åã®ä¸é¨æ§é ã¯æåã°ã©ãã§ããåã«ã¯æçå°ãããã¾ãããæçå°ã«ç¸å½ããç¹å¥ãªè¾ºãåããæåã°ã©ãã¯åå°çæåã°ã©ãã¨å¼ã³ã¾ãããã£ã¦ãåã®ä¸é¨æ§é ã¯åå°çæåã°ã©ãã ã¨è¨ã£ã¦ãããã§ãããã
åãä¸è¬åããæ§é ã§ããä¸è¬ååãgeneralized categoryãï¼ãããã¯åé¡ä¼¼ä»£æ°æ§é ãcategory-like algebraic structureãï¼ãèããå ´åã«ãä¸é¨æ§é ã§ããåå°çæåã°ã©ããä¸è¬åãã¦ã¿ãã¢ããã¼ããããã¾ãããã®è¨äºã§ã¯ããã®ã¢ããã¼ãã«å¾ããä¸è¬ååå°çã°ã©ãï¼ä¸è¬ååå°çæåã°ã©ããå®ç¾©ãã¾ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\o}[1]{ \overline{#1} }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
\newcommand{\op}{ \mathrm{op}}
`$
ä¸è¬ååå°çã°ã©ãã調ã¹ããåæ©ã¯ãããªããã£ãã¯ã®åã¨ã³ã¨ã³ãã¨ç±³ç°ãã³ã½ã«è¨ç®ãã«æ¸ãã次ã®åé¡ãèããããã§ãã
ããã¨ãã³ã¨ã³ãã«ãããã ã»ãããå®ç¾©ããéã®ã¹ããªã³ã°å³ã¨ããã ã»ããã®è¦ç´ ï¼ã¤ã¾ãå°ï¼ã®ã¹ããªã³ã°å³ã¯ç¡é¢ä¿ã§ã¯ãªãã®ã§ãããã©ãããé¢ä¿ããããããããªããªãããããããããªããã楽ããæ°ããã¾ãã
å 容ï¼
- åå°çç¡åã°ã©ã
- ä¸è¬ååå°çã°ã©ã
- ãããã¡ã¤ã«ãã¨ã®è¾ºéå ï¼ ãã ã»ãã
- ä¸è¬åã°ã©ãã®æåæ§
- ä¸è¬ååã¸
åå°çç¡åã°ã©ã
ç¡åã°ã©ãã®å®ç¾©ã®ä»æ¹ã¯è²ã ããã¾ãããããã§ã¯ãé ç¹ã®é åºç¡ããã¢ãå¢çã¨ãã辺ã®éã¾ããã¨ãã¦å®ç¾©ãã¾ãããã
$`A`$ ãéåã¨ãã¦ãåå $`\mrm{swap}_A`$ ã次ã®ããã«å®ç¾©ãã¾ãã
$`\quad \mrm{swap}_A : A\times A \to A\times A\\
\text{For }(a, b)\in A\times A\\
\quad \mrm{swap}_A( (a, b) ) := (b, a)
`$
$`\mrm{swap}_A`$ 㨠$`\id_{A\times A}`$ ãããªãäºå éåã¯ãååã®çµåãåæãã§ç¾¤ã«ãªãã¾ãããã®äºå 群ã $`\mrm{Swap}_A`$ ã¨ãã¾ãã群 $`\mrm{Swap}_A`$ ã¯éå $`A\times A`$ ã«èªç¶ã«ä½ç¨ãã¾ãã群ä½ç¨ã«ããåéåãè»é空éãã $`(A\times A)/\mrm{Swap}_A`$ ã¨æ¸ãã¾ãã
åéå $`(A\times A)/\mrm{Swap}_A`$ ã®è¦ç´ ã¯ã$`A`$ ã®é¨åéåã®ãªãã§ãåºæ°ã 1 ï¼åå éåï¼ã¾ãã¯åºæ°ã 2 ï¼äºå éåï¼ã§ããé¨åéåã«å¯¾å¿ãã¾ããã¤ã¾ãã次ã®ååãæç«ãã¾ãï¼$`\mrm{card}`$ ã¯éåã®åºæ°ï¼ã
$`\quad (A\times A)/\mrm{Swap}_A \cong \{x\in \mrm{Pow}(A) \mid \mrm{card}(x) = 1 \lor \mrm{card}(x) = 2\}`$
$`(A\times A)/\mrm{Swap}_A`$ ã®è¦ç´ ããåå éåï¼äºå éåã¨åä¸è¦ãã¦ã$`\{a\}`$ ã¾ã㯠$`\{a, b\}`$ ã®ããã«æ¸ãã¾ãã
以ä¸ã®æºåã®ãã¨ã§ãç¡åã°ã©ãã¨åå°çç¡åã°ã©ããå®ç¾©ãã¾ãã
ç¡åã°ã©ããundirected graphã $`G`$ ã®æ§æç´ ã¯ï¼
- é ç¹ã®éåï¼ $`V`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to (V\times V)/\mrm{Swap}_V`$
辺 $`e\in E`$ ã«å¯¾ãã¦ã$`\mrm{bdry}(e) = \{a\}`$ ã®ã¨ã㯠$`e`$ ã¯èªå·±ã«ã¼ãç¡å辺ã§ã$`\mrm{bdry}(e) = \{a, b\}`$ ï¼$`a\ne b`$ ï¼ã®ã¨ãã¯ç°ãªãäºé ç¹ãçµã¶ç¡å辺ã§ãã
åå°çç¡åã°ã©ããreflexive undirected graphãã§ã¯ãæ§æç´ ã«æ¬¡ã®ååã追å ããã¾ãã
- åå°ååï¼ $`\mrm{refl} : V\to (V\times V)/\mrm{Swap}_V`$
- æç辺ååï¼ $`\mrm{id} : V\to E`$
ããã«ã次ã®å¯æå³å¼ãè¦æ±ãã¾ãã
$`\quad
\xymatrix{
{}
& E \ar[d]^{\mrm{bdry}}
\\
V \ar[ur]^{\mrm{id}} \ar[r]_-{\mrm{refl}}
& (V\times V)/\mrm{Swap}_A
}\\
\quad \text{commutative }\In \mbf{Set}
`$
ä¸è¬ååå°çã°ã©ã
åç¯ã®åå°çç¡åã°ã©ãã®ä¾ãå°ãæ½è±¡åãã¦ä¸è¬ååå°çã°ã©ããå®ç¾©ãã¾ããä¸è¬ååå°çã°ã©ããgeneralized reflexive graphã $`G`$ ã®æ§æç´ ã¯ï¼
- é ç¹ã®éåï¼ $`V`$
- ãããã¡ã¤ã«ã®éåï¼ $`P`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to P`$
- åå°ååï¼ $`\mrm{refl} : V\to P`$ åå°ã§ãããã¨ãè¦æ±ããã
- æç辺ååï¼ $`\mrm{id} : V\to E`$ åå°ã§ãããã¨ãè¦æ±ããã
次ã®å¯æå³å¼ãè¦æ±ãã¾ãã
$`\quad
\xymatrix{
{}
& E \ar[d]^{\mrm{bdry}}
\\
V \ar[ur]^{\mrm{id}} \ar[r]_-{\mrm{refl}}
& P
}\\
\quad \text{commutative }\In \mbf{Set}
`$
é ç¹ã®éåãããããã¡ã¤ã«ãã©ãä½ããã«ãããæ§ã ãªä¸è¬ååå°çã°ã©ããç¾ãã¾ãã以ä¸ã«å¹¾ã¤ãã®ä¾ãåæãã¾ãã
åå°çç¡åã°ã©ã
åç¯ã®åå°çç¡åã°ã©ãã¯ä¸è¬ååå°çã°ã©ãã®ä¾ã§ãã
- é ç¹ã®éåï¼ $`V`$
- ãããã¡ã¤ã«ã®éåï¼ $`P := (V\times V)/\mrm{Swap}_V`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to P`$
- åå°ååï¼ $`\mrm{refl} : V\to P`$
$`\mrm{refl}(A) := \{A, A\} = \{A\}`$ - æç辺ååï¼ $`\mrm{id} : V\to E`$
åå°çæåã°ã©ã
åå°çæåã°ã©ããreflexive directed graphãã¯ä¸è¬ååå°çã°ã©ãã®ä¾ã§ãã
- é ç¹ã®éåï¼ $`V`$
- ãããã¡ã¤ã«ã®éåï¼ $`P := V\times V`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to P`$
- åå°ååï¼ $`\mrm{refl} : V\to P`$
$`\mrm{refl}(A) := (A, A)`$ - æç辺ååï¼ $`\mrm{id} : V\to E`$
åå°çè¤ã°ã©ã
åå°çè¤ã°ã©ããreflexive multigraphãã¯ä¸è¬ååå°çã°ã©ãã®ä¾ã§ãã
- é ç¹ã®éåï¼ $`V`$
- ãããã¡ã¤ã«ã®éåï¼ $`P := \mrm{List}(V) \times V`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to P`$
- åå°ååï¼ $`\mrm{refl} : V\to P`$
$`\mrm{refl}(A) := ( (A), A)`$ - æç辺ååï¼ $`\mrm{id} : V\to E`$
åå°çå¤ã°ã©ã
åå°çå¤ã°ã©ããreflexive polygraphãã¯ä¸è¬ååå°çã°ã©ãã®ä¾ã§ãã
- é ç¹ã®éåï¼ $`V`$
- ãããã¡ã¤ã«ã®éåï¼ $`P := \mrm{List}(V) \times \mrm{List}(V)`$
- 辺ã®éåï¼ $`E`$
- å¢çååï¼ $`\mrm{bdry} : E\to P`$
- åå°ååï¼ $`\mrm{refl} : V\to P`$
$`\mrm{refl}(A) := ( (A), (A) )`$ - æç辺ååï¼ $`\mrm{id} : V\to E`$
ãããã¡ã¤ã«ãã¨ã®è¾ºéå ï¼ ãã ã»ãã
$`G = (V, P, E, \mrm{bdry}, \mrm{refl}, \mrm{id})`$ ãä¸è¬ååå°çã°ã©ãã¨ãã¾ãã次ã®è¨æ³ã®ç´æããã¾ãã
$`\text{For }\alpha \in P\\
\quad G(\alpha) := \mrm{bdry}^{-1}(\alpha)
`$
$`\mrm{bdry}^{-1}`$ ã¯ãåå $`\mrm{bdry}`$ ã®åç¹ãã¨ã®éåéåã対å¿ãããé¢æ°ã§ãã
éå $`G(\alpha)`$ ã¯ãå¢çãããã¡ã¤ã«ã $`\alpha`$ ã§ãã辺ã®éåã§ããåè«ã®è¨èãªããã ã»ãããhomsetãã§ããåç¯ã®äºä¾ãã¨ã«ãã ã»ãããè¦ã¦ããã¾ããç¥è¨ã¨ã¯ãæ¬å¼§ã®ä¸é¨ãçç¥ãã¦æ¸ããã¨ã§ãã
åå°çç¡åã°ã©ã
- ãããã¡ã¤ã«ï¼ $`\alpha = \{A, B\}, \alpha' = \{A\}`$
- ãã ã»ããï¼ $`G(\alpha) = G(\{A, B\}), G(\alpha') = G(\{A\})`$
- ç¥è¨ï¼ $`G(\alpha) = G\{A, B\}, G(\alpha') = G\{A\} = G\{A, A\}`$
åå°çæåã°ã©ã
- ãããã¡ã¤ã«ï¼ $`\alpha = (A, B)`$
- ãã ã»ããï¼ $`G(\alpha) = G( (A, B) )`$
- ç¥è¨ï¼ $`G(\alpha) = G( A, B )`$
åå°çè¤ã°ã©ã
- ãããã¡ã¤ã«ï¼ $`\alpha = ( (A_1, \cdots, A_n) , B)`$
- ãã ã»ããï¼ $`G(\alpha) = G( ( (A_1, \cdots, A_n) , B) )`$
- ç¥è¨ï¼ $`G(\alpha) = G( (A_1, \cdots, A_n), B )`$
åå°çå¤ã°ã©ã
- ãããã¡ã¤ã«ï¼ $`\alpha = ( (A_1, \cdots, A_n) , (B_1, \cdots, B_m))`$
- ãã ã»ããï¼ $`G(\alpha) = G( ( (A_1, \cdots, A_n) , (B_1, \cdots, B_m)) )`$
- ç¥è¨ï¼ $`G(\alpha) = G( (A_1, \cdots, A_n), (B_1, \cdots, B_m) )`$
ä¸è¬åã°ã©ãã®æåæ§
ä¸è¬ååå°çã°ã©ãã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad G = (V, P, E, \mrm{bdry}, \mrm{refl}, \mrm{id})`$
åå°æ§ã®è¨è¿°ãåãé¤ãã¦ãã¾ãã°ãåãªãä¸è¬åã°ã©ãã«ãªãã¾ãã
$`\quad G = (P, E, \mrm{bdry})`$
ä¸è¬åã°ã©ããæåãdirectedãã§ããã¨ã¯ããããã¡ã¤ã«ã®éå $`P`$ ã2ã¤ã®éåã®ç´ç©ã§æ¸ãã¦ãããã¨ã§ãã
$`\quad P = S\times T`$
éå $`S`$ ãã½ã¼ã¹ãããã¡ã¤ã«ãsource profileãã®éåãéå $`T`$ ãã¿ã¼ã²ãããããã¡ã¤ã«ãtarget profileãã®éåã¨å¼ã³ã¾ãã
æåãªä¸è¬åã°ã©ãã«ããã¦ãåå $`\mrm{src}, \mrm{trg}`$ ã次ã®å³å¼ãå¯æã«ãªãããã«æ±ºãã¾ãã$`\pi_1, \pi_2`$ ã¯ç´ç©ã®å°å½±ã§ãã
$`\quad
\xymatrix@C+1pc{
{}
& S
\\
E \ar[r]^{\mrm{bdry}} \ar[ur]^{\mrm{src}} \ar[dr]_{\mrm{trg}}
& S\times T \ar[u]_{\pi_1} \ar[d]^{\pi_2}
\\
{}
& T
}\\
\quad \text{commutative }\In \mbf{Set}
`$
$`G`$ ãä¸è¬åæåã°ã©ãã®ã¨ãã以ä¸ã®æ§é ãåæ ããã¦ã次ã®ããã«æ¸ãã¾ãã
$`\quad G = (S, T, E, \mrm{src}, \mrm{trg})`$
ã¾ãã$`G`$ ãä¸è¬ååå°çæåã°ã©ãã®ã¨ãã$`\mrm{refl}`$ ãå解ãã¦æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad G = (V, S, T, E, \mrm{src}, \mrm{trg}, \mrm{srcRefl}, \mrm{trgRefl}, \mrm{id})\\
\text{Where}\\
\quad \mrm{srcRefl} : V \to S\\
\quad \mrm{trgRefl} : V \to T
`$
$`\mrm{srcRefl} = \mrm{id}; \mrm{src}`$ ã$`\mrm{trgRefl} = \mrm{id}; \mrm{trg}`$ ã¨ããçå¼ãããã®ã§ã次ã®ããã«çãæ¸ãã¦ããã¾ãã¾ããã
$`\quad G = (V, S, T, E, \mrm{src}, \mrm{trg}, \mrm{id})`$
$`V = S = T`$ ã®å ´åãåãªãï¼ãã¬ã¼ã³ãªï¼æåã°ã©ãã§ãã
$`\quad G = (V, E, \mrm{src}, \mrm{trg}, \mrm{id})`$
ä¸è¬ååã¸
åå°çæåã°ã©ãã«ãçµåå¾ã¨åä½å¾ãæºããçµåæ¼ç®ãcomposition operationããè¼ããã¨åã«ãªãã¾ããåæ§ã«ãåå°çè¤ã°ã©ãããã¯è¤åãmulticategory | ãªãã©ãã | operadããåå°çå¤ã°ã©ãããã¯å¤åãpolycategoryããæ§æã§ãã¾ãã
ä¸è¬ååå°çã°ã©ããå®ç¾©ãã¦ããã®ä¸ã«çµåçåä½çæ¼ç®ãassociative unital operationããè¼ããæ¹æ³ã¯åã®æ¦å¿µãæ¡å¼µããéã«ä½¿ãã¾ããç¹ã«ãç±³ç°ãã³ã½ã«è¨ç®ï¼ããªããã£ãã¯ã®åã¨ã³ã¨ã³ãã¨ç±³ç°ãã³ã½ã«è¨ç®ãåç §ï¼ã®ãããªå¤å ¸ãã³ã½ã«è¨ç®ã®æ¡å¼µãå®ç¾©ããéå ·ã«ãªãã§ãããã