ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã«ã¤ãã¦ã¯ããã®ããã°å ã§ä½åº¦ãè¨åãã¦ãã¾ãã
- ãã®ããã°å ãã¯ã¼ã ã®æ¤ç´¢çµæ
è«çï¼åçè«ï¼åè«ã®ä¸è ã®ããã ã«ãç²¾å¯ã§ç¶ºéºãªå¯¾å¿ãããã¾ã -- ãããã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã§ããã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã¯ã¨ã¦ãéè¦ãªæ¦å¿µã ããå®ç¨çãªæç¾©ãããã¾ãã
ããããªããããã®ç¶ºéºãªå¯¾å¿ããªããªãä¼ãããªãããã§ãã対å¿ãè¦ãã«ãããªã£ã¦ãã大ããªåå ã¯ãæ§é ã綺éºã«å¯¾å¿ãã¦ãã¦ããè¨èãè¨å·ã¯å¯¾å¿ãã¦ãªããã¨ã§ããè«çï¼åçè«ï¼åè«ã®ä¸è ã«ããã¦ãã¾ã£ããéã£ãå¼ã³åã»æ¸ãæ¹ã»è¨ãåãã使ããã¦ãã¾ãã
è¨èãè¨å·ãéã£ã¦ãã¦ããåç´ãªç¿»è¨³ã«ã¼ã«ãããã°ããã®ã§ãããä¾å¤ã¨å ´ååããå¤ãã´ãã£ã´ãã£ããã«ã¼ã«ã«ãªã£ã¦ãã¾ãã¾ããã ã£ããã翻訳ãªãã¦ããªããã°ãããããªãã -- ã¾ã£ãããã®ã¨ããã§ãï¼ å¼ã³åã»æ¸ãæ¹ã»è¨ãåãã«åãããã«ããã¤ã¬ã¯ãã«æ¦å¿µãæãã人ã«ã¨ã£ã¦ã¯ã翻訳ã¯ä¸è¦ã§ããæ¦å¿µã»æ§é ã®ååæ§ãç´æ¥çã«è¦³æ¸¬ã§ããã§ãããã
ãå®éã«ã¯ã表層çãªå¼ã³åã»æ¸ãæ¹ã»è¨ãåãã®éãã«æãããã¦ãæ¦å¿µã»æ§é ã®ååæ§ãè¦ãã«ãããªã£ã¦ããã±ã¼ã¹ãå¤ãããã§ãããã®è¨äºã§ã¯ãå¼ã³åã»æ¸ãæ¹ã»è¨ãåãã®æªå½±é¿ã軽æ¸ãã工夫ã«ã¤ãã¦è¿°ã¹ã¾ãã$`
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\cat}[1]{\mathcal{#1}}
%\newcommand{\msf}[1]{\mathsf{#1}}
%\newcommand{\mbb}[1]{\mathbb{#1}}
\newcommand{\hyp}{\text{ï¼} }
%\newcommand{\twoto}{\Rightarrow }
\newcommand{\In}{ \text{ in } }
%\newcommand{\ot}{\leftarrow}
%\newcommand{\op}{\mathrm{op}}
\newcommand{\Imp}{\Rightarrow }
`$
å 容ï¼
- PAT PAT
- å½é¡ã¨çå½å¤
- ãçå½å¤ãã®ææ§æ§
- ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³å
- ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å®ä¾
- ã¾ã¨ã
é¢é£è¨äºï¼
PAT PAT
ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ãç¹ã«è«çã¨åçè«ã®å¯¾å¿ã®åçã端çã«è¡¨ããã£ãããã¬ã¼ãºã¨ãã¦ãPAT PATããããã¾ã*1ãæ¬¡ã®è¨èã®é æåãã¤ãã·ã£ãªãºã ãã§ãã
ããPropositions-as-Types, Proofs-as-Terms
ãã®ãã£ãããã¬ã¼ãºã¯æ¬¡ã®å¯¾å¿ããããã¨ãææãã¦ãã¾ãã
è«ç | åçè« |
---|---|
å½é¡ | å |
証æ | é |
ãã®ãã£ãããã¬ã¼ãºã¯æ¬è³ªãä»ãããã®ã§ã¾ã£ããæ£ããã®ã§ãããè¨èã¥ãããç¨èªæ³ãã®æªã¿ã»å´©ããæ¢ã«ç¾ãã¦ãã¾ãã
ãå½é¡ãã¨ããèªãææ§å¤ç¾©èªãªãã¨ã¯ãPropositions-As-Typesãæ²è§£ããªãã§çè§£ããããã« // ãå½é¡ããæé¤ãããï¼ãã§ææãã¾ããããå½é¡ãã«ã¯æ¬¡ã®ç¨æ³ãããã¾ãï¼å½èªè¾æ¸çç¨æ³ã¯é¤ãï¼ã
1. çå½å¤ã¨ããæå³
2. è¿°èªã¨ããæå³
3. è«çå¼ã¨ããæå³
4. å®çã¨ããæå³
ãå½é¡ãã®ææ§æ§ã«é¢ããåæã¯ããå½é¡ãã®ææ§æ§ããå層æå³è«ã¸ãã«æ¸ãã¦ãã¾ãã
åçè«å´ã®ãåãã¨ãé ããã¢ã³ãã©ã³ã¹ãªç¨æ³ã§ãããåçè«ã®ãä»£å ¥ãã®åæãããå¼ç¨ãã¾ãããã
次ã®ãããªã¢ã³ãã©ã³ã¹ãªè¦ç´ã夿°æ´¾ã§ãã
- ãã½ã¼ããåããã¯ã½ã¼ãé ãåé ããæå³ããã
- åã«ãé ãã¨è¨ã£ãããããã¯ãªãã¬ã¼ã·ã§ã³é ã颿°é ããæå³ããã
- ãã½ã¼ãããï¼æèã«ããï¼ã½ã¼ãå®ä½ãæå³ãããã¨ãããã
- ãé ããï¼æèã«ããï¼ãªãã¬ã¼ã·ã§ã³å®ä½ãæå³ãããã¨ãããã
æ§æè«ç対象ç©ã«ã¯èªå°¾ã«ãé ãã¾ãã¯ãå¼ããä»ãã¦ãæå³è«ç対象ç©ã«ã¯èªå°¾ã«ãå®ä½ããä»ãã¦åºå¥ãããã¨ã«ãã¦ãå ã®å¯¾å¿è¡¨ãæ§æè«ã¨æå³è«ã«åãã¦æ¸ãç´ãã¾ãããã
è«çã®æ§æè« | åçè«ã®æ§æè« |
---|---|
è«çå¼ | åé |
証æé | 颿°é |
è«çã®æå³è« | åçè«ã®æå³è« |
---|---|
è¿°èª | åå®ä½ |
証æå®ä½ | 颿°å®ä½ |
ããã§ãã¾ã ä¸è²«æ§ãæ¬ å¦ãã¦ããã®ã§ã次ã®è¨ãæ¹ã使ããã¨ã«ãã¾ãã
è«çã®æ§æè« | åçè«ã®æ§æè« |
---|---|
å½é¡é ãè«çå¼ã | åé |
å®çã®è¨¼æé | 颿°ã®è¨ç®é |
è«çã®æå³è« | åçè«ã®æå³è« |
---|---|
å½é¡å®ä½ãè¿°èªã | åå®ä½ |
å®çå®ä½ | 颿°å®ä½ |
ææ§å¤ç¾©èªã®ãå½é¡ãã復活ããã¦ãã¾ãããèªå°¾ã®ãé ãã¨ãå®ä½ãã§ãè«çå¼ã®ãã¨ãè¿°èªã®ãã¨ãã¯åºå¥ãã¦ãã¾ããå½é¡ã¨çå½å¤ã®é¢ä¿ã¯å¾ã§è¿°ã¹ã¾ããå®çã¨å½é¡ã¯å¥ãªæå³ã§ä½¿ãã¾ãã
æ £ç¨ã¨ã¯éãã¾ãããæ¬¡ã®è¦åã«ããæ§æè«ç対象ç©ãsyntactic objectãã¨æå³è«ç対象ç©ãsemantic objectsãã®åºå¥ããã¾ãã
- æ§æè«ç対象ç©ã®èªå°¾ã«ã¯ãé ãã¾ãã¯ãå¼ããä»ããã
- æå³è«ç対象ç©ã®èªå°¾ã«ã¯ãå®ä½ããä»ããã
ãé ï¼å¼ãããå®ä½ããæ«å°¾ã«ä»ãã¦ãªãã¨ãã®è§£éã¯ï¼
- åãã£ã¦ããã©ã«ãã«ã¼ã«ã決ã¾ã£ã¦ãããä¾ãã°ããåï¼åé ãã¨ãã颿°ï¼é¢æ°å®ä½ãã¨ãã
- æ§æè«ã¨æå³è«ã§å ±éãªè©±ããã¦ãããä¾ãã°ããåããåé ã¨è§£éãã¦ãåå®ä½ã¨è§£éãã¦ãéç¨ããã
- æèãã¨ã«æå³ãå¤ããã
ä¸çªç®ã®ãæèããææ¡ããè² æ ã軽æ¸ãã工夫ããã®è¨äºã®å 容ã§ãã
å½é¡ã¨çå½å¤
ææ§å¤ç¾©èªãå½é¡ãã使ã£ã¦ããæ¥å°¾è¾ï¼èªå°¾ã«ä»ããè¨èï¼ãé ï¼å¼ããå®ä½ãã使ãã°ã次ã®ãããªåºå¥ãã§ãã¾ãã
- å½é¡é ï¼ è«çå¼ï¼ã©ã ãè¨æ³ãä½µç¨ããï¼
- å½é¡å®ä½ ï¼ è¿°èª
è¿°èªã¯ããªãããã®ï¼åä½é åãdomain of individualsãã¨ãè«åãdomain of discourseãã¨å¼ã°ããï¼éå $`X`$ ä¸ã§å®ç¾©ãããçå½å¤ãå¤ã¨ãã颿°ã§ããçå½å¤ã®éåã $`\mbf{B} = \{ \mrm{True},\mrm{False}\}`$ ã¨ããã¨ãè¿°èª $`p`$ ã¯æ¬¡ã®ããã«æ¸ãã¾ã*2ã
$`\quad p: X \to \mbf{B} \In \mbf{Set}`$
ç¹ã«ã$`X = \mbf{1}`$ ã¨ç½®ããå ´åã¯ï¼
$`\quad p: \mbf{1} \to \mbf{B} \In \mbf{Set}`$
åå éå $`\mbf{1}`$ ãåï¼åä½é åï¼è«åï¼ã¨ããè¿°èªï¼ä½åã $`\mbf{B}`$ ã§ãã颿°ï¼ã¯ã$`\mbf{B}`$ ã®è¦ç´ ã¨åä¸è¦ã§ãã¾ãã
$`\quad \mrm{Map}(\mbf{1}, \mbf{B}) \cong \mbf{B}`$
ãã®åä¸è¦ã®ãã¨ãunder this identificationãã§ã¯ãçå½å¤ã¯è¿°èªãå½é¡å®ä½ãã®ç¹å¥ãªãã®ã ã¨ã¿ãªãã¾ãããããã£ã¦ã次ã®è¨ãæ¹ã¯ééãã§ã¯ããã¾ããã
- çå½å¤ã¯å½é¡å®ä½ãè¿°èªãã§ããã
ããããæ¬¡ã¯ééãã§ã*3ã
- å½é¡å®ä½ãè¿°èªãã¯çå½å¤ã§ããã
次ãªãééãã«ãªãã¾ããã
- å½é¡å®ä½ãè¿°èªãã¯çå½å¤ã®ãã¨ãããã
æ§æè«å´ã§ã¯ï¼
- ãçå½å¤å®æ°è¨å·ã¯å½é¡é ãè«çå¼ãã§ãããã¯ééãã§ã¯ãªãã
- ãå½é¡é ãè«çå¼ãã¯çå½å¤å®æ°è¨å·ã§ãããã¯ééãã
- ãå½é¡é ãè«çå¼ãã¯çå½å¤å®æ°è¨å·ã®ãã¨ããããã¯ééãã§ã¯ãªãã
ææ§å¤ç¾©èªãå½é¡ãã使ã£ã¦ããæ¬¡ã®ç¹ã«æ³¨æããã°ãã³ãã¥ãã±ã¼ã·ã§ã³ã¯ã¨ãã¾ãã
- æ§æè«ç対象ç©ã§ãããå½é¡é ï¼ è«çå¼ãããæå³è«ç対象ç©ã§ãããå½é¡å®ä½ ï¼ è¿°èªãããåºå¥ããã
- å¤å ¸äºå¤çå½å¤ã®éå $`\mbf{B}`$ ã¨ããã¤ã³ãã£ã³ã°é¢æ°ã®éå $`\mrm{Map}(\mbf{1}, \mbf{B})`$ ã¯é©å®åä¸è¦ããã
ãçå½å¤ãã®ææ§æ§
çå½å¤ãå¤å ¸äºå¤çå½å¤ã«éå®ãã¦ããã°ãåç¯ã®ç´æã«ãããææ§å¤ç¾©èªãå½é¡ããé©åã«éç¨ã§ãã¾ãã
ããããçå½å¤ããã¤ã§ãå¤å ¸äºå¤çå½å¤ã¨ã¯éãã¾ãããçå½å¤ã®æ¦å¿µãä¸è¬åã»æ½è±¡åãããã®ã§ãããä¸è¬åãããçå½å¤ãã¨ããæ½è±¡åãããçå½å¤ãã¨ãè¨ã£ã¦ã¿ã¦ããä¸è¬åã»æ½è±¡åã®æ¹æ³ãã¤ããã¤ããã®ã§ãçµå±ããããªãã¾ãããå人ããèªåãç¥ã£ã¦ãããä¸è¬åãããçå½å¤ããæ½è±¡åãããçå½å¤ãã ã¨æãè¾¼ãã§ã³ãã¥ãã±ã¼ã·ã§ã³ãç ´ç¶»ãã¾ãã
人ã«ããããä¸è¬åã»æ½è±¡åãããçå½å¤ãã§ä¸å¤è«çï¼åå¤è«çï¼ãã¡ã¸ã¼è«çï¼ç¢ºççè«çãªã©ãæãæµ®ãã¹ãããç¥ãã¾ãããããä»ã¯ãã®ãããªéå¤å ¸è«çã¯æ±ãã¾ãããå¤å ¸è«çã§æç«ããæ³åãæ¸©åãããã®ã§ã*4ããããã®æ³åãæç«ããªãã¨ãæ®éã«è«çãããã«ã¯è¾ããã¾ãã
ææ§ã«ãä¸è¬åã»æ½è±¡åãããçå½å¤ãã¨ãè¨ãã®ã¯ããã¦ã欲ããæ³åãæç«ãããããªä»£æ°çã»åè«çæ§é ãå ¬ççã«æç¤ºãããã¨ã«ãã¾ãã
æã ã®ãä¸è¬åã»æ½è±¡åãããçå½å¤ããå± ä½ãã代æ°çã»åè«çæ§é ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åãHeyting-De Morgan categoryãã¨å¼ã¶ãã¨ã«ãã¾ãï¼è©³ç´°ã¯æ¬¡ç¯ï¼ãä»ã®æèã«ããããä¸è¬åã»æ½è±¡åãããçå½å¤ã¨ã¯ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å¯¾è±¡ã®ãã¨ã§ãã
ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³å
ãã¤ãã£ã³ã°åãHeyting categoryã*5ã¯ãç´åä»ããã«ã«ãéåãCartesian closed category with direct sumãã®å¥åãå義èªãã ã¨ãã¾ããå®éããã¤ãã£ã³ã°ä»£æ°ãHeyting algebraãã¯ããããç´åä»ããã«ã«ãéåã«ã»ããªãã¾ããã
ç´åã¯ãã«ã«ãä½ç©ãCartesian coproductããªã®ã§ãç´ç©ã¨ç´åã®ä¸¡æ¹ãæã¤åã¯åãã«ã«ãåãbiCartesian categoryãã¨ãå¼ã°ãã¾ãããªã®ã§ãè¨ãæ¹ãå¤ããã¨ããã¤ãã£ã³ã°åã¯å é¨ãã ãææ°ããæã¤åãã«ã«ãåã§ãã
ãã¤ãã£ã³ã°å $`\cat{C}`$ ããè¨å·ã®ä¹±ç¨ã§æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \cat{C} = (\cat{C}, \times, 1, [\hyp, \hyp], +, 0)`$
ããã§ï¼
- $`(\cat{C}, \times, 1, [\hyp, \hyp])`$ ã¯ããã«ã«ãéåã«ãªã£ã¦ããã
- $`(\cat{C}, +, 0) `$ ã¯ãä½ãã«ã«ãåã«ãªã£ã¦ããã
ç´åã¨ç´ç©ã®ããã ã«åé æ³åãæç«ãããã¨ã¯è¨¼æã§ãããã§ãããæåããä»®å®ãã¦ããã¦ãããã§ãããã
$`\text{For }A, B, C\in |\cat{C}|\\
\quad A\times (B + C) \cong A\times B + A \times C \In \cat{C}\\
\quad (A + B)\times C \cong A\times C + B \times C \In \cat{C}
`$
ãã¤ãã£ã³ã°åã«ããã¦ã次ã®3ã¤ã®è¨å·ãå®ç¾©ãã¾ãã
- å¦å®æ¼ç® $`\lnot`$
- ãã¬é åºé¢ä¿ $`\le`$
- åå¤é¢ä¿ $`\equiv`$
å¦å®ã¯ãå é¨ãã ãææ°ãã¨å§å¯¾è±¡ã使ã£ã¦æ¬¡ã®ããã«å®ç¾©ãã¾ãã
$`\text{For }A \in |\cat{C}|\\
\quad \lnot A := [A , 0]
`$
ãã¬é åºé¢ä¿ $`\le`$ ï¼ã¨ã³ãã¤ã«ã¡ã³ãé¢ä¿ï¼ã¯æ¬¡ã®ã¨ããã§ãã
$`\text{For }A, B \in |\cat{C}|\\
\quad ( A \le B) := (\cat{C}(A, B) \ne \emptyset)
`$
åå¤é¢ä¿ $`\equiv`$ ã¯ã$`\le`$ ã使ã£ã¦å®ç¾©ãã¾ãã
$`\text{For }A, B \in |\cat{C}|\\
\quad ( A \equiv B) := (A \le B \land B \le A)
`$
ãã¬é åºé¢ä¿ $`\le`$ ã¨åå¤é¢ä¿ $`\equiv`$ ã¯ããã¤ãã£ã³ã°åã«éããä»»æã®åã«å¯¾ãã¦å®ç¾©å¯è½ãªãã¨ã«æ³¨æãã¦ãã ããã
以ä¸ã®æºåã®ãã¨ã§ããã»ã¢ã«ã¬ã³ã®æ³åãDe Morgan's lawsãã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\text{For }A, B \in |\cat{C}|\\
\quad \lnot (A + B) \equiv (\lnot A) \times (\lnot B)
`$
ï¼ä¸ã®åå¤ã ãã§ã¯ãã¡ã§ãããããä¸ã®è¿½è¨ãåç §ãï¼
ãã»ã¢ã«ã¬ã³ã®æ³åãä»»æã®å¯¾è±¡ $`A, B`$ ã«å¯¾ãã¦æç«ãããã¤ãã£ã³ã°åããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åãHeyting-De Morgan categoryãã§ãã
é¸è¨ãdisjunctionãï¼ç´åï¼ã«å¯¾ãããã»ã¢ã«ã¬ã³ã®æ³å $`\lnot (A + B) \equiv (\lnot A) \times (\lnot B)`$ ã¯ãã©ãããã¤ãã£ã³ã°åã®å ¬çã ãããåºããã§ããã¤ã¾ããããã¦å ¬çã¨ãã¦è¦æ±ããå¿ è¦æ§ã¯ãªãããã
é£è¨ãconjunctionãï¼ç´ç©ï¼ã«å¯¾ãããã»ã¢ã«ã¬ã³ã®æ³å $`\lnot (A \times B) \equiv (\lnot A) + (\lnot B)`$ ã®ã»ããåé¡ã§ããã¤ãã£ã³ã°åã®å ¬çããã¯åºãªãããã§ããã¨ãããã¨ã¯åä¾ããããã§ãããããæãã¤ãã¾ããï¼å¾ã§èª¿ã¹ããï¼ã
ã¨ããäºæ ã§ããé£è¨ãç´ç©ãã®å¦å®ãå¦å®ã®é¸è¨ãç´åãã«å±éã§ãããã¨ããå ¬çããã»ã¢ã«ã¬ã³æ§ã®ä¸»å¼µã«ãªãã¾ãã人å形容è©ã®é çªã¯ããã»ã¢ã«ã¬ã³ï¼ãã¤ãã£ã³ã°ãDe Morgan-Heytingãããæ®éã®ããã§ãã確ãã«ããã»ã¢ã«ã¬ã³æ§ãæã¤ãã¤ãã£ã³ã°åã¨ãããã¨ã§ããã»ã¢ã«ã¬ã³ï¼ãã¤ãã£ã³ã°åã®ã»ããã·ãã¯ãªããããã
ãã»ã¢ã«ã¬ã³æ§ãæã¤ãã¤ãã£ã³ã°åï¼ãã»ã¢ã«ã¬ã³ï¼ãã¤ãã£ã³ã°åï¼ã§ãå¤å ¸è«çãã§ãããï¼ ã¨ããã¨ãããã¯ãããªãããã§ããå¤å ¸è«çã¨ããã°äºéå¦å®ã®æ³åãæä¸å¾ã象徴çã§ããããããã¯ãã»ã¢ã«ã¬ã³ï¼ãã¤ãã£ã³ã°ã®å ¬çç³»ããã¯åºã¦ããªãããããã¦ã¼ã ãããããããªã
ãã¤ãã£ã³ã°ã®å ¬çç³»ã®ãªãã§ãäºéå¦å®ã®æ³åã¨æä¸å¾ã¯åå¤ã§ãã©ã¡ãããä»®å®ããã¨ããã»ã¢ã«ã¬ã³ã®æ³åã証æå¯è½ãªã®ã§ããã¤ãã£ã³ã°ã®å ¬çç³»ã«ä¾ãã°æä¸å¾ã追å ããã°ãå¤å ¸è«çãããç°å¢ãæ´ãã¾ãã
æä¸å¾ã¯æç«ããªããã©ãã»ã¢ã«ã¬ã³ã®æ³åã¯ä½¿ãããã¤ãã£ã³ã°åã¯é¢ç½ãããªæ°ããã¾ãããããå®ç¨æ§ãèããã¨ãçµå±æä¸å¾ãå
¥ãã¦å¤å
¸è«çã«ãªã£ã¡ããããªã¼ã
[/追è¨]
ãã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å®ä¾
éååã¯ãé常ã®ç´ç©ãç´åãææ°ã颿°éåãã«ãããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã«ãªãã¾ããåå¤é¢ä¿ $`\equiv`$ ã¯ããã¹ã¦ã®éåéãã空éåãããã§ãªããã®2ã¤ã®åå¤é¡ã«åé¡ãã¾ãã
å¤å ¸äºå¤çå½å¤ã®éå $`\mbf{B}`$ ã¯ãé©åãªæ¼ç®ã¨é åºé¢ä¿ã§ãã¼ã«ä»£æ°ã«ãªãã¾ãããé åºéåããåãä½ãæé ã§åã¨ã¿ãªãã¨ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã«ãªãã¾ããç¿æ £ã¨ãã¦ãéãè¨å·ä¸å¼ã使ãã¾ãã
- $`\times`$ ã®ä»£ããã« $`\land`$
- $`+`$ ã®ä»£ããã« $`\lor`$
- $`[\hyp, \hyp]`$ ã®ä»£ããã« $`\Imp`$
- $`1`$ ã®ä»£ããã« $`\mrm{True}`$ï¼ããã㯠$`\top`$ï¼
- $`0`$ ã®ä»£ããã« $`\mrm{False}`$ï¼ããã㯠$`\bot`$ï¼
使ãè¨å·ãéãã ãã§ã$`\mbf{Set}`$ ã $`\mbf{B}`$ ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åãªã®ã§ãããããã£ã¦ãéåãå¤å ¸äºå¤çå½å¤ããã©ã¡ããããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å¯¾è±¡ãã¨è¨ãã¾ãããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å¯¾è±¡ãâçå½å¤âã¨å¼ã¶ç´æããããªãããéåã¯âçå½å¤âãã ããå¤å ¸äºå¤çå½å¤ã¯âçå½å¤âãã§ãã
ãªãããã®ï¼åä½é åã¨ãè«åã¨å¼ã°ããï¼éå $`X`$ ä¸ã§å®ç¾©ãããâçå½å¤âãå¤ã¨ãã颿°ãè¿°èªã¨å¼ã¶ãªããè¿°èªã®å®ç¾©ã¯æ¬¡ã®ããã§ãã
- $`\cat{C}`$ ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã ã¨ãã¦ã$`p : X \to |\cat{C}|`$ ã®å½¢ã®ååãè¿°èªãpredicateã
$`\cat{C} = \mbf{Set}`$ ã®å ´åãªããè¿°èª $`p`$ ã¯ï¼
$`\quad p: X \to |\mbf{Set}| \In \mbf{SET}`$
$`\cat{C} = \mbf{B}`$ ã®å ´åãªããè¿°èª $`p`$ ã¯ï¼
$`\quad p: X \to |\mbf{B}| \In \mbf{Set}`$
æ®æ®µãé åºéåãåã¨ãã¦ã® $`\mbf{B}`$ ã¨ãå°éåã§ããåãªãéå $`\mbf{B}`$ ãåºå¥ãã¦ã¾ãããï¼æªç¿ï¼ï¼ã$`\mbf{B}`$ ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã ã¨ãããªãã対象ã®éåï¼äºå éåï¼ã¯ $`|\mbf{B}|`$ ã§ãã
ã¾ã¨ã
ä»åæ±ã£ãè¨èã¯ããå½é¡ãã¨ãçå½å¤ãã®2ã¤ã§ãã
- ãå½é¡ãã¯ãå½é¡é ãè«çå¼ãã¨å½é¡å®ä½ãè¿°èªããæå³ãããã¨ãããã
- åå éåä¸ã§å®ç¾©ãããå½é¡å®ä½ãè¿°èªãã¯ãçå½å¤ã¨åä¸è¦å¯è½ã§ããã
- ãçå½å¤ãã¯ãå¤å ¸äºå¤çå½å¤ãæå³ããå ´åã¨ãä¸è¬åã»æ½è±¡åãããçå½å¤ãæå³ããå ´åãããã
- ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ãè«ããæèã§ã¯ãä¸è¬åã»æ½è±¡åãããçå½å¤ã¨ã¯ããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å¯¾è±¡ã ã¨å®ç¾©ããã
- å¤å ¸äºå¤çå½å¤ãããã¤ãã£ã³ã°ï¼ãã»ã¢ã«ã¬ã³åã®å¯¾è±¡ã ã¨ã¿ãªããã
*1:ããããã»ããããã¨èªãã°ããã§ãããã
*2:éå $`X`$ ä¸ã®è¿°èªãã$`p : X^n \to \mbf{B}`$ ãæå³ãããã¨ãããã¾ãã
*3:ãè¿°èªã®ãã¨ãçå½å¤ã¨å¼ã¼ããã¨è¨ãããã°ããã¾ã§ã®ãã¨ã§ãç¨èªãæããã®ãä½ã§ãããã¯ããã¾ã§ãéå£å ã®ç´æãªã®ã§ãã
*4:è¥å¹²ã¯è²æ©ããã¨ãã¦ããç´è¦³ä¸»ç¾©è«çã®æ³åã¯æ¬²ããã¨ããã§ãã
*5:ãHeyting ã® Hey ã¯ããã¤ãã ããHeyting ã® g ã¯çºé³ãããªããããããã«ãã¯ãã«èããããããã ãã¨èãããã¨ãããã¾ããããã¤ãã£ã³ã¯ä»£æ°ãã¨ãã表è¨ãè¦ããã¨ãããã¾ããããä¸è¬çãªããã¤ãã£ã³ã°ãã«ãã¾ãã