ä»å¹´ï¼2025å¹´ï¼æåã®æ稿ãå 容ã¯ãã¤ãã¨å¤ããããã©ã
ã¹ã±ããã£ãã¯éåï¼çµã¿åããå¹¾ä½ç対象ç©ï¼ã®ãªãã§æ±ããããã¢ãã¨ãã¦ãä¸è¬åãã¤ãã¼ã°ã©ããå®ç¾©ãã¾ããã
ä¸è¬åãã¤ãã¼ã°ã©ãã¯ãééããªãå½¹ã«ç«ã¤æ¦å¿µã§ãããããã¼ãã³ã°ã»ç¨èªæ³ã誤èªã»èª¤è§£ã®åå ã«ãªãããã§ãã
ãã¼ãã³ã°ã»ç¨èªæ³ãªãã¦ã®ã¯ãç´æã決ã¾ã£ã¦ãããã¨ãéè¦ã§ãããã©ããªè¨èã使ã£ã¦ããããªãã¦ã©ãã§ãããã®ã§ããã建åä¸ã¯ãããããåã®çµé¨ã§ã¯ãååã«ãã¬ã¼ãã³ã°ããã人ã§ãããè¨èã®å½èªè¾æ¸çæå³ããã®é£æ³ã«ããã誤èªã»èª¤è§£ãããæ··ä¹±ããããã¾ããå®ã«ã¾ã£ããè¨éã®æªå½±é¿ã¯æããããã®ã§ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\o}[1]{ \overline{#1} }
\newcommand{\u}[1]{ \underline{#1} }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
%\newcommand{\On}{ \text{ on }}
\newcommand{\Iff}{ \Leftrightarrow }
\newcommand{\op}{ \mathrm{op}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\twoto}{\Rightarrow }
`$
å 容ï¼
- ä¸è¬åãã¤ãã¼ã°ã©ã
- ä¸è¬åãã¤ãã¼ã°ã©ãã¨ã¹ããªã³ã°å³ã¨ã®é¢ä¿
- P-ãã³ãã«
- P-ãã¡ããªã¼
ä¸è¬åãã¤ãã¼ã°ã©ã
éå»è¨äºã§å°å ¥ããä¸è¬åãã¤ãã¼ã°ã©ãã¯ããã¤ãã¼ã°ã©ãã¨å¼ã°ãã¦ããã¢ãã®ä¸è¬åã¨ãã¦å¦¥å½ãªãã®ã§ããä¸è¬åãã¤ãã¼ã°ã©ãã®ç¨®é¡ã決ããã®ã¯ãéååä¸ã®èªå·±é¢æ $`P:\mbf{Set} \to \mbf{Set}`$ ã§ãã$`P`$ ï¼ãããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ï¼ãåºå®ããä¸ã§ã次ã®3ã¤ã®æ§æç´ ã§ä¸è¬åãã¤ãã¼ã°ã©ããå®ç¾©ããã¾ãã
- é ç¹ã®éåï¼ $`V\in |\mbf{Set}|`$
- 辺ããã¤ãã¼è¾ºãã®éåï¼$`E \in |\mbf{Set}|`$
- å¢çååï¼ $`\mrm{bdry}:E \to P(V) \In \mbf{Set}`$
èªå·±é¢æ $`P`$ ã®é¸ã³æ¹ã§è²ã ãªç¨®é¡ã®ãã¤ãã¼ã°ã©ããå®ç¾©ã§ãã¾ããä¾ãã°ãéå»è¨äºãã¹ããªã³ã°å³ã¨ãã¤ãã¼ã°ã©ãå³ // ãã¤ãã¼ã°ã©ããã§å®ç¾©ãããã¤ãã¼ã°ã©ãã¯ããããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ã次ã®ããã«å®ç¾©ããã°OKã§ãã
$`\quad |\mbf{Set}| \ni X \mapsto \mrm{List}(X)\times \mrm{List}(X) \in |\mbf{Set}|`$
$`\quad \mrm{Mor}(\mbf{Set}) \ni (f : X\to Y) \mapsto (\mrm{List}(f)\times \mrm{List}(f): \mrm{List}(X)\times \mrm{List}(X) \to \mrm{List}(Y)\times \mrm{List}(Y)) \in \mrm{Mor}(\mbf{Set})`$
å¢çååã¯ãå§é ç¹ååã¨çµé ç¹ååããã«ã«ãã»ãã¢ãªã³ã°ããååã§ãã
$`\quad \mrm{bdry} := \langle \mrm{src}, \mrm{trg}\rangle : E \to \mrm{List}(V)\times \mrm{List}(V) \In \mbf{Set}`$
ã¾ããéå»è¨äºããã¤ãã¼ã°ã©ããè¦ããªãçç± // ãã¤ãã¼ã°ã©ããã§å®ç¾©ãããã¤ãã¼ã°ã©ã㯠Wikipedia ããã®å¼ç¨ã§ããããã®å ´åã®ãããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ã¯æ¬¡ã®é¢æã§ãã
$`\quad |\mbf{Set}| \ni X \mapsto \mrm{Pow}_+(X) \in |\mbf{Set}|`$
$`\quad \mrm{Mor}(\mbf{Set}) \ni (f : X\to Y) \mapsto ({\mrm{Pow}_+}_*(f) : \mrm{Pow}_+(X) \to \mrm{Pow}+(Y) ) \in \mrm{Mor}(\mbf{Set})`$
$`\mrm{Pow}_+(\hyp)`$ ã¯ç©ºéåãé¤å¤ããããéåã§ãã$`{\mrm{Pow}_+}_*(\hyp)`$ ã¯ã空éåé¤å¤ããéåããèªå°ãããå ±å¤é¢æã®å°ãã¼ãã§ãã
Wikipedia ã®å®ç¾©ã§ã¯ãå¢çååã¯å å«ååã«éå®ããã¦ãã¾ãã
$`\quad \mrm{bdry} := \mrm{incl}_E : E \hookrightarrow \mrm{Pow}_+(V) \In \mbf{Set}`$
ãããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ $`P`$ ãåãæ¿ããã°ããã®ä»ã®ãã¤ãã¼ã°ã©ãæ¦å¿µãå®å¼åã§ãã¾ãã
ä¸è¬åãã¤ãã¼ã°ã©ãã¨ã¹ããªã³ã°å³ã¨ã®é¢ä¿
ããã¤ãã¼ã°ã©ãããé ç¹ãã辺ããªã©ã®å¼ã³åãå¤ãããã¨æã£ãã®ã¯ãã¹ããªã³ã°å³ã«ã¤ãã¦èªãå ´åã«æ··ä¹±ããããã§ããã¹ããªã³ã°å³ã¨ç¡é¢ä¿ãªæèã§ã¯ãä»ã¾ã§ã®å¼ã³åã§å¥ã«ãã¾ãã¾ããã
ä¸è¬åãã¤ãã¼ã°ã©ãã¯ã¹ããªã³ã°å³ã®ä¸é¨æ§é ã«ãªãã¾ããã¹ããªã³ã°å³ã¯ãä¸è¬åãã¤ãã¼ã°ã©ãã«ç¸å¯¾çã«å®ç¾©ãããã®ã§ãããã®ã¨ããä¸è¬åãã¤ãã¼ã°ã©ãã®ç¨èªã¨ã¹ããªã³ã°å³ã®ç¨èªã®å¯¾å¿ã¯æ¬¡ã®ããã«ãªãã¾ãï¼åï¼ãªãã©ããã®ç¨èªãä»ãã¦ããã¾ãï¼ã
ä¸è¬åãã¤ãã¼ã°ã©ã | ã¹ããªã³ã°å³ | åï¼ãªãã©ãã |
---|---|---|
辺 | ãã¼ããé ç¹ãããã¯ã¹ | å°ããªãã¬ã¼ã·ã§ã³ããªãã¬ã¼ã¿ã¼ãã»ã« |
é ç¹ | è²ãå | 対象ãè² |
å¢çåå | (ç¹ã«å¼ã³åã¯ãªã) | dom/codãsrc/trg |
ä¸è¬åãã¤ãã¼ã°ã©ãã®è¾ºããã¹ããªã³ã°å³ã§ã¯é ç¹ããã¼ã | ããã¯ã¹ãã®ãã¨ã§ãä¸è¬åãã¤ãã¼ã°ã©ãã®é ç¹ããã¹ããªã³ã°å³ã§ã¯ï¼ãã¼ããã¯ã¤ã¤ã¼ã«ä»ãï¼è²ãåãã®ãã¨ã§ãã
ãããå¼ã¶ã¨ç´æãã¦ããã ãããããããªãã ãããã建åã®ä¸»å¼µã§ãããå®éã«ã¯æ··ä¹±ãã¾ããããä¸è¬åãã¤ãã¼ã°ã©ãã¨ã¹ããªã³ã°å³ãä¸ç·ã«èªãã¨ãã¯ãä¸è¬åãã¤ãã¼ã°ã©ãã®æ¨æºçãªç¨èªæ³ã¯ä½¿ç¨ããªãã»ããç¡é£ã ã¨æãã¾ãã代æ¿ã®ç¨èªæ³ã決ãã¾ãããã
P-ãã³ãã«
ä¸è¬åãã¤ãã¼ã°ã©ãã¯ããããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ $`P`$ ãã¨ã«å¥ç©ã¨ãªãã¾ããããããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ã $`P`$ ã§ããä¸è¬åãã¤ãã¼ã°ã©ããã$`P`$-ãã³ãã«ã$`P`$-bundleãã¨å¼ã¶ãã¨ã«ãã¾ãã$`P`$ ãéååã®æçé¢æã®ã¨ãã¯ï¼éåè«çï¼ãã³ãã«ã§ãã
ãã³ãã«ã¨ãã³ãã«å°ã®å㯠$`\mbf{Bun}`$ ã¨æ¸ãã®ã§ã$`P`$-ãã³ãã«ã¨$`P`$-ãã³ãã«å°ã®å㯠$`P\text{-}\mbf{Bun}`$ ã¨ãã¾ãã$`P`$-ãã³ãã«å°ã$`P`$-bundle morphismãã¯ã$`P`$-ãã¤ãã¼ã°ã©ãã®æºååå°ï¼ãä¸è¬åãã¤ãã¼ã°ã©ã åè«ãåç §ï¼ã®ãã¨ã§ãã
$`P`$-ãã¤ãã¼ã°ã©ãã$`P`$-ãã³ãã«ã¨å¼ã³æ¿ããã®ã§ãé¢é£ããç¨èªãå¤æ´ãã¾ãã
$`P`$-ãã¤ãã¼ã°ã©ã | $`P`$-ãã³ãã« |
---|---|
辺 | ã»ã«ãcellã |
é ç¹ | è²ãcolorã |
å¢çåå | å¢çãããã¡ã¤ã«ååãboundary-profile mapã |
ãã»ã«ãã¯ãå°ãã®å義èªã¨ãã¦ãã使ãããè¨èã§ãããè²ãã¯ãªãã©ããã®ç¨èªããåç¨ããå¢çååãããå¢çãããã¡ã¤ã«ååãã«å¤æ´ããã®ã¯ãã»ã«ã«å¯¾å¿ãããã¢ãããå¹¾ä½çå¢çã§ã¯ãªãã¦ãå¢çä¸ã«è¼ã£ã¦ãããããã¡ã¤ã«æ å ±ã ããã§ããå¤æ§ä½ã«å¢çã対å¿ãããååã¨ã¯éãã¾ãã
èªå·±é¢æ $`P`$ ã¯å¼ãç¶ããããã¡ã¤ã«ã»ã³ã³ã¹ãã©ã¯ã¿ãprofile constructorãã¨å¼ã³ã¾ãã$`P(X)`$ ã®è¦ç´ ã¯ï¼è²ã $`X`$ ã§ããï¼ãããã¡ã¤ã«ãprofileãã§ãã
$`P`$-ãã³ãã« $`A`$ ã®æ§æç´ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
- ã»ã«ã®éåãset of cellsãï¼ $`\mrm{Cell}(A) \in |\mbf{Set}|`$
- è²ã®éåãset of colorsãï¼ $`\mrm{Color}(A) \in |\mbf{Set}|`$
- å¢çãããã¡ã¤ã«ååï¼ $`\mrm{bp}_A : \mrm{Cell}(A) \to P(\mrm{Color}(A)) \In \mbf{Set}`$
æ§æç´ ã®ç¥è¨ã¯æ¬¡ã®ã¨ããï¼ç¥è¨æ³ã¯ãä¸è¬åãã¤ãã¼ã°ã©ã åè«ãã¨åãï¼ã§ãã
- ã»ã«ã®éåï¼ $`\o{A} \in |\mbf{Set}|`$
- è²ã®éåï¼ $`|A| \in |\mbf{Set}|`$
- å¢çãããã¡ã¤ã«ååï¼ $`\mrm{bp}_A : \o{A} \to P(|A|) \In \mbf{Set}`$
$`P`$-ãã³ãã«å° $`f`$ ã¯2ã¤ã®ãã¼ããããªãã¾ãããããã¯ï¼
- è²ãã¼ããcolor partãï¼ $`f_\mrm{color} : |A| \to |B| \In \mbf{Set}`$
- ã»ã«ã»ãã¼ããcell partãï¼ $`f_\mrm{cell} : \o{A} \to \o{B} \In \mbf{Set}`$
åã®ããã ã®é¢æãªãã対象ãã¼ãã¨å°ãã¼ãã¨å¼ã³ã¾ããï¼åãæ¦å¿µã«ãã¨ã«ããè²ã ãªå¼ã³åãããï¼ã
ä»å°å ¥ãã$`P`$-ãã³ãã«ã®ç¨èªæ³ã¯ããã³ãã«ï¼ãã¡ã¤ãã¼ä»ãéåãfibered setãã¨ãå¼ã¶ï¼ã®ç¨èªæ³ã¨ã¯é£ãéã£ã¦ãã¾ãã
$`P`$-ãã³ãã« | ãã³ãã« |
---|---|
ã»ã« | (ç¹ã«å¼ã³åã¯ãªã) |
ã»ã«ã®éå | ãã¼ã¿ã«éåããã¼ã¿ã«ç©ºéã |
è² | (ç¹ã«å¼ã³åã¯ãªã) |
è²ã®éå | ãã¼ã¹éåããã¼ã¹ç©ºéã |
å¢çãããã¡ã¤ã«åå | å°å½± |
å°ã®è²ãã¼ã | å°ã®ãã¼ã¹ãã¼ã |
å°ã®ã»ã«ã»ãã¼ã | å°ã®ãã¼ã¿ã«ã»ãã¼ã |
$`P`$-ãã³ãã«ã®å¢çãããã¡ã¤ã«ååï¼ãã³ãã«ã®ç¨èªã§ã¯å°å½±ï¼ã®éåéåããã¡ã¤ãã¼ãfibre | fiberãã¨å¼ã³ã¾ãããã¡ã¤ãã¼ã¯ãåã®ãã ã»ããã«ç¸å½ããã®ã§ããã ã»ããã¨åãè¨æ³ã§æ¸ãã¾ãã
$`\text{For }\alpha \in P(|A|)\\
\quad A(\alpha) := {\mrm{bp}_A}^{-1}(\alpha) \subseteq \o{A}
`$
ãããã¡ã¤ã« $`\alpha`$ ã®ãã¡ã¤ãã¼ $`A(\alpha)`$ ã¯ãé¢æ°å¼ã³åºãã¨åãå½¢å¼ãªã®ã§ããã¸ãææ§ãªè¨æ³ã§ãããæèã§å¤æãã¾ããç´ããããã¨ãã¯ãä¸ä»ãã¢ãããã¼ã¯ã使ã£ãè¨æ³ãè¯ããã¨æãã¾ãã
$`\text{For }\alpha \in P(|A|)\\
\quad A_{@\alpha} := {\mrm{bp}_A}^{-1}(\alpha) \subseteq \o{A}
`$
å $`\cat{C}`$ ã®ãã ã»ãããä¸ä»ãã¢ãããã¼ã¯ã§æ¸ããªã $`\cat{C}_{@(A, B)}`$ ã§ããå®éã«ã¯ä½¿ãã¾ãããã©ãã
P-ãã¡ããªã¼
ãã³ãã«-ãã¡ããªã¼å¯¾å¿ï¼ããã³ãã«-ãã¡ããªã¼å¯¾å¿ åèãåç §ï¼ãããã®ã§ã$`P`$-ãã³ãã«ã«ã¯$`P`$-ãã¡ããªã¼ã対å¿ãã¾ãã
$`A = (\mrm{bp}_A : \o{A} \to P(|A|)`$ ã$`P`$-ãã³ãã«ã¨ãã¦ã対å¿ãããã¡ããªã¼ã $`F`$ ã¨ããã¨ã$`F`$ ã¯æ¬¡ã®å½¢ã§ãã
$`\quad F: P(|A|) \to |\mbf{Set}| \In \mbf{SET}`$
ãã¡ããªã¼ã®ã¤ã³ããã·ã³ã°éå㯠$`P(\hyp)`$ ã®å½¢ããã¦ããã®ã§$`P`$-ãã¡ããªã¼ã¨å¼ã¶ãã¨ã«ãã¾ãã$`P`$-ãã³ãã« $`A`$ ããä½ããã$`P`$-ãã¡ããªã¼ã®å ·ä½çãªå®ç¾©ã¯ï¼
$`\text{For }\alpha \in P(|A|)\\
\quad F(\alpha) := A_{@\alpha} \;\in |\mbf{Set}|
`$
ãããã¡ã¤ã«ã«ãã®ãã¡ã¤ãã¼ã対å¿ããããã¡ããªã¼ãéåæãã§ãã
$`f:A \to B`$ ã$`P`$-ãã³ãã«å°ã®ã¨ãã対å¿ãããã¡ããªã¼ã®ããã ã®æºååå°ã $`\varphi`$ ã¨ããã¨ã$`\varphi`$ 㯠$`P(|A|)`$ ã§ã¤ã³ããã¯ã¹ãããååã®æã«ãªãã¾ãã
$`\text{For }\alpha \in P(|A|)\\
\quad \varphi_{@\alpha} : A_{@\alpha} \to B_{@P(f_\mrm{color})(\alpha)} \In \mbf{Set}
`$
ã¢ãããã¼ã¯ãä»ããã®ã¯ããã¡ã¤ãã¼ã®è¨æ³ã¨æããããã§ãã$`\varphi_{@\alpha}`$ ã¯ãé¢æã®ãã ãã¼ãï¼ãã ã»ããéã®ååï¼ã«ç¸å½ãããã®ã§ãã
ãã³ãã«-ãã¡ããªã¼å¯¾å¿ã¯éåãã®å¯¾å¿ãããã®ã§ã$`P`$-ãã¡ããªã¼ $`F:P(X) \to |\mbf{Set}|`$ ãä¸ããããã¨ãã対å¿ãã$`P`$-ãã³ãã«ãæ§æã§ãã¾ãã ãã³ãã«-ãã¡ããªã¼å¯¾å¿ã¯ã$`P`$-ãã³ãã«ã®å $`P\text{-}\mbf{Bun}`$ ã¨$`P`$-ãã¡ããªã¼ã®å $`P\text{-}\mbf{Fam}`$ ã®ååå¤ãä¸ãã¾ãã