ã³ã¾ããå®ç¾©ãããæ°´å¢ãã¯å $`\mbf{Ord}`$ ã®å°ã§ãããæ°´å¢ããã¯ãè«çã«ããããè«çå¼ï¼è¿°èªã®å¤æ°æ°´å¢ããã«å¯¾å¿ããããã§ãä»ã®æèã»è¦³ç¹ããã¯å¥ãªååãä»ãã¦ãã¾ãï¼åç¯ã®æå¾åç §ï¼ã
æ¨æºå°å½± $`\rho^{\Gamma, A}`$ ã¯ä¾åå°å½±ã®ç¹å¥ãªãã®ãªã®ã§ã$`\F{S}(\rho^{\Gamma, A})`$ ã¯æ°´å¢ãã§ããä½å å«çãªã³ã³ããã¹ãã®åã§ã¯ãä¸è¬ã®ä¾åå°å½±ã¯æ¨æºå°å½±ã®çµåã§æ¸ããã®ã§ãæ¨æºå°å½±ã®æ°´å¢ããèããã°ååã§ããæ¨æºå°å½±ã®æ°´å¢ãã次ã®ããã«æ¸ãã¾ãã
$`\quad \Delta_{\Gamma, A} := \F{S}(\rho^{\Gamma, A})\\
\quad \Delta_{\Gamma, A} : \F{S}(\Gamma)\to\F{S}(\Gamma \cdot A) \In \mbf{Ord}
`$
ç¿æ £çã« $`\Delta`$ ã使ãã®ã¯ãæ°´å¢ãã®é常ã«ç¹å¥ãªå ´åã対è§ååã«ãªãããã§ããåã®éå»è¨äºã§ã¯ã$`\Delta`$ ã®ä»£ããã« $`\diamondsuit`$ ã使ã£ããã¨ãããã¾ãã
æ°´å¢ãã¯ä¾åå°å½±ãã¤ã¾ããã£ã¹ãã¬ã¤å°ï¼ãã£ã¹ãã¬ã¤ã¯ã©ã¹ã®è¦ç´ ï¼ã«å¯¾ãã¦ããå®ç¾©ãã¾ãããã¨ãããããã£ã¹ãã¬ã¤å°ã«å¯¾ããã¨ã¹é¢æã®å¤ï¼å $`\mbf{Ord}`$ ã®å°ï¼ãæ°´å¢ãã¨å®ç¾©ããã®ã§ããããã£ã¹ãã¬ã¤å°éã¯ãâãã¡ã¤ãã¼å¼ãæ»ãã«é¢ãã¦éãã¦ããâã¨ããè¯ãæ§è³ªãæã£ã¦ãã¾ããã
$`\mbf{Ord}`$ ã«å¤ãã¨ãã¨ã¹é¢æãåããã³ã³ããã¹ãï¼ææ¨ã®åã¯ããã¼ã´ã§ã¢ã®ãã¤ãã¼ãã¯ããªã³ã®ã»ããã¢ãããæºåçãªç¶æ³è¨å®ãã¨ãªãã¾ããã¨ã¹é¢æã¨æ¨æºå°å½±ã次ã®æ¡ä»¶ãæºããã¨ããå $`\cat{C}`$ ä¸ã®ãã¤ãã¼ãã¯ããªã³ãhyperdoctrineãã¨ãªãã¾ãã
- ä»»æã®æ¨æºå°å½± $`\rho^{\Gamma, A}`$ ã«å¯¾ãã¦ãæ°´å¢ã $`\Delta_{\Gamma, A}`$ ã¯å·¦éä¼´ã¨å³éä¼´ãæã¤ã
å·¦éä¼´ï¼å³éä¼´ã¯åè«ã®æå³ã®éä¼´ã§ãããé åºéåã®åã§ã¯ã¬ãã¢æ¥ç¶ã¨ãããã¨ãããã¾ãï¼ãé åºéä¼´æ§ï¼ ã¬ãã¢æ¥ç¶ã®åè«ãåç §ï¼ã
ä»æ±ã£ã¦ããã³ã³ããã¹ãã®åã¯ä½å å«çC-ã·ã¹ãã ãªã®ã§ãä»»æã®å°å½±ãä¾åå°å½±ãã¯æ¨æºå°å½±ã®çµåã§æ¸ãã¾ãããã£ã¦ããã¤ãã¼ãã¯ããªã³ã®æ¡ä»¶ã次ã®ããã«è¨ã£ã¦ãåãã§ãã
- ä»»æã®å°å½±ããã£ã¹ãã¬ã¤å°ãã®æ°´å¢ãã¯å·¦éä¼´ã¨å³éä¼´ãæã¤ã
ãã£ã¨ãããã¤ãã¼ãã¯ããªã³ã®å®ç¾©ãäºéåãã¼ã¹ã§åºæ¥ãªããï¼ ã¨èãã¦ããã®ã§ããï¼ä»¥ä¸ã®éå»è¨äºåç §ï¼ãC-ã·ã¹ãã ã®ã¨ã¹é¢æã«æ¡ä»¶ãä»ããã»ããå ·åããããããªæ°ããã¾ãã
- è¿°èªè«çï¼ äºéåçãã¤ãã¼ãã¯ããªã³
- è¿°èªè«çï¼ ã·ã¼ãä»ãäºéå -- è¨æ£ã¨åè«
éå»è¨äºã§ã·ã¼ãå°ã¨å¼ãã§ããå°ãå°å½±ããã£ã¹ãã¬ã¤å°ãã§ãã·ã¼ãåè§å½¢ã¨å¼ãã§ããåè§å½¢ãå°å½±ã«ä¼´ããã«ããã¯åè§å½¢ã§ãã
å¤é¨ã·ã°ãã»ãã¤ã¨å é¨ã·ã°ãã»ãã¤
ã³ã³ããã¹ãæ¡å¼µ $`\Gamma\cdot A`$ ã $`\sum_\Gamma A`$ ã¨æ¸ããã¨ãããã¾ããã»ã¯ã·ã§ã³éã®éå $`\mrm{Setc}(\rho^{\Gamma, A})`$ ã $`\prod_\Gamma A`$ ã¨æ¸ããã¨ãããã¾ããããã¯ãã³ã³ããã¹ãã®åã®ç¹æ®ã±ã¼ã¹ã¨ãã¦éååãèããã¨ãã«ãã³ã³ããã¹ãæ¡å¼µãã·ã°ãåã«ãã»ã¯ã·ã§ã³éã®éåããã¤åã¨ãªã£ã¦ããããã§ãã
ä¸æ¹ã§ãã¨ã¹é¢æããã¤ãã¼ãã¯ããªã³ãå®ç¾©ããã¨ããæ°´å¢ãé¢æ $`\Delta_{\Gamma, A}`$ ã®å·¦éä¼´ã $`\Sigma_{\Gamma, A}`$ ãå³éä¼´ã $`\Pi_{\Gamma, A}`$ ã¨æ¸ãããããã¾ãã$`\Sigma, \Delta, \Pi`$ ãä½ãéä¼´ããªãã«ãΣ-Î-Î éä¼´ãΣ-Î-Î adjunctionãã¨å¼ãã ããã¾ãããã®éä¼´ããªãã«ã¯ãã¨ã¹é¢æã®æ§è³ªã¨ãã¦å®ç¾©ããã¾ãã
æåã®ã·ã°ãã»ãã¤ã¯ãã³ã³ããã¹ãã®åã®æ¡å¼µå æ¬æ§é ããåºã¦ãããã®ã§ããäºçªç®ã®ã·ã°ãã»ãã¤ã¯ãã¨ã¹é¢æã«ãããã¤ãã¼ãã¯ããªã³ã®ãªãã®æ¦å¿µã§ããç¹å¥ãªä¾ã§ã¯ãäºç¨®é¡ã®ã·ã°ãã»ãã¤ãä¸è´ãããã¨ãããã®ã§ãããåºå¥ãã¦ããã®ãåã§ããä¸çªç®ã®æå³ã®ã·ã°ãã»ãã¤ãå¤é¨ã·ã°ãã»ãã¤ãexternal sigma-piããäºçªç®ã®æå³ã®ã·ã°ãã»ãã¤ãå é¨ã·ã°ãã»ãã¤ãinternal sigma-piãã¨å¼ã³åãã¾ãããã
ãããè«çã®æèã§èªã£ã¦ãããªããå¤é¨ã·ã°ãã»ãã¤ã¯ãã¼ã¿åã®éåè«çã·ã°ãåã¨ãã¤åã¨è§£éã§ãã¦ãå é¨ã·ã°ãã¯åå¨ééåãexistential quantifierããå é¨ãã¤ã¯å ¨ç§°ééåãuniversal quantifierãã«ãªãã¾ãããã®å ´åã¯ãå¤é¨ã·ã°ãã»ãã¤ã¨å é¨ã·ã°ãã»ãã¤ã¯å¥ç©ãªã®ã§æ··åãããã¨ã¯ããã¾ããããä¸è¬çãªç¶æ³ã ã¨æ··åããã¡ãªã®ã§æ³¨æãã¦ãã ããã
ããã¦ãããã
ã¨ã¹é¢æã使ã£ããã¤ãã¼ãã¯ããªã³ã®å®ç¾©ã¯ããã«æ¡å¼µã§ãã¾ããã¨ã¹é¢æã®ä½åãåéã®åã«ãã¦ãã¬ãã¢æ¥ç¶ãé åºéä¼´ããåè«ã®éä¼´ã«å¤ããã°ãåãè«ç代æ°ï¼ãè¿°èªè«çï¼ ãã¼ã¹åã¨è«ç代æ°ã®åãåç §ï¼ã¨ãããã¤ãã¼ãã¯ããªã³ãä½ãã¾ãã
è«ç代æ°ã¨ãã¦ãåãªãåããæ¼ç¹¹ç³»ï¼ãã種ã®ãªãã©ããï¼ã®ã»ããç¾å®çããç¥ãã¾ãããÏ-ã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³ã®æ¦å¿µï¼ä»¥ä¸ã®éå»è¨äºåç §ï¼ããã³ã³ããã¹ãï¼ææ¨ã®åã®ä¸ã§åå®ç¾©ã§ãããã§ãã
ã¢ãã©ã ã¹ãã¼éã®ä»æ§æ§é ï¼ããã¼ã¢è«çã®åè«çãªå®å¼åãåç §ï¼ããã³ã³ããã¹ãï¼ææ¨ã®åã«åãè¾¼ããããç¥ãã¾ããã
ãã®è¨äºã§ã¯ãææ¨ã«ã¢ãã«åã対å¿ãããé¢æã«ã¤ãã¦ã¯ã¾ã£ãã触ãã¦ã¾ãããã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ã®ä¸»å½¹ã¯ã¢ãã«ã®ã»ãã§ããææ¨ã®åããæ§æã¢ããã®ã¯ã©ã¤ã¹ãªåã§ãããã¨ãããã®è¨äºã§ã¯è§¦ãã¦ã¾ããã
ã³ã³ããã¹ãï¼ææ¨ã®å $`\cat{C}\& \cat{S}`$ ã¯ãæ§ã ãªè©±é¡ã«é¢é£ããè±å¯ãªæ§é éããã¹ãããè¯ãåå°ã«ãªãããã§ãã
*1:åãã¡ããªã¼é ãåã«ãåé ããããã«ã¯åã«ãåãã¨å¼ã¶ç¿æ £ãããã®ã§ãã