ãè«çãåçè«ã®åè«çæå³è«ãããï¼
ä»å¹´ãã£ã±ãããããã¾ã¨ã¾ã£ãæéãåãã«ããç¶æ³ãããã®ã§ãé·ãããã°ã¨ã³ããªã¼ã¯æ¸ãããã«ãªããçãã¨ã³ããªã¼ããã§ã³ãã§ã³ã¨æ¸ããã¨ã«ãã¾ããçãã¦å®çµããæ¸ãç©ã¯é£ããã®ã§ãç¶ãç©ã«ãªãå¯è½æ§ãé«ãã§ãã
ã¨æ¸ãã¾ãããããã®å¾ã¾ã¼ã¾ã¼ã®é·ãã®è¨äºãæ¸ãã¦ã¾ããä»åãã¾ã¼ã¾ã¼ã®é·ãã®è¨äºã§ãããåå¿ã¨äºå®ã®ã¡ã¢ã§ããããã説æããã¤ããã®è©±é¡ã«é¢ããã¡ã¢ã§ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\o}[1]{ \overline{#1} }
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
\newcommand{\op}{ \mathrm{op}}
`$
å 容ï¼
- ãªããã£ãã¯ã®åã®ãã ã»ãã
- ç±³ç°ãã³ã½ã«
- å¤å ¸ãã³ã½ã«è¨ç®ã¨ç±³ç°ãã³ã½ã«è¨ç®
- ãªãã«ã¾ãç±³ç°ãã³ã½ã«è¨ç®
ãªããã£ãã¯ã®åã®ãã ã»ãã
æè¿ãã¨ã³ãï¼ã³ã¨ã³ãã«é¢ãã¦åè«ï¼è¸ãè¿ãï¼ããã¾ããã
- åè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ã
- çå¼ã®äºç¨®é¡ã®ä½¿ç¨æ³ï¼ é¸å¥æ¡ä»¶ã¨åä¸è¦å®£è¨
ã³ã¨ã³ãã®å¿ç¨ã¨ãã¦æãã¤ãã®ã¯ããªããã£ãã¯ã®åã®å®ç¾©ã§ãããªããã£ãã¯ï¼ç¹ã«å ·è±¡ãªããã£ãã¯ï¼ã«ã¤ãã¦ã¯ä»¥ä¸ã®éå»è¨äºã§è¿°ã¹ã¦ãã¾ãã
ä¸è¨éå»è¨äºã§ã¯ã³ã¨ã³ããæ示çã«ã¯ä½¿ã£ã¦ãã¾ããããå ·è±¡ãªããã£ãã¯ã®å $`\mbf{ConcOptic}`$ ã®ãã ã»ãããã³ã¨ã³ãã使ã£ã¦æ¸ãã¨æ¬¡ã®ããã§ã*1ã
$`\quad {\displaystyle
\int^{R\in |\mbf{Set}|} \mbf{Set}(A, R\times B) \times\mbf{Set}(R\times Y, X)
}
`$
éååã®ä»£ããã«ã対称ã¢ãã¤ãå $`\cat{C}`$ ã使ãã¨ã以ä¸ã®ããã§ãã
$`\quad {\displaystyle
\int^{R\in |\cat{C}|} \cat{C}(A, R\otimes B) \times\cat{C}(R\otimes Y, X)
}
`$
ä¸è¨ã®ã³ã¨ã³ãã¯ããã©ã¡ã¼ã¿ $`A,B, X,Y`$ ãå«ãã®ã§ã $`|\cat{C}|\times |\cat{C}|`$ ã®è¦ç´ ã®ãã¢ï¼ãã¢ã®ãã¢ï¼ãã¨ã«éåã対å¿ããã¾ãã
$`\quad (|\cat{C}|\times |\cat{C}|)^2 \ni ( (A, B), (X, Y)) \mapsto \\
\quad {\displaystyle \left(\int^{R\in |\cat{C}|} \cat{C}(A, R\otimes B) \times \cat{C}(R\otimes Y, X)\right) \in |\mbf{Set}| }
`$
$`(|\cat{C}|\times |\cat{C}|)^2 \to |\mbf{Set}|`$ ã¨ãã対å¿ãéåæ | ãã¡ããªã¼ããããã®ã§ãéå $`|\cat{C}|\times |\cat{C}|`$ ãé ç¹éåã¨ããæåã°ã©ããå®ç¾©ã§ãã¾ããæåã°ã©ãã¯åã®ä¸é¨æ§é ãªã®ã§ãåãå®ç¾©ãã第ä¸æ©ã¨ãªãã¾ãã
ç±³ç°ãã³ã½ã«
次ã®å®ç¾©ãèãã¾ãã
$`\quad P(A, B, X, Y, R, S) :=
\cat{C}(A, R\otimes X)\times \cat{C}(S\otimes Y, B)
`$
$`P(A, B, X, Y, R, S)`$ ã¯6ã¤ã®å¤æ°ããã©ã¡ã¼ã¿ããæã¤éåã§ããã¨ãããããé常ã«éãªå®ç¾©ã¨ãã¦ãå¹¾ã¤ãã®å¤æ°ã«ãã決ã¾ãéåãç±³ç°ãã³ã½ã«ãYoneda tensorãã¨å¼ã¶ãã¨ç´æãã¾ãã
ããå°ãè£è¶³ãå¿ è¦ã§ãï¼ å¹¾ã¤ãã®å¤æ°ã¯åã®å¯¾è±¡ã¾ãã¯å°ã表ãã¾ãã大æåã対象ã§å°æåãå°ã表ãã¨ç´æããã¨ãå°ã«å¯¾ãã¦ã¯éåéã®ååãé¢æ°ãã対å¿ãã¾ãã
$`\quad P(a, b, x, y, r, s) : P(A, B, X, Y, R, S) \to P(A', B', X', Y', R', S')\In \mbf{Set}\\
\text{Where}\\
\quad a : A' \to A \In \cat{C}\\
\quad b : B \to B' \In \cat{C}\\
\quad x : X \to X' \In \cat{C}\\
\quad y : Y' \to Y \In \cat{C}\\
\quad r : R \to R' \In \cat{C}\\
\quad s : S' \to S \In \cat{C}
`$
æ¹åãå³ç¤ºããã¨ï¼
$`\quad \[email protected]{
A
& B \ar[d]|{b}
& X \ar[d]|{x}
& Y
& R \ar[d]|{r}
& S
\\
A' \ar[u]|{a}
& B'
& X'
& Y' \ar[u]|{y}
& R'
& S' \ar[u]|{s}
}`$
ããã¦ã$`P`$ ã¯é¢ææ§ãæã¤ã¨ãã¾ããçµå±ããã®ç±³ç°ãã³ã½ã« $`P`$ ã¯ãéååã«å¤ãæã¤6å¼æ°ã6å¤æ° | 6é ãã®é¢æã§ãã6ã¤ã®å¼æ°ã«ã¯ãå ±å¤ã¨åå¤ãæ··ãã£ã¦ãã¾ããåå¤ãå対åã使ã£ã¦è¡¨ããã¨ã«ããã¨ã$`P`$ ã®ãããã¡ã¤ã«ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad P :
\cat{C}^\op \times
\cat{C} \times
\cat{C} \times
\cat{C}^\op \times
\cat{C} \times
\cat{C}^\op \to \mbf{Set} \In \mbf{CAT}
`$
ãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã§èª¬æãããªã¼ãã¼ã©ã¤ã³è¨æ³ã使ãã¨ã次ã®ããã«æ¸ãã¾ããï¼[追è¨]説æä¸è¶³ã ã£ãã®ã§ãããå¾ã«è£è¶³èª¬æã追å ã[/追è¨]ï¼
$`\quad P(\o{a}, b, x, \o{y}, r, \o{s}) : P(\o{A}, B, X, \o{Y}, R, \o{S}) \to P(\o{A'}, B', X', \o{Y'}, R', \o{S'})\In \mbf{Set}
`$
ãã©ãã³æåå°æåã¯å°ã表ããã¯ããã®ã§ãããå°æå $`a`$ ã®æåã®åºç¾ã§ã¯ã
$`\quad a : A' \to A \In \cat{C}`$
æ¹åã®å³ç¤ºã§ã¯ã$`a`$ ãä¸ããä¸ã®âéè¡âã§æãã¦ãã¾ããããã¦ããªã¼ãã¼ã©ã¤ã³è¨æ³ã§ã¯ã
$`\quad \o{a} : A \to A' \In \cat{C}^\op`$
ä¸ããä¸ã®âéè¡âã®æå³ã¯ï¼
- ãã¨ã®å $`\cat{C}`$ å ã§ã¯ã$`a : A' \to A`$
- å対å $`\cat{C}^\op`$ å ã§ã¯ã$`\o{a} : A \to A'`$
[/è£è¶³]
å¤æ°ã¯ãå $`\cat{C}`$ ã®å¯¾è±¡ã¾ãã¯å°ã表ãã¨ããæé»ã®åæã®ãã¨ã§ã6å¼æ°ã6å¤æ° | 6é ãã®é¢æã次ã®ããã«æ¸ãã¨ç´æãã¾ãã
$`\quad P(\o{A}, B, X, \o{Y}, R, \o{S})`$
é¢æã®å¤ã ãã§ã¯ãªãã¦ãé¢æãã®ãã®ããã®æ¸ãæ¹ã§è¡¨ãã¾ãããã®æ¸ãæ¹ã¯ä¼çµ±çã»åè¿ä»£çãªãã®ã§ã次ã®ç¹ã注æããå¿ è¦ãããã¾ãã
- é¢æã®å¤ï¼ç¹å®ã®éåï¼ã¨ãé¢æãã®ãã®ãåºå¥ãã¦ããªããæèã«ããå¤æããã
- å¼æ°å¤æ°ã¯å¯¾è±¡ã表ãå¤æ°ï¼å¤§æåï¼ã使ã£ã¦ããããå¼æ°ã«ã¯å°ã許ãããï¼é¢æã ããï¼ã
- å¼æ°å¤æ°ããå $`\cat{C}`$ ã®å¯¾è±¡ã¾ãã¯å°ã表ããã¨ã¯æé»åããã¦ããã
- å¼æ°å¤æ°ãå ±å¤ãåå¤ãã¯ãªã¼ãã¼ã©ã¤ã³ã§åºå¥ããã®ã§ããããã¡ã¤ã«ã®å®£è¨ã¯ã¤ãã¤ãããªãã
æé»ã®åæãçç¥ã«ããææ§ã¨ãªãã解èªã»è§£éãå°é£ã«ã¯ãªãã¾ãããæ¸ãå´ã«ã¨ã£ã¦ã¯ã¨ã¦ã楽ã¡ãã§ä¾¿å©ã§ãããã®ãããªâ便å©ãªæ¸ãæ¹âã¯ãå¤å ¸ãã³ã½ã«è¨ç®ã®ææ³ã§ããå¤å¼æ°ãå¤å¤æ° | å¤é ãã®é¢æããç±³ç°ãã³ã½ã«ãã¨å¼ã³ããã®ã¯ãå¤å ¸ãã³ã½ã«è¨ç®ã®ææ³ã使ãå¿ç©ãããããããã§ãã
å¤å ¸ãã³ã½ã«è¨ç®ã¨ç±³ç°ãã³ã½ã«è¨ç®
å¤å ¸ãã³ã½ã«è¨ç®ã§ã¯ãæ·»åãã¤ã³ããã¯ã¹ããä¸ä¸ã«æ¯ãåãã¾ããããã§ããæ·»åãã¨ããã¤ã³ããã¯ã¹ãã¯ãå¼æ°ãargumentããã¨å義èªã§ããåéã¨ä¼çµ±ã»ç¿æ £ã«ããéãå¼ã³åã使ã£ã¦ããã ãã§ãæå³çã«ã¯åããã¨ã§ãã
åç¯ã®ç±³ç°ãã³ã½ã«ã§ã¯ããªã¼ãã¼ã©ã¤ã³è¨æ³ã§å ±å¤ã¨åå¤ã®åºå¥ããã¾ããããåå¤ã®å¼æ°å¤æ°ãæ·»å | ã¤ã³ããã¯ã¹ããä¸å´ã«ãå ±å¤ã®å¼æ°å¤æ°ãä¸å´ã«æ¸ãã¨ç´æããã¨ããªã¼ãã¼ã©ã¤ã³ã¯ä¸è¦ã¨ãªãã¾ãã
$`\quad P\left(
\begin{array}{l}
B, X, R
\\
A, Y, S
\end{array}
\right)
`$
ããã ã¨å ´æãåãã®ã§ãå¼æ°å¤æ°ãæ·»å | ã¤ã³ããã¯ã¹ããå°ãããã¦ãå¼æ°éãå²ãæ¬å¼§ã¯çç¥ããã¨æ¬¡ã®ããã«ãªãã¾ãã
$`\quad P^{B, X, R}_{A, Y, S}`$
ããã«ãå¼æ°éãåºåãã«ã³ããçç¥ãã¦ãã¾ãã¨ï¼
$`\quad P^{B\, X\, R}_{A\, Y\, S}`$
é常ã«ã³ã³ãã¯ãã«æ¸ãã¾ãããããå¤å ¸ãã³ã½ã«è¨ç®ã®æ¨æºçãªè¨æ³ã§ãã
å¤å ¸ãã³ã½ã«è¨ç®ã®è¨æ³ã§ãç±³ç°ãã³ã½ã« $`P`$ ã®å®ç¾©ãããä¸åº¦æ¸ãã¨ï¼
$`\quad P^{B\, X\, R}_{A\, Y\, S} := \cat{C}(A, R\times X)\times \cat{C}(S\times Y, B)`$
ã¨ããã§ãã³ã¨ã³ãã使ã£ããªããã£ãã¯ã®è°è«ã¯ãä¸ã®ãããªã¹ããªã³ã°å³ã使ã£ã¦é²ããã®ãå¹æçã§ãï¼ãåè«çã¬ã³ãº 2ï¼ å ·è±¡ãªããã£ãã¯ãããï¼ã
ããããæ¯åã¹ããªã³ã°å³ãæãã®ã¯å¤§å¤ãªã®ã§ãå³ã ãã§ãªãããã¹ãè¨æ³ã欲ããã®ã§ããå³ã®æ å ±ãå¾åã«ããã¹ãã«ã¨ã³ã³ã¼ãããã¨ãã¨ã¦ãç ©éã«ãªãã¾ãããããã¼ã«ãµãããªãã¨ãã£ã¦ããã¾ãããå¤å ¸ãã³ã½ã«è¨ç®ããµããææ³ãæä¾ãã¦ããã¾ãã
ç±³ç°ãã³ã½ã«è¨ç®ã®ç®çã¯ãéååã«å¤ãæã¤å¤å¼æ°ãå¤å¤æ° | å¤é ãé¢æã®è¨è¿°ã¨è¨ç®ããå¤å ¸ãã³ã½ã«è¨ç®ã«ãªãã£ãè¨æ³ã§è¡ããã¨ã§ãã
éå»ï¼2021å¹´ï¼ã«ãç±³ç°ãã³ã½ã«è¨ç®ã«ã¤ãã¦è¿°ã¹ã¦ãã¾ãã
ãã®ã·ãªã¼ãºã¯éä¸ã¾ã§ããæ¸ãã¦ãªãã®ã§ãå¤å ¸ãã³ã½ã«è¨ç®ã«ãªãã£ãè¨æ³ã«ã¤ãã¦ã¯èª¬æãã¦ãã¾ããããªã®ã§ãï¼å³ã§ã¯ãªãï¼ããã¹ãã«ããè¨è¿°ã¨è¨ç®ã®èª¬æãä»å¾ãããã¨æã£ã¦ãã¾ãã
ãªãã«ã¾ãç±³ç°ãã³ã½ã«è¨ç®
ç±³ç°ãã³ã½ã«è¨ç®ãèããããã«ã±ã®ã²ã¨ã¤ã¯ãããªãªã»ããã³ãMario Románãã®è«æ "Open Diagrams via Coend Calculus"ï¼ãç±³ç°ãã³ã½ã«è¨ç® 1ï¼ çµç·¯ã¨çºæ³ãåç §ï¼ã§ããæè¿ãããã³ã®è«æãã¾ãè¦ãæ©ä¼ããã£ã¦ï¼ã»ã¨ãã©å¿ãã¦ãã(è¦ç¬)ãï¼ããããè¨ãã°ãç±³ç°ãã³ã½ã«è¨ç®ã¯ä¸æãã¦ãããã¨æãåºããããã§ãã
è¨ç®ä½ç³»ã ãããã£ã¦ãã¦ãé¢ç½ããªãã®ã§ãã¬ã³ãºï¼ãªããã£ãã¯ï¼ãã£ã¼ãããã¯ä»ãå°ãªã©ã®åãã³ã¨ã³ãï¼ãã³ã½ã«è¨ç®ã®è¨èã§ã¯ç¸®ç´ï¼ã«ããæ§æããä¾ã調ã¹ããã§ããã
ããã¨ãã³ã¨ã³ãã«ãããã ã»ãããå®ç¾©ããéã®ã¹ããªã³ã°å³ã¨ããã ã»ããã®è¦ç´ ï¼ã¤ã¾ãå°ï¼ã®ã¹ããªã³ã°å³ã¯ç¡é¢ä¿ã§ã¯ãªãã®ã§ãããã©ãããé¢ä¿ããããããããªããªãããããããããªããã楽ããæ°ããã¾ãã
*1:大ããªå $`\mbf{Set}`$ ã®ä¸ã§ã³ã¨ã³ããæ§æãã¦ããã®ã§ããµã¤ãºã®åé¡ãèæ ®ããå¿ è¦ãããã¾ãã