ãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã§è¿°ã¹ãããã«ãã¨ã³ãã¨ã³ã¨ã³ãã¯å®å ¨ã«å対ãªã®ã§ããããã®å対æ§ããªããªãã«åããã«ããããã§ãã
ã¨ã³ãã®ä½ãæ¹ã¯ãé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéãæ±ãããè¡çºã«ãªã£ã¦ãã¾ããã³ã¨ã³ããä½ããã¨ã¯ãã®è¡çºã®å対ã§ããã¤ã¾ããã³ã¨ã³ãã®ä½ãæ¹ã¯ãä½é£ç«ä½æ¹ç¨å¼ç³»ã®ä½è§£ç©ºéãæ±ããããã¨ã§ãã
ããããããã§ããã®è¨äºã§ã¯ãé£ç«æ¹ç¨å¼ç³»ã¨ä½é£ç«ä½æ¹ç¨å¼ç³»ã«ã¤ãã¦è¿°ã¹ã¾ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
%\newcommand{\o}[1]{ \overline{#1} }
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
\newcommand{\On}{ \text{ on }}
%\newcommand{\op}{ \mathrm{op}}
`$
å 容ï¼
- å°ã®ä¸¦è¡ãã¢
- æ¹ç¨å¼ã¨è§£ç©ºé
- ä½æ¹ç¨å¼ã¨ä½è§£ç©ºé
- ä¸éã¾ã¨ã
- é£ç«æ¹ç¨å¼ç³»
- ä½é£ç«ä½æ¹ç¨å¼ç³»
- ãããã«
å°ã®ä¸¦è¡ãã¢
å $`\cat{C}`$ ã®ãªãã§ã両端ï¼åã¨ä½åï¼ãä¸è´ãã¦ãã2æ¬ã®å°ï¼ä»¥ä¸ã®å³ï¼ã並è¡ãã¢ãparallel pairã*1ãã¾ãã¯å ±ç«¯ãã¢*2ã¨å¼ã³ã¾ãã
$`\quad \xymatrix{
A \ar@/^/[r]^f \ar@/_/[r]_g
& B
}\\
\quad \In \cat{C}
`$
ä¸è¨ã®ãããªä¸¦è¡ãã¢ãããã¹ãã§è¡¨è¨ããã¨ãã¯æ¬¡ã®ããã«æ¸ããã¨ã«ãã¾ãã
$`\quad \mrm{PPair}(f, g)`$
両端ã®å¯¾è±¡ãæ示ãããã¨ãã¯ï¼
$`\quad \mrm{PPair}(f, g : A\to B)`$
並è¡ãã¢ã¯âåè«çãªå³å¼âã§ããåè«çãªå³å¼ï¼é常ãåã«ãå³å¼ãã¨å¼ã¶ï¼ã¯ãæåã°ã©ãï¼é常ãåã«ãã°ã©ããã¨å¼ã¶ï¼ããå $`\cat{C}`$ ã¸ã®ã°ã©ãæºååå°ã®ãã¨ã§ããæ£ç¢ºã«è¨ãã°ãå $`\cat{C}`$ ã®å°ãunderlying thing | carrirãã§ããæåã°ã©ãã¸ã®ã°ã©ãæºååå°ã§ãããã®ãããã¯ãã¤ã¤ã«ã²ã³ãªè¨ãæ¹ã¨æ¸ãæ¹ãããã®ãç¿æ £ã§ãã®ã§æ³¨æãã¦ãã ããã
å³å¼ã®åãå½¢ç¶ãshapeãã¨å¼ã³ã¾ããããå½¢ç¶ãã®å¤ç¾©æ§ããæ··ä¹±ãçããªãããã«ãããã§ã¯å½¢ç¶ã¹ãã¼ããshape schemaãã¨å¼ã³ã¾ãã並è¡ãã¢ã®å½¢ç¶ã¹ãã¼ãã $`\mbf{PP}`$ ã¨ãã¾ãã
$`\quad \mbf{PP} := \xymatrix{
0 \ar@/^/[r]^2 \ar@/_/[r]_3
& 1
}
`$
ããã§ã$`0, 1, 2, 3`$ ã¯ã©ãã«ã§ã¯ãªãã¦ãæåã°ã©ã $`\mbf{PP}`$ ã®æ§æç´ ï¼é ç¹ã¨è¾ºï¼ãã®ãã®ã§ãã
$`\mrm{PPair}(f, g : A\to B)`$ ã¯å³å¼ï¼ã¤ã¾ãã°ã©ãæºååå°ï¼ã ã£ãã®ã§ã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{PPair}(f, g : A\to B) : \mbf{PP}\to \cat{C}`$
$`\cat{C}`$ ã大ãããå°ãããªããããç¥ããªãç¶æ³ã§ããã£ã¨ã¡ããã¨æ¸ããªãï¼
$`\quad \mrm{PPair}(f, g : A\to B) : \mbf{PP}\to \mrm{U}(\cat{C}) \In \mbf{GRAPH}`$
ããã§ã$`\mrm{U}`$ ã¯åããã°ã©ãã¸ã®å¿å´é¢æã$`\mbf{GRAPH}`$ ã¯å¤§ããã°ã©ãã®åã§ãã
ç¹°ãè¿ãã¾ãããã»ã¨ãã©ã®å ´åãã¡ããã¨ã¯æ¸ããªãï¼ã¤ã¤ã«ã²ã³ã«æ¸ãï¼ã®ã§ãèªåã§ã¡ããã¨è§£éãã¾ãããã
並è¡ã㢠$`\mrm{PPair}(f, g : A\to B)`$ ã®å¤å²ãå½ã¦ãvalue assignmentãã¯æ¬¡ã®ããã§ãã
- $`\mrm{PPair}(f, g : A\to B)(0) = A`$
- $`\mrm{PPair}(f, g : A\to B)(1) = B`$
- $`\mrm{PPair}(f, g : A\to B)(2) = f`$
- $`\mrm{PPair}(f, g : A\to B)(3) = g`$
ãã¦ã並è¡ã㢠$`\mrm{PPair}(f, g)`$ ã¯å³å¼ãªã®ã§ããã®æ¥µéãèãããã¨ãã§ãã¾ãã
$`\quad \mrm{lim}\, \mrm{PPair}(f, g) =
\mrm{lim}_{\mbf{PP}}\, \mrm{PPair}(f, g)
`$
ã極éããã極ééã{limit | limiting} coneãã表ãã極é対象ã{limit | limiting} objectãï¼æ¥µééã®é ç¹ï¼ã表ããã¯ããã¦ãææ§ã§ããèªåã§å¤æããå¿ è¦ãããã¾ããããããã§ã¯ï¼ããã¾ã§ãã¼ã«ã«ã«ã¼ã«ï¼ãä¸è¨ã®è¨æ³ã§æ¥µé対象ã表ãã¾ãã極éãåå¨ãããªãï¼
$`\quad \mrm{lim}\, \mrm{PPair}(f, g) \in |\cat{C}|`$
ä½æ¥µéã«ã¤ãã¦ãåæ§ã§ãã
æ¹ç¨å¼ã¨è§£ç©ºé
並è¡ã㢠$`\mrm{PPair}(f,g)`$ ã®æ¥µéã¯ã¤ã³ã©ã¤ã¶ã¼ãequalizer | çå¤æ ¸ãã§ããã¤ã³ã©ã¤ã¶ã¼ãä½ãæå³ããããé常ã¯ææ§ã«ããã¾ããããã§ã¯ãã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ãequalizer objectãã¨ã¤ã³ã©ã¤ã¶ã¼å°ãequalizer morphismãã¨ãã¦åºå¥ãã¾ããã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ $`\mrm{Eq}(f, g)`$ ã¯æ¥µé対象ï¼æ¥µééã®é ç¹ï¼ã§ããã¤ã³ã©ã¤ã¶ã¼å° $`\mrm{eq}(f, g)`$ ã¯ã極ééã®å°å½±ã®ã²ã¨ã¤ã§ãã以ä¸ã®ããã«{æ¸ã | æã}ã¾ãã
$`\quad \mrm{Eq}(f, g) := \mrm{lim}\, \mrm{PPair}(f, g)`$
$`\quad \xymatrix{
\mrm{Eq}(f, g) \ar[r]^-{\mrm{eq}(f, g)}
& A \ar@/^/[r]^f \ar@/_/[r]_g
& B
}\\
\quad \text{commutative }\In \cat{C}
`$
並è¡ã㢠$`\mrm{PPair}(f,g)`$ ã®ä½æ¥µéã¯ã³ã¤ã³ã©ã¤ã¶ã¼ãcoequalizer | ä½çå¤æ ¸ | çå¤ä½æ ¸ãã§ããã³ã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ãcoequalizer objectããã³ã¤ã³ã©ã¤ã¶ã¼å°ãcoequalizer morphismãããã¤ã³ã©ã¤ã¶ã¼ã®å ´åã®å対ã¨ãã¦å®ç¾©ãã¾ãã
ããããå ãèããå $`\cat{C}`$ ã¯éåå $`\mbf{Set}`$ ã«éå®ãã¾ãã対象ã¯éåã§ãå°ã¯ååãé¢æ°ãã§ãã
éååã®ä¸¦è¡ã㢠$`\mrm{PPair}(f,g: A \to B)`$ ããã¤ã³ã©ã¤ã¶ã¼ãä½ãã極éãåããå¿ã¥ããï¼ç¶æ³è¨å®ï¼ã§èããå ´åã«çå¼ãequationãã¨å¼ã³ã$`(f = g)`$ ã¨æ¸ãã¾ãã
éååã®çå¼ $`(f = g)`$ ã®è§£ç©ºéãsolution spaceãã¯æ¬¡ã®ããã«å®ç¾©ããã¾ãã
$`\quad \mrm{Sol}(f = g) := \{x\in A\mid f(x) = g(x) \On B\}`$
éååã§ã¯ãçå¼ã®è§£ç©ºéãã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ã ã¨æã£ã¦ããã®ã§ï¼
$`\quad \mrm{Sol}(f = g) = \mrm{Eq}(f, g) = \mrm{lim}\, \mrm{PPair}(f, g)`$
ãã®å ´åã®ã¤ã³ã©ã¤ã¶ã¼å°ã¯ãçå¼ã®è§£ç©ºéããéå $`A`$ ã¸ã®å å«ååã§ããå å«ååã $`\mrm{sol}(f = g)`$ ï¼å°æå 's' ã«æ³¨æï¼ã¨æ¸ããªãï¼
$`\quad \mrm{sol}(f = g) = \mrm{eq}(f, g) \;: \mrm{Sol}(f = g) \to A \In \mbf{Set}`$
æ¹ç¨å¼ã¨ãã®è§£ç©ºéã¨ããæ¦å¿µã¯ãä¸å¦æ ¡ä»¥æ¥ã馴æã¿ãªãã®ã§ããéååã®ã¤ã³ã©ã¤ã¶ã¼ã¯ããã®ã馴æã¿ã®æ¦å¿µãåè«çã«å®å¼åããã ãã§ãã
ä½æ¹ç¨å¼ã¨ä½è§£ç©ºé
ã馴æã¿ã®ãæ¹ç¨å¼ã¨è§£ç©ºéãã®å対æ¦å¿µã¯ãã£ããè¤éã§ããåè«çãªå対ã¨ã¯ãåã«å½¢å¼çã«ç¢å°ãéåããoppositeãã«ããã ãã§ããããããå ·ä½çã«å®ç¾ããã¨ãªãã¨ããã¨ã®æ¦å¿µã¨å対æ¦å¿µãä¼¼ã¦ãä¼¼ã¤ããªããã®ã«ãªããã¨ãããã¾ãããã®éåæãç·©åããããã«ã以ä¸ã®è¨äºãèªãã§ããã¨ããããç¥ãã¾ããã
éååã®ä¸¦è¡ã㢠$`\mrm{PPair}(f,g: A \to B)`$ ããã³ã¤ã³ã©ã¤ã¶ã¼ãä½ããä½æ¥µéãåããå¿ã¥ããï¼ç¶æ³è¨å®ï¼ã§èããå ´åã«ä½çå¼ãcoequationãã¨å¼ã³ã$`(\sim_{f,g})`$ ã¨æ¸ãã¾ãããã
ããã§åºã¦ãã $`\sim_{f,g}`$ ã¯ä½ãã¨ããã¨ãåå $`f, g`$ ããä½ãããéå $`B`$ ä¸ã®äºé é¢ä¿ï¼åå¤é¢ä¿ã¨ã¯éããªãï¼ï¼ã§ããé¢ä¿ $`\sim_{f, g}`$ ã®å®ç¾©ã¯ä»¥ä¸ã®ã¨ããã§ãã
$`\text{For }y, y' \in B\\
\quad y \sim_{f,g}y' := \exists x\in A.\, f(x) = y \land g(x) = y'
`$
$`y \sim_{f,g} y'`$ ãå³ç¤ºãããªã次ã®ããã§ãã
$`\quad \xymatrix{
{}
& {\text{som }x} \ar@{|->}[dl]_{f} \ar@{|->}[dr]^{g}
& {}
\\
y
& {}
& y'
}`$
é¢ä¿ $`\sim_{f,g}`$ ã $`B`$ ä¸ã®åå¤é¢ä¿ã¨ã¯éãã¾ããããåå¤éå ãequivalence closureããä½ãã°åå¤é¢ä¿ã«ãªãã¾ããåå¤éå ã«ã¤ãã¦ã¯ãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã«æ¸ãã¦ãã¾ãã
é¢ä¿ $`\sim_{f,g}`$ ã®åå¤éå ã§ãã $`B`$ ä¸ã®åå¤é¢ä¿ã $`\simeq_{f,g}`$ ã¨æ¸ããã¨ã«ãã¾ããåå¤é¢ä¿ $`\simeq_{f, g}`$ ã¯ãé¢ä¿ $`\sim_{f, g}`$ ãããå¾ã£ã¦ä¸¦è¡ã㢠$`\mrm{PPair}(f, g)`$ ããä¸æã«æ±ºã¾ãã¾ãã
éå $`B`$ ããåå¤é¢ä¿ $`\simeq_{f,g}`$ ã§å²ã£ãåéåããä½æ¹ç¨å¼ $`(\sim_{f,g})`$ ã®ä½è§£ç©ºéãcosolution spaceãã¨å¼ã³ã$`\mrm{Cosol}(f, g)`$ ã¨æ¸ããã¨ã«ãã¾ãã
$`\quad \mrm{Cosol}(f,g):= B/{\simeq_{f,g}}`$
åéåã¸ã®æ¨æºå°å½±ã $`\mrm{cosol}(f,g)`$ ã¨æ¸ãã¾ãã
$`\quad \mrm{cosol}(f, g) : B \to \mrm{Cosol}(f,g) \In \mbf{Set}`$
ãã¡ãããåå $`\mrm{cosol}(f,g)`$ ã¯å ¨å°ï¼éååã®ã¨ãå°ï¼ã§ãã
ä¸éã¾ã¨ã
ããã¾ã§ã®è©±ã¯ãéååã®ä¸¦è¡ãã¢ï¼å½¢ç¶ã¹ãã¼ãã $`\mbf{PP}`$ ã§ããå³å¼ï¼$`\mrm{PPair}(f, g:A \to B)`$ ãäºéãã«è§£éãã¦ãããã«ä¼´ã解空éï¼ä½è§£ç©ºéãèããã¨ã極éï¼ä½æ¥µéã®æ¦å¿µãå ·ä½çã«å®ç¾ã§ãããã¨ãããã¨ã§ãã
極éãå®ç¾ãããã¨ãã¯ï¼
- 並è¡ã㢠$`\mrm{PPair}(f, g:A \to B)`$ ããçå¼ $`(f = g)`$ ã¨è§£éããã
- çå¼ $`(f = g)`$ ã®è§£ç©ºé $`\mrm{Sol}(f,g)`$ ãèããã
- åæã«ã解空éã® $`A`$ ã¸ã®å å«åå $`\mrm{sol}(f, g): \mrm{Sol}(f,g) \to A \In \mbf{Set}`$ ãèããã
- $`\mrm{Sol}(f,g)`$ 㨠$`\mrm{sol}(f,g)`$ ãã並è¡ã㢠$`\mrm{PPair}(f, g:A \to B)`$ ã®ã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ï¼æ¥µé対象ï¼ã¨ã¤ã³ã©ã¤ã¶ã¼å°ï¼å°å½±ã®ã²ã¨ã¤ï¼ã¨ãªãã
ä½æ¥µéãå®ç¾ãããã¨ãã¯ï¼
- 並è¡ã㢠$`\mrm{PPair}(f, g:A \to B)`$ ããä½çå¼ $`(\sim_{f, g})`$ ã¨è§£éããã
- ä½çå¼ $`(\sim_{f, g})`$ ã®ä½è§£ç©ºé $`\mrm{Cosol}(f,g)`$ ãèããã
- åæã«ã$`B`$ ããä½è§£ç©ºéã¸ã®æ¨æºå°å½±åå $`\mrm{cosol}(f, g): B \to \mrm{Cosol}(f,g) \In \mbf{Set}`$ ãèããã
- $`\mrm{Cosol}(f,g)`$ 㨠$`\mrm{cosol}(f,g)`$ ãã並è¡ã㢠$`\mrm{PPair}(f, g:A \to B)`$ ã®ã³ã¤ã³ã©ã¤ã¶ã¼å¯¾è±¡ï¼ä½æ¥µé対象ï¼ã¨ã³ã¤ã³ã©ã¤ã¶ã¼å°ï¼ä½å°å½±ãå ¥å°ãã®ã²ã¨ã¤ï¼ã¨ãªãã
é£ç«æ¹ç¨å¼ç³»
éååã®ä¸¦è¡ã㢠$`\mrm{PPair}(f, g:A \to B)`$ ã¯ãã²ã¨ã¤ã®çå¼ $`(f = g)`$ ãå®ç¾©ãã¾ããçå¼ãã²ã¨ã¤ã§ã¯ãªãã¦ããããå¨ãå ´åãèãã¾ãããã
$`I`$ ãã¤ã³ããã·ã³ã°éåãindexing setãã¨ãã¦ã$`I`$ ã§ã¤ã³ããã¯ã¹ä»ãããã並è¡ãã¢ã®æããã¡ããªã¼ããèãã¾ããããã次ã®ããã«æ¸ãã¾ãã
$`\quad ( \mrm{PPair}(f_i, g_i : A \to B_i))_{i\in I}`$
ããã§ãååã®å㯠$`A`$ ã«åºå®ãã¦ãã¦ã$`i`$ ã«ãã£ã¦å¤åã¯ããªããã¨ã«ãã¾ããä½å $`B_i`$ 㯠$`i`$ ã«ä¾åãã¦å¤åãã¦ãã¾ãã¾ããã
対å¿ããæ¹ç¨å¼ã®æã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad ( (f_i = g_i) )_{i\in I}`$
äºéã®æ¬å¼§ãããããã®ã§ã次ã®ããã«ç¥è¨ãã¦ãããã¨ãã¾ãã
$`\quad ( f_i = g_i )_{i\in I}`$
ãããé£ç«æ¹ç¨å¼ç³»ãsystem of equationsãã§ãã
éååã§ã¯ãä»»æã®ä¸¦è¡ãã¢ã«å¯¾ãã¦ã¤ã³ã©ã¤ã¶ã¼ãåå¨ãã¾ããè¨ãæ¹ãå¤ããã¨ãä»»æã®æ¹ç¨å¼ã«å¯¾ãã¦è§£ç©ºéãåå¨ãã¾ããã¤ã³ããã¯ã¹ $`i\in I`$ ãã¨ã«ã次ã®ãããªè§£ç©ºéã¨å å«ååãå¾ããã¾ãã
$`\quad \mrm{sol}(f_i, g_i) : \mrm{Sol}(f_i, g_i) \to A \In \mbf{Set}`$
è¨æ³ãç°¡ç´ åããããã«ã$`\mrm{sol}(f_i, g_i)`$ ã $`s_i`$ ã$`\mrm{Sol}(f_i, g_i)`$ ã $`S_i`$ ã¨ç½®ãã¾ããããããã¨ï¼
$`\quad s_i : S_i \to A \In \mbf{Set}`$
ãããå³ç¤ºããã¨ã$`s_i`$ ãä½èãcolegãã$`S_i`$ ãä½è¶³ãcofootãã¨ããè¤ã³ã¹ãã³ãmulti-cospanãã«ãªãã¾ãããã®ä¾ã§ã¯ããã¹ã¦ã®ä½èãåå°ï¼éååã®ã¢ãå°ï¼ã«ãªã£ã¦ãã¾ãã
å³å¼ã¨ãã¦ã®è¤ã³ã¹ãã³ã®æ¥µé対象ã¯ãè¤ãã¡ã¤ãã¼ç©ããã¡ã¤ãã¼ç·ç©ãã§ãã極ééã®å°å½±ã¯ãè¤ãã¡ã¤ãã¼ç©ã®å°å½±ã§ããä»ã®å ´åããã¹ã¦ã®ä½èãåå°ã¨ããç¹æ®äºæ ãããã®ã§ãè¤ãã¡ã¤ãã¼ç©ãã以ä¸ã®ãã¨ãéåè«çã«è¨è¿°ã§ãã¾ãã
è¤ã³ã¹ãã³ã®ä½è $`s_i : S_i \to A`$ ãåå°ãªã®ã§ãéå $`S_i`$ ãéå $`A`$ ã®é¨åéåã¨ã¿ãªãã¾ããã¤ã¾ãã$`S_i \subseteq A`$ ãããã㯠$`S_i \in \mrm{Pow}(A)`$ ã
è¤ãã¡ã¤ãã¼ç©ï¼æ¥µé対象ï¼ã¯ãé¨åéå $`S_i`$ éã®å ±éé¨åã¨ãã¦å¾ããã¾ãã
$`\quad \mrm{lim}_{i\in I}\, S_i = \bigcap_{i\in I}S_i`$ ï¼æ¨ªçããæ¸ãæ¹ï¼
極ééã®å°å½±ã¯ãå å«åå $`(\bigcap_{i\in I}S_i) \to S_a`$ ã§ä¸ãããã¾ãã
éå $`S_i`$ ã¯æ¹ç¨å¼ $`(f_i = g_i)`$ ã®è§£ç©ºéã ã£ãã®ã§ããããã®å ±éé¨å $`\bigcap_{i\in I}S_i`$ ã¯é£ç«æ¹ç¨å¼ç³» $`(f_i = g_i)_{i\in I}`$ ã®è§£ç©ºéã¨ãªãã¾ãã
ããã§æ³¨æãã¹ãã¯ãé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéï¼åå¥æ¹ç¨å¼ã®è§£ç©ºéã®å ±éé¨åï¼$`S`$ ã¯ã極éæä½ãäºåè¡ã£ã¦å¾ããã¦ãããã¨ã§ãã
$`\quad S = \mrm{lim}_{i\in I}\, S_i = \mrm{lim}_{i\in I}(\mrm{lim}_{\mbf{PP}}\, \mrm{PPair}(f_i, g_i))`$
é£ç«æ¹ç¨å¼ç³»ã解ãæä½ã¯ãç¹°ãè¿ã極éãiterated limitããåããã¨ãªã®ã§ãã
ä½é£ç«ä½æ¹ç¨å¼ç³»
$`I`$ ã§ã¤ã³ããã¯ã¹ä»ãããã並è¡ãã¢ã®æããã¡ããªã¼ããèãã¾ããããã次ã®ããã«æ¸ãã¾ãã
$`\quad ( \mrm{PPair}(f_i, g_i : A_i \to B))_{i\in I}`$
ä»åº¦ã¯ãååã®ä½å㯠$`B`$ ã«åºå®ãã¦ãã¦ãå $`A_i`$ ã¯å¤åãã¦ãã¾ããªãã¨ãã¾ãã
対å¿ããä½æ¹ç¨å¼ã®æã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad ( \sim_{f_i, g_i} )_{i\in I}`$
ãããä½é£ç«ä½æ¹ç¨å¼ç³»ãcosystem of coequationsãã§ãã
éååã§ã¯ãä»»æã®ä¸¦è¡ãã¢ã«å¯¾ãã¦ã³ã¤ã³ã©ã¤ã¶ã¼ãåå¨ãã¾ããè¨ãæ¹ãå¤ããã¨ãä»»æã®ä½æ¹ç¨å¼ã«å¯¾ãã¦ä½è§£ç©ºéãåå¨ãã¾ããã¤ã³ããã¯ã¹ $`i\in I`$ ãã¨ã«ã次ã®ãããªä½è§£ç©ºéã¨æ¨æºå°å½±ååãå¾ããã¾ãã
$`\quad \mrm{cosol}(f_i, g_i) : B \to \mrm{Cosol}(f_i, g_i) \In \mbf{Set}`$
è¨æ³ãç°¡ç´ åããããã«ã$`\mrm{cosol}(f_i, g_i)`$ ã $`c_i`$ ã$`\mrm{Cosol}(f_i, g_i)`$ ã $`C_i`$ ã¨ç½®ãã¾ããããããã¨ï¼
$`\quad c_i : B \to C_i \In \mbf{Set}`$
ãããå³ç¤ºããã¨ã$`c_i`$ ãèãlegãã$`C_i`$ ã足ãfootãã¨ããè¤ã¹ãã³ãmulti-spanãã«ãªãã¾ãããã®ä¾ã§ã¯ããã¹ã¦ã®èãå ¨å°ï¼éååã®ã¨ãå°ï¼ã«ãªã£ã¦ãã¾ãã
å³å¼ã¨ãã¦ã®è¤ã¹ãã³ã®ä½æ¥µé対象ã¯ãè¤ã³ãã¡ã¤ãã¼åãã³ãã¡ã¤ãã¼ç·åãã§ããä½æ¥µéä½éã®ä½å°å½±ãå ¥å°ãã¯ãè¤ãã¡ã¤ãã¼åã®ä½å°å½±ãå ¥å°ãã§ããä»ã®å ´åããã¹ã¦ã®èãå ¨å°ã¨ããç¹æ®äºæ ãããã®ã§*3ãè¤ã³ãã¡ã¤ãã¼åãã以ä¸ã®ãã¨ãéåè«çã«è¨è¿°ã§ãã¾ãã
è¤ã¹ãã³ã®è $`c_i : B \to C_i`$ ãå ¨å°ãªã®ã§ãéå $`C_i`$ ãéå $`B`$ ã®åéåã¨ã¿ãªãã¾ããã²ã¨ã¤ã®éå $`B`$ ã®åéåãããããå¨ãç¶æ³ã§ãã
ã¾ãã$`C_i`$ éã®ç·ç´åãä½ãã¾ãã
$`\quad \sum_{i\in I}C_i`$
ãã®ç·ç´åã®äºã¤ã®è¦ç´ $`z,z'`$ ã¯ã次ã®æ¡ä»¶ãæºããã¨ãã«åä¸è¦ãã¾ãã
$`\quad \exists y\in B.\exists i, j\in I.\, s_i(y) = z \land s_j(y) = z'`$
ãã®åä¸è¦ã«ã¼ã«ï¼$`\sum_{i\in I}C_i`$ ä¸ã®äºé é¢ä¿ï¼ã®åå¤éå ã§ããåå¤é¢ä¿ $`\simeq`$ ãèãã¦ãç·ç´åéå $`\sum_{i\in I}C_i`$ ãåå¤é¢ä¿ $`\simeq`$ ã§å²ã£ãåéåã $`C`$ ã¨ãã¾ãã
$`\quad C = (\sum_{i\in I}C_i)/\simeq`$
åéåã®æ¨æºå°å½±ã $`p`$ ã¨ãã¾ãã
$`\quad p : \sum_{i\in I}C_i \to C \In \mbf{Set}`$
æ¨æºå°å½±ã $`p`$ ããç´åæå $`C_i`$ ã«å¶éããåå㯠$`p_i`$ ã¨ãã¾ãã
$`\quad p_i : C_i \to C \In \mbf{Set}`$
以ä¸ã®æ§æã«ãã£ã¦å¾ãããéå $`C`$ ã¯ãè¤ã¹ãã³ $`(c_i : B \to C_i)_{i\in I}`$ ã®ä½æ¥µé対象ã«ãªã£ã¦ãã¾ãã$`p_i`$ ã¯ãä½æ¥µéä½éã®ä½å°å½±ãå ¥å°ãã§ãã横çããæ¸ãæ¹ã§æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad C = \mrm{colim}_{i\in I}\,C_i`$
ä½æ¹ç¨å¼ã®ä½è§£ç©ºé $`C_i`$ ãä½æ¥µéã ã£ãã®ã§ãããã«æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad C = \mrm{colim}_{i\in I}\,C_i = \mrm{colim}_{i\in I}(\mrm{colim}_{\mbf{PP}}\, \mrm{PPair}(f_i, g_i) )`$
ä½é£ç«ä½æ¹ç¨å¼ç³»ã®ä½è§£ç©ºéãæ±ããæä½ã¯ãç¹°ãè¿ãä½æ¥µéãiterated colimitããåããã¨ãªã®ã§ãã
ãããã«
é£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéãæ±ãããã¨ã«ã¯æ £ãã¦ãã人ãå¤ãã§ããããæ £ããè¡çºã®åè«çå®å¼åã§ããç¹°ãè¿ã極éã¯ãæ¯è¼çã«ç´å¾ããããã§ããããããããä½é£ç«ä½æ¹ç¨å¼ç³»ã®ä½è§£ç©ºéãæ±ãããã¨ã¯é¦´æã¿ããªãã¨æãã¾ãã馴æã¿ããªããã¨ã®åè«çå®å¼åã§ããç¹°ãè¿ãä½æ¥µéï¼ãã®äºä¾ãã³ã¨ã³ãï¼ã¯é£ããã§ãããã
é£ããç¹°ãè¿ãä½æ¥µéã«è¦ªããããã®ã²ã¨ã¤ã®æ¹æ³ãããã馴æã¿ãããç¹°ãè¿ã極éã®å対ã¨ãã¦æãããã¨ã§ããå対ç対å¿ãããããªã¨è¿½è·¡ããã°ãç¹°ãè¿ãä½æ¥µéã«ãå®æãããã§ãããã