このブログの更新は Twitterアカウント @m_hiyama で通知されます。
Follow @m_hiyama

メールでのご連絡は hiyama{at}chimaira{dot}org まで。

はじめてのメールはスパムと判定されることがあります。最初は、信頼されているドメインから差し障りのない文面を送っていただけると、スパムと判定されにくいと思います。

[参照用 記事]

連立方程式系と余連立余方程式系

「圏論のエンドとコエンドは双対なんだよ」で述べたように、エンドとコエンドは完全に双対なのですが、この双対性、なかなかに分かりにくいようです。エンドの作り方は「連立方程式系の解空間を求める」行為になっています。コエンドを作ることはその行為の…

一般化ハイパーグラフ

「スケマティック」で述べたように、スケマティック集合は、“絵図的手法による一般化された代数系”の台〈underlying thing | carrie〉となる構造です。スケマティック集合は、集合に組み合わせ幾何的構造が載った対象物です。有向グラフ、無向グラフ、球体集…

ロレックスの腕時計が5,880円

YouTubeのとある広告でタイトルのごとく言っているように聞こえる。が、商品のWebサイトには「ロレックスの時計」だとは一言も書いてない。広告内でアナウンスしている文言は次のよう。 ロレックスの公式オンライン年末セールが始まりました。(これは本当か…

スケマティック

「スケマティック〈schematic〉」という形容詞の使い方を説明します。内容: 代数構造 スケマティック系 スケマティックな構造達 代数構造典型的な代数構造である群を考えてみると、群は単位元、逆元(を対応させる写像)、二項演算〈乗法〉を持ちます。群の…

一般化反射的グラフ

圏の下部構造は有向グラフです。圏には恒等射がありますが、恒等射に相当する特別な辺を備えた有向グラフは反射的有向グラフと呼びます。よって、圏の下部構造は反射的有向グラフだと言ってもいいでしょう。圏を一般化した構造である一般化圏〈generalized c…

オプティックの圏とコエンドと米田テンソル計算

「論理や型理論の圏論的意味論」より: 今年いっぱいくらい、まとまった時間が取りにくい状況があるので、長いブログエントリーは書けそうにない。短いエントリーをチョコチョコと書くことにします。短くて完結した書き物は難しいので、続き物になる可能性が…

等式の二種類の使用法: 選別条件と同一視宣言

ひとつ前の記事「圏論のエンドとコエンドは双対なんだよ」において、“連立方程式系の解空間”と“関係族の同値閉包による商集合”が双対的だという話をしました。この双対性はちょっと不思議な感じがします。最終的には、写像(集合圏の射)の並行ペア(両端が…

圏論のエンドとコエンドは双対なんだよ

エンドとコエンドは、その名前から双対なんだろうとは誰でも思うでしょう。しかし、定義の仕方によっては双対性が見えにくいこともあります。この記事では、エンドとコエンドの双対性が出来るだけ見えやすくなるような定義と記法を提示します。$`\newcommand…

依存性を持つ複グラフ

複圏〈オペラッド〉はその下部構造に複グラフを持ちます。導出システム〈演繹系〉は、概念的には複グラフそのものです。複グラフを依存型理論で利用したいとき、複グラフにも依存性を導入する必要があります。この記事で、依存性を持つ複グラフを導入します…

複圏〈オペラッド〉とプレ準同型射の圏

「論理や型理論の圏論的意味論 // 導出システムの圏と圏の圏」において、導出システム達を対象とする圏に触れました。しかし、導出システムのあいだの準同型射(それが圏の射となる)を素朴に考えていては、どうもうまくないようです。導出システムは、複圏…

長ったらしい記号的表現: ラベル付き有向グラフを例として

例えば、有向グラフやラベル付き有向グラフの説明をするとき、当然に記号的表現を使うわけです、 $`\mathrm{Graph}(A, B)`$ とか。ふと、使っている記号的表現 $`\mathrm{Graph}(A, B)`$ を文脈から切り離して眺めてみました。「文脈無しで、$`\mathrm{Graph…

論理や型理論の圏論的意味論

今年いっぱいくらい、まとまった時間が取りにくい状況があるので、長いブログエントリーは書けそうにない。短いエントリーをチョコチョコと書くことにします。短くて完結した書き物は難しいので、続き物になる可能性が高いです。$`\newcommand{\mrm}[1]{ \ma…

型理論の演繹定理

過去記事「矢印記号の使用法と読み方 2024」において、様々な矢印記号の意味・運用について述べました。構文論で使う矢印記号に関して、別な読み方・名前を追加して一覧表を再掲します。 矢印記号 読み方 別な読み方・名前 $`\Rightarrow`$ 含意〈implies〉 …

ブール型と自然数型の明示的なコアージョン

記号的表現を見たとき、十分トレーニングされた人は、周囲の文脈から様々な“忖度”をして、記号的表現を解釈します。「行間を読む」と言ってもいいでしょう。ソフトウェアによって「忖度する/行間を読む」行為を実装することはとても大変です。ソフトウェア…

余ベキ関手とポイントセット関手の随伴

随伴系〈adjunction〉の典型的例というと、やはり自由忘却随伴系〈free-forgetful adjunction〉でしょうかね。あと、カリー化・反カリー化も典型的だと言えるでしょう。集合圏で考えるとして、カリー化・反カリー化による次のホムセット同型があります。$`\n…