ãã¿ãã³ã»ããªã¼ã«ã¤ãã¦ã¯ã以ä¸ã®éå»è¨äºã«æ¸ãã¦ãã¾ãã
ãã£ã¼ã³éã®è«æã® p.6 "2 Batanin trees" ã§ããã¿ãã³ã»ããªã¼ãæ±ã£ã¦ãã¾ãã
- [DFMRV22-24]
- Title: Computads for weak Ï-categories as an inductive type
- Authors: Christopher J. Dean, Eric Finster, Ioannis Markakis, David Reutter and Jamie Vicary
- Submitted: 18 Aug 2022 (v1), 20 Mar 2024 (v3)
- Pages: 67p
- URL: http://arxiv.org/abs/2208.08719
ãã¿ãã³ã»ããªã¼ã¯ãã£ã±ãéè¦ãªã®ã§ãããä¸åº¦èª¿ã¹ã¦ã¿ã¾ãããã¿ãã³ã»ããªã¼ç¹æãªè©±ã®åã«ãããªã¼ã¨ãªã¹ãã®ä¸è¬è«ãå
¥ãã¾ããæå¾ã«ãã¿ãã³ã»ããªã¼ã«ç¹æãªãã¸ã·ã§ã³éåã¨ãã¸ã·ã§ã³ã®ã¢ãã¬ã¹ãå®ç¾©ãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
%\newcommand{\mfk}[1]{\mathfrak{#1}}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\In}{ \text{ in } }
%\newcommand{\On}{ \text{ on } }
\newcommand{\id}{\mathrm{id} }
%\newcommand{\op}{\mathrm{op} }
\newcommand{\Iff}{\Leftrightarrow }
\newcommand{\twoto}{\Rightarrow }
\newcommand{\T}[1]{\text{#1} }
\newcommand{\EL}{\varepsilon} % Empty List
\newcommand{\Cons}{\mathop{\blacktriangleright} }
\newcommand{\Snoc}{\mathop{\blacktriangleleft} }
\newcommand{\Apnd}{\mathop{\#} }
\newcommand{\BCons}{\mathop{\|\!\blacktriangleright} }
`$
å 容ï¼
- ãã¿ãã³ã»ããªã¼ã®åèæç®
- ãã¿ãã³ã»ããªã¼ã¯ãã ã®ããªã¼
- ãªã¹ãã¨ãªã¹ãå¦ç
- ãã¿ãã³ã»ããªã¼ã¨ãªã¹ã
- ãã¿ãã³ã»ããªã¼ã®ç¨é
- ãã¿ãã³ã»ããªã¼ã®ãããã²ã¨ã¤ã®å¸°ç´çå®ç¾©
- ãã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³éå
- ãã¿ãã³ã»ã¢ãã¬ã¹
- ãããã«
ãã¿ãã³ã»ããªã¼ã®åèæç®
éå»è¨äºãææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ãã¨ãçä½éåéã®åã®æ§æ表示 1/2ã ã§åç §ãããã£ã³ã¹ã¿ã¼ï¼ãã ã©ã ã®è«æãp.7 "D. Batanin trees" ã«ãã¿ãã³ã»ããªã¼ã«ã¤ãã¦æ¸ãã¦ããã¾ãã
- [FM17-]
- Title: A Type-Theoretical Definition of Weak Ï-Categories
- Authors: Eric Finster, Samuel Mimram
- Submitted: 9 Jun 2017
- Pages: 12p
- URL: https://arxiv.org/abs/1706.02866
éå»è¨äºãææ¨ã®çµç¹åã¨è¡¨ç¾æ¹æ³ã¨å¼ã³åã¯è²ã ã ãã§åç §ãããã«ã«ãã¹ã®è«æãp.27 ä»è¿ã«ããã¿ãã³ã»ããªã¼ã®è¨è¿°ãããã¾ãã
- [Mar23-]
- Title: Computads for generalised signatures
- Author: Ioannis Markakis
- Submitted: 21 Mar 2023 (v1), 9 Jun 2023 (v2)
- Pages: 39p
- URL: https://arxiv.org/abs/2303.11978
ãã¿ãã³ã»ããªã¼ã¸ã®ç´æ¥çè¨åã¯ãªãã®ã§ãããã¢ã©ã¦ã¼ã¸ã§ã®è«æãåèã«ãªãããã§ãã
- [Ara22-]
- Title: Simple string diagrams and n-sesquicategories
- Author: Manuel Araújo
- Submitted: 18 Feb 2022 (v1), 16 Nov 2022 (v4)
- Pages: 42p
- URL: https://arxiv.org/abs/2202.09293
ããã¦ãåé ã§åç §ãããã£ã¼ã³éã®è«æã«ããã¿ãã³ã»ããªã¼ã®è¨è¿°ãããã¾ãã
ãã¿ãã³ã»ããªã¼ã¯ãã ã®ããªã¼
ãã¿ãã³ã»ããªã¼ã¯ããããæ®éã®ããªã¼ã§ããæ®éã®ããªã¼ããããç¹å¥ãªç¶æ³ã§ä½¿ãããã¨ãã«ãã¿ãã³ã»ããªã¼ã¨å¼ã°ããã ãã§ãã
æ®éã®ããªã¼ãå®ç¾©ããããã®æ®éã®æ¹æ³ã¯ãæåã°ã©ãã®ç¹å¥ãªãã®ãããªã¼ã¨å®ç¾©ãããã¨ã§ããæåã°ã©ãããã¨ã«ããªã¼ãå®ç¾©ãã話ã¯ä»¥ä¸ã®éå»è¨äºã«ããã¾ãï¼ãã®è¨äºã§ã説æãã¾ããï¼ã
å å¼ãã¼ãã®ããã ã«é åºããªãããªã¼ã«ã¤ãã¦ã¯ã以ä¸ã®éå»è¨äºãåèã«ãªãã§ãããã
ããªã¼ãæåã°ã©ãã¨ã¿ãªããã¨ãã®è¾ºã®æ¹åã¨ãã¦ãroot-to-leaf 㨠leaf-to-root ã®äºã¤ã®é¸æè¢ãããã¾ãããããã§ã¯ root-to-leaf ã¨ãã¾ãï¼å¥ã«ã©ã£ã¡ã§ããããã©ï¼ã
æåã°ã©ãã«ã¤ãã¦ã¯ç¥ã£ã¦ããã¨ãã¾ãã以ä¸ããã°ã©ããã¯æåã°ã©ãã®ãã¨ã§ããã°ã©ã $`X`$ ã®ãã¼ãã®éåã¨è¾ºãedgeãã®éåã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{Node}(X)\\
\quad \mrm{Edge}(X)
`$
ãé ç¹ãã¨å¼ã°ãã«ããã¼ããã¨å¼ãã§ããã®ã¯æ°åã ãã®åé¡ã§ããçç±ã¯ããã¾ããã
ã°ã©ã $`T`$ ã¨ç¹å®ã®ãã¼ã $`r\in \mrm{Node}(T)`$ ã®çµ $`(T, r)`$ ãæéããªã¼ãfinite treeãã§ããã¨ã¯ï¼
- $`\mrm{Node}(T)`$ ã $`\mrm{Edge}(T)`$ ãæééåã§ããã
- ä»»æã®ãã¼ã $`x\in \mrm{Node}(T)`$ ã«å¯¾ãã¦ãç¹å®ã®ãã¼ã $`r`$ ãã $`x`$ ã«è³ããã¹ãä¸æ¬ã ãããã
ãã¼ã $`r\in \mrm{Node}(T)`$ ãã«ã¼ããã¼ããroot nodeããã¾ãã¯åã«ã«ã¼ããrootãã¨å¼ã³ã¾ããã«ã¼ãããã«ã¼ãã«è³ããã¹ã¯ç©ºãã¹ã§ãããã¼ããã«ã¼ãã ãã§è¾ºããªãã°ã©ããæéããªã¼ã§ãã
è¨å·ã®ä¹±ç¨ã§ãæéããªã¼ã以ä¸ã®ããã«æ¸ãã¾ãã
$`\quad T = (T, r)`$
æéããªã¼ $`T`$ ã®ä»»æã®ãã¼ã $`x\in \mrm{Node}(T)`$ ã«å¯¾ãã¦ãã«ã¼ã $`r`$ ãã $`x`$ ã«è³ããã¹ã®é·ãã $`\mrm{height}_T(x)`$ ã¨å®ç¾©ãã¾ãã
$`\quad \mrm{height}_T : \mrm{Node}(T) \to \mbf{N} \In \mbf{Set}`$
$`\mrm{height}_T`$ ã $`T`$ ã®é«ãé¢æ°ãheight functionãã¨å¼ã³ã¾ããé«ãé¢æ°ãæ·±ãé¢æ°ã¨ãã¬ãã«é¢æ°ã¨å¼ã¶ãã¨ãããã¾ããã©ãå¼ã¶ãã¯è¶£å³ã®åé¡ã§ãã
æéããªã¼ $`T`$ ã® $`\mrm{Node}(T)`$ ã¯æééåãªã®ã§ãé«ãé¢æ°ã®åéåãæééåã«ãªãã¾ãã
$`\quad \mrm{Img}(\mrm{height}_T) \subseteq \mbf{N}`$
$`\quad \mrm{Img}(\mrm{height}_T) \in |\mbf{FinSet}|`$
æééå $`\mrm{Img}(\mrm{height}_T)`$ ã®æ大å¤ããæéããªã¼ $`T`$ ã®é«ããheightãã¨å®ç¾©ãã¾ãã
$`\quad \mrm{Height}(T) := \mrm{max}( \mrm{Img}(\mrm{height}_T) )`$
$`T`$ ã®é«ãé¢æ° $`\mrm{height}_T`$ ã¨ã$`T`$ ã®é«ã $`\mrm{Height}(T)`$ ã¯å¥ç©ãªã®ã§æ··åããªãããã«æ³¨æãã¦ãã ããã
æéããªã¼ $`T`$ ã®ä»»æã®ãã¼ã $`x\in \mrm{Node}(T)`$ ã«å¯¾ãã¦ããã®åãã¼ããchild nodeãã®éå $`\mrm{Child}_T(x)`$ ã¯ä»¥ä¸ã®ããã«å®ç¾©ãã¾ãã
$`\quad \mrm{Child}_T(x) := \{ y\in \mrm{Node}(T) \mid
\exists e\in \mrm{Edge}(T).\, \mrm{src}(e) = x \land \mrm{trg}(e) = y \}
`$
åãã¼ãã®éåã対å¿ãããé¢æ°ã¯ã次ã®ãããªé¢æ°ã«ãªãã¾ãã$`\mrm{Pow}(\hyp)`$ ã¯ããéåã§ãã
$`\quad \mrm{Child}_T : \mrm{Node}(T) \to \mrm{Pow}(\mrm{Node}(T)) \In \mrm{Set}`$
ãã $`\mrm{Child}_T(x) = \emptyset`$ ãªãã°ã$`x`$ ã¯ãªã¼ããã¼ããleaf nodeããã¾ãã¯åã«ãªã¼ããleafãã¨å¼ã³ã¾ãã
ä»»æã®ãã¼ã $`x\in \mrm{Node}(T)`$ ã«å¯¾ããåãã¼ãã®éå $`\mrm{Child}_T(x)`$ ã«å ¨é åºãtotal orderããå ¥ã£ã¦ããæéããªã¼ã¯ãé åºä»ãæéããªã¼ãordered finite treeãã¨å¼ã³ã¾ãã
以ä¸ãæéããªã¼ããæ±ããªãã®ã§ãæéããªã¼ãåã«ããªã¼ãtreeããé åºä»ãæéããªã¼ãåã«é åºä»ãããªã¼ãordered treeãã¨å¼ã³ã¾ãã
ãã¿ãã³ã»ããªã¼ãBatanin treeãã¯é åºä»ãããªã¼ï¼ã¤ã¾ããé åºä»ãæéããªã¼ï¼ã®ãã¨ã§ããå ã«è¿°ã¹ãããã«ãç¹å¥ãªç¨éã§ä½¿ããã¨ãæ³å®ãã¦ãã¿ãã³ã»ããªã¼ã¨å¼ã¶ã ãã§ãããèªä½ã¯ä½ã®å¤å²ããªãâããããããªã¼âã§ãã
ç¿æ £ã¨ãã¦ããã¿ãã³ã»ããªã¼ã¯å¹³é¢å ã«ãã«ã¼ããä¸ç«¯ã§ä¸ã«æã伸ã³ãã¬ã¤ã¢ã¦ãã§æãã¾ãã次ã¯ãXyJaxï¼ãã®ããã°ã®å³å¼æç»ã«ä½¿ã£ã¦ãããã¼ã«ï¼ã§æãããã¿ãã³ã»ããªã¼ã®ä¸ä¾ã§ãï¼ãææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ãããåæ²ï¼ã
$`\quad \xymatrix{
{\bullet} \ar@{-}[dr]
\ar@{.}[rrrrr]
&{}
&{\bullet} \ar@{-}[dl]
&{}
&{\bullet} \ar@{-}[d]
&{2}
\\
{}
\ar@{.}[rrrrr]
&{\bullet} \ar@{-}[drr]
&{}
&{\bullet}\ar@{-}[d]
&{\bullet}\ar@{-}[dl]
&{1}
\\
{}
\ar@{.}[rrrrr]
&{}
&{}
&{\bullet}
&{}
&{0}
}`$
横æ¹åã®ç¹ç·ã¯ããã¼ãã®é«ãã示ãããã®è£å©ç·ã§ãããªã¼ã®ä¸é¨ã§ã¯ããã¾ããã辺ãã¨ãã¸ãã®åãã¯æãã¦ã¾ããããä¸ããä¸ãroot-to-leafãã§ãï¼ç´æã決ãã¦ããã°ãã©ã¡ãã§ããããï¼ã
ãªã¹ãã¨ãªã¹ãå¦ç
éå $`X`$ ã®è¦ç´ ãæåãé ç®ãã¨ãããªã¹ãã®éåã $`\mrm{List}(X)`$ ã¨æ¸ãã¾ããç¥è¨ã¨ãã¦ã¯ãªãã¹ã¿ã¼ãKleene starãã使ãã¾ãã
$`\quad X^* := \mrm{List}(X)`$
空ãªã¹ã㯠$`\varepsilon`$ ã§è¡¨ãã¾ãã
Lispã®ä¼çµ±ã«å¾ãããªã¹ãã®å é ã«æåã追å ããæ¼ç®ãé¢æ° | ååãã $`\mrm{cons}`$ãã³ã³ã¹ãã¨æ¸ãã¾ãã
$`\quad \mrm{cons}_X : X \times\mrm{List}(X) \to \mrm{List}(X) \In \mbf{Set}`$
ãªã¹ãã®æ«å°¾ã«æåã追å ããæ¼ç®ã¯ $`\mrm{snoc}`$ãã¹ããã¯ãã¨æ¸ãã¾ãã
$`\quad \mrm{snoc}_X : \mrm{List}(X)\times X \to \mrm{List}(X) \In \mbf{Set}`$
"cons" 㯠"construct" ããã"snoc" 㯠"cons" ã®ç¶´ããéã«ãããã®ã§ãã
ãªã¹ãã®é£æ¥ï¼ä¸¦ã¹ã¦ã¤ãªãï¼æ¼ç®ã¯ãLispã§ã¯ $`\mrm{append}`$ ã¨å¼ã³ã¾ãã
$`\quad \mrm{append}_X : \mrm{List}(X)\times \mrm{List}(X) \to \mrm{List}(X) \In \mbf{Set}`$
次ã®ä¸ç½®æ¼ç®åè¨å·ã使ããã¨ã«ãã¾ãã
- $`\mrm{cons}`$ãã³ã³ã¹ãã®ä¸ç½®æ¼ç®åè¨å·ã¯ $`\Cons`$
- $`\mrm{snoc}`$ãã¹ããã¯ãã®ä¸ç½®æ¼ç®åè¨å·ã¯ $`\Snoc`$
- $`\mrm{append}`$ãã¢ãã³ããã®ä¸ç½®æ¼ç®åè¨å·ã¯ $`\Apnd`$
$`\quad (\Cons) : X \times\mrm{List}(X) \to \mrm{List}(X) \In \mbf{Set}`$
$`\quad (\Snoc) : \mrm{List}(X)\times X \to \mrm{List}(X) \In \mbf{Set}`$
$`\quad (\Apnd) : \mrm{List}(X)\times \mrm{List}(X) \to \mrm{List}(X) \In \mbf{Set}`$
éå $`X`$ ã«ãããã«åãæ¼ç®åè¨å·ã使ãã®ã§ããªã¼ãã¼ãã¼ããããç·ç§°ãã¸ã§ããªãã¯ããªæ¼ç®åã§ãã
ãªã¹ãã®ç¹å¾´ã¯ãããã帰ç´çãinductiveãã«å®ç¾©ã§ãããã¨ã§ããä¾ãã°ã次ã®ããã«å®ç¾©ã§ãã¾ãã
- 空ãªã¹ã $`\EL = ()`$ ã¯ãªã¹ãã§ããã
- $`l`$ ããªã¹ãã$`x\in X`$ ãªãã$`x\Cons l`$ ã¯ãªã¹ãã§ããã
- 以ä¸ã§å¾ããããã®ã ãããªã¹ãã§ããã
$`\mrm{List}(X)`$ ã帰ç´çã«å®ç¾©ãããã®ã§ã$`\mrm{List}(X)`$ ä¸ã®é¢æ°ãã帰ç´çæ§æã«æ²¿ã£ã¦å®ç¾©ã§ãã¾ãããããã¦å®ç¾©ãããé¢æ°ã¯ãå帰çé¢æ°ãã¨å¼ã¶ãã¨ãå¤ãããã§ãï¼ã帰ç´ãã¨ãå帰ãã®ä½¿ãæ¹ã¯ãå帰çæ§æã®ããã«ï¼ é åºæ°ã®å // å帰ã¨å¸°ç´ãåç §ï¼ã
ãã¿ãã³ã»ããªã¼ã¨ãªã¹ã
ãªã¹ãã¯å¸°ç´çã«å®ç¾©ã§ãã¾ãããããã¿ãã³ã»ããªã¼ï¼ãã ã®ããªã¼ï¼ã帰ç´çå®ç¾©ãæã¡ã¾ãããã¿ãã³ã»ããªã¼ã®å®ç¾©ã®ããã«ããªã¹ãã®å®ç¾©ãä¸ç·ã«ä½¿ãã¾ãã
ããªã¼ã®ãã¼ãã表ãâ象形æåâã¨ã㦠'$`\bullet`$' ã使ãã¾ãã$`\EL`$ ã¯ç©ºãªã¹ã $`()`$ ã§ããã
- 空ãªã¹ã $`\EL = ()`$ ã¯ãã¿ãã³ã»ããªã¼ã®ãªã¹ãã§ããã
- $`L`$ ããã¿ãã³ã»ããªã¼ã®ãªã¹ãã$`B`$ ããã¿ãã³ã»ããªã¼ãªãã$`B\Cons L`$ ã¯ãã¿ãã³ã»ããªã¼ã®ãªã¹ãã§ããã
- 以ä¸ã§å¾ããããã®ã ãããã¿ãã³ã»ããªã¼ã®ãªã¹ãã§ããã
- $`L`$ ããã¿ãã³ã»ããªã¼ã®ãªã¹ããªãã$`\bullet L`$ ã¯ãã¿ãã³ã»ããªã¼ã§ãããç¹ã«ã$`\bullet \EL = \bullet ()`$ ã¯ãã¿ãã³ã»ããªã¼ã§ããã
- 以ä¸ã§å¾ããããã®ã ãããã¿ãã³ã»ããªã¼ã§ããã
è¦ããã«ãæ¢ã«ãã¿ãã³ã»ããªã¼ã®ãªã¹ããããã°ãããã«ã«ã¼ãã表ã '$`\bullet`$' ãåç½®ããã¨ããããã¾ããã¿ãã³ã»ããªã¼ã«ãªããã¨ãããã¨ã§ãããã®ã«ã¼ã«ã«åºã¥ãã¦ãã¿ãã³ã»ããªã¼ã®ä¾ãå¹¾ã¤ãæããã¨ï¼
- $`\bullet()`$
- $`\bullet(\bullet())`$
- $`\bullet( \bullet(), \bullet() )`$
- $`\bullet( \bullet( \bullet(), \bullet() ))`$
- $`\bullet( \bullet( \bullet(), \bullet() ), \bullet() )`$
- $`\bullet( \bullet( \bullet(), \bullet() ), \bullet(), \bullet(\bullet()) )`$
æå¾ã®ä¾ã¯ãå ã«æããå³ï¼åæ²ï¼ã®ãã¿ãã³ã»ããªã¼ã§ãã
$`\quad \xymatrix{
{\bullet} \ar@{-}[dr]
\ar@{.}[rrrrr]
&{}
&{\bullet} \ar@{-}[dl]
&{}
&{\bullet} \ar@{-}[d]
&{2}
\\
{}
\ar@{.}[rrrrr]
&{\bullet} \ar@{-}[drr]
&{}
&{\bullet}\ar@{-}[d]
&{\bullet}\ar@{-}[dl]
&{1}
\\
{}
\ar@{.}[rrrrr]
&{}
&{}
&{\bullet}
&{}
&{0}
}`$
$`\bullet()`$ ãåã« $`\bullet`$ ã¨ç¥è¨ããã¨è¦èªæ§ãåä¸ãã¾ãããã®ç¥è¨ã¯è²ã ãªå ´é¢ã§ãã使ããã¦ãã¾ãã
- $`\bullet`$
- $`\bullet(\bullet)`$
- $`\bullet( \bullet, \bullet )`$
- $`\bullet( \bullet( \bullet, \bullet ))`$
- $`\bullet( \bullet( \bullet, \bullet ), \bullet )`$
- $`\bullet( \bullet( \bullet, \bullet ), \bullet, \bullet(\bullet) )`$
ãã¿ãã³ã»ããªã¼ã®å¸°ç´çå®ç¾©ã«åºã¥ãã¦ããã¿ãã³ã»ããªã¼ã®é«ãï¼ãã¼ãã®é«ãã§ã¯ãªãï¼ï¼ãå®ç¾©ãã¦ã¿ã¾ãããã
- $`\mrm{Height}(\bullet () ) := 0`$
- ãã¿ãã³ã»ããªã¼ã®ãªã¹ãã $`L = (B_1, \cdots ,B_n)`$ ã¨ãã¦ã
$`\mrm{Height}(\bullet L) := 1 + \mrm{max}_{i = 1, \cdots, n}\, \mrm{Height}(B_i)`$
ãã¦ããã¹ã¦ã®ãã¿ãã³ã»ããªã¼ãããªãéåã $`\mrm{BaTree}`$ ã¨ãã¾ãã次ã®ãããªé¢æ°ãå®ç¾©ãã¾ãã
- ãã¿ãã³ã»ããªã¼ã®ãªã¹ã $`L`$ ã«ã«ã¼ããã¼ãã追å ãã¦ããã¿ãã³ã»ããªã¼ $`\bullet L`$ ãä½ãé¢æ° $`\mrm{br}`$
- ãã¿ãã³ã»ããªã¼ $`\bullet L`$ ããã«ã¼ããã¼ããåãé¤ãã¦ã$`L`$ ãä½ãé¢æ° $`\mrm{hedge}`$
'$`\mrm{br}`$' ã¯ããã¿ãã³ã»ããªã¼é¢é£ã§ã¯ãã使ãããååã§ãããåã¯èªæºãç¥ãã¾ãããBatanin ã® b 㨠root ã® r ããªï¼ '$`\mrm{hedge}`$' ã¯ãããªã¼ã®ãªã¹ãã¯çå£ãhedgeãã¨å¼ã¶ããã§ãããããã®é¢æ°ã¯äºãã«éã«ãªãã¾ãã
$`\quad \mrm{br} : \mrm{List}(\mrm{BaTree}) \to \mrm{BaTree} \In \mbf{Set}`$
$`\quad \mrm{hedge} : \mrm{BaTree} \to \mrm{List}(\mrm{BaTree}) \In \mbf{Set}`$
$`\quad \mrm{br} ; \mrm{hedge} = \id_{\mrm{List}(\mrm{BaTree})}`$
$`\quad \mrm{hedge}; \mrm{br} = \id_{\mrm{BaTree}}`$
ãã¿ãã³ã»ããªã¼ã®ç¨é
ä½åº¦ãè¨ã£ã¦ããããã«ããã¿ãã³ã»ããªã¼ããèªä½ã¯åãªãé åºä»ãæéããªã¼ã§ããç¹å®ã®ç¨éã§ä½¿ãããã¨ãã«ããã¿ãã³ã»ããªã¼ãã¨å¼ã¶ããã§ãããã®ç¨éã¨ã¯ããã¼ã¹ãã£ã³ã°å³ã®è¡¨ç¾ã§ãã
ãã¼ã¹ãã£ã³ã°å³ãpasting diagramãã¨ã¯ã1-åã®ãããï¼ã¢ãã¼å³ã®é«æ¬¡åã¸ã®ä¸è¬åã§ããé«æ¬¡åã®é«æ¬¡å°éã®çµã¿åããæ¹ããå³ã¨ãã¦è¡¨ãããã®ããã¼ã¹ãã£ã³ã°å³ã§ãããã¼ã¹ãã£ã³ã°å³ã¯ãå®éã«æãã¦ä½¿ã£ã¦ãããã®ã§ãããå³å¯ã«å®ç¾©ãããã¨ããã¨é常ã«é£ããã
ä¸è¬çãªãã¼ã¹ãã£ã³ã°å³ãå³å¯ã«å®ç¾©ããã®ã¯é£ããã®ã§ããããã®ãªãã§ãåç´ã§åãæ±ãããããã®ã ãã«éå®ããã¨ãã©ãã«ä»ãã®é åºä»ãæéããªã¼ã§è¡¨ç¾å¯è½ãã¨ã³ã³ã¼ãå¯è½ããªãã¨ãåãã£ã¦ãã¾ãããã¿ãã³ã»ããªã¼ã®ç¨éã¯ãåç´ãªãã¼ã¹ãã£ã³ã°å³ã®è¡¨ç¾ãã³ã¼ããã§ãã
ãã¿ãã³ã»ããªã¼ã¸ã®ã©ããªã³ã°ã¯ç¹æ®ã§ããé常ã®ã©ããªã³ã°ã¯ãããªã¼ã®ãã¼ãã辺ãã¨ãã¸ãã«ã©ãã«ãå²ãå½ã¦ãã®ã§ããããã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°ã§ã¯ãããªã¼ãå¹³é¢ã«æããã¨ãã«ã§ãããã¤å½¢ï¼æå½¢ï¼é åãã¨ãªã¢ | ã»ã¯ã¿ã¼ãã«ã©ãã«ãå²ãå½ã¦ã¾ãããã®ãã¨ã«ã¤ãã¦ã¯ã次ã®éå»è¨äºãåç §ãã¦ãã ããã
åé ã«æãããã£ã¼ã³éã®è«æã§ã¯ãç¬ç¹ãªã©ããªã³ã°ããã¾ãè¨è¿°ããããã«ããã¿ãã³ã»ããªã¼ã«å¯¾ãã¦ãããã²ã¨ã¤ã®å¸°ç´çå®ç¾©ãä¸ãã¦ãã¾ããããã次ç¯ã§è¿°ã¹ã¾ãã
ãã¿ãã³ã»ããªã¼ã®ãããã²ã¨ã¤ã®å¸°ç´çå®ç¾©
ãã£ã¼ã³éã¯ããã¿ãã³ã»ããªã¼ã®éåã«æ°ããäºé æ¼ç®ãå°å ¥ãã¾ããããªã¹ãã®ã³ã³ã¹ãconsãæ¼ç®ã¨ä¼¼ã¦ã¾ãããå¼æ°ã被æ¼ç®åãã¯2ã¤ã¨ããã¿ãã³ã»ããªã¼ã§ããããã§ã¯ããã®äºé æ¼ç®ããã¿ãã³ã»ã³ã³ã¹ãBatanin consãã¨å¼ã³æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{baCons}: \mrm{BaTree}\times \mrm{BaTree} \to \mrm{BaTree} \In \mbf{Set}`$
ãã¿ãã³ã»ã³ã³ã¹ $`\mrm{baCons}`$ ã®ä¸ç½®æ¼ç®åè¨å·ã $`\BCons`$ ã¨ãã¾ãããã¿ãã³ã»ã³ã³ã¹ã®å®ç¾©ã¯ï¼
- $`B \BCons \bullet() := \bullet( B )`$
- ãã¿ãã³ã»ããªã¼ã®ãªã¹ãã $`L = (B_1, \cdots ,B_n)`$ ã¨ãã¦ã
$`B \BCons \bullet L := \bullet (B \Cons L) = \bullet (B, B_1, \cdots, B_n)`$
ãã¿ãã³ã»ã³ã³ã¹ã®é°å²æ°çãªçµµãæãã¨æ¬¡ã®ããã§ãã
ãã¿ãã³ã»ã³ã³ã¹ã®ç¬¬ä¸å¼æ°ã®ããªã¼ã¯ã第äºå¼æ°ã®ããªã¼ã®â左端âã«ç¹ããã¾ãããã®ã¨ããæ°ãã辺ãä¸æ¬å¢ãã¾ãã
ãã¿ãã³ã»ã³ã³ã¹ã使ã£ã¦ããã¿ãã³ã»ããªã¼ã®å¸°ç´çå®ç¾©ãã§ãã¾ãã
- ã«ã¼ãã ãã®ããªã¼ $`\bullet ()`$ ã¯ãã¿ãã³ã»ããªã¼ã§ããã
- $`B, B'`$ ããã¿ãã³ã»ããªã¼ã®ã¨ãã$`B\BCons B'`$ ããã¿ãã³ã»ããªã¼ã§ããã
- 以ä¸ã§å¾ããããã®ã ãããã¿ãã³ã»ããªã¼ã§ããã
ãã®å¸°ç´çå®ç¾©ããæåã®å®ç¾©ã¨åãéåãçæãããã¨ã¯è¨¼æãè¦ãã¾ãããæ§ææ³ãä¸å¯§ã«è¦ãã°ãåãéåãçæãã¦ãããã¨ãåããã§ãããã
æ°ãã帰ç´çå®ç¾©ã«åºã¥ãã¦ããã¿ãã³ã»ããªã¼ã®é«ããå®ç¾©ãã¦ã¿ã¾ãã
- $`\mrm{Height}(\bullet () ) := 0`$
- $`\mrm{Height}(B\BCons B') := \mrm{max}( \mrm{Height}(B) + 1, \mrm{Height}( B'))`$
ãã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³éå
ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°ã¯ããã¤å½¢é åã«å¯¾ãã¦ã©ãã«ãå²ãå½ã¦ãã®ã§ããï¼ãææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ // ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°ãåç §ï¼ãã©ãã«ãå²ãå½ã¦ãå ´æï¼ãã¤å½¢é åï¼ããã¸ã·ã§ã³ãpositionãã¨ãå¼ã³ã¾ãããã¿ãã³ã»ããªã¼ $`B`$ ã®ãã¸ã·ã§ã³ã®éåã $`\mrm{Pos}(B)`$ ã¨ãã¾ãã
å¤ãéå $`X`$ ã«åãã©ããªã³ã° $`l`$ ã¯ã次ã®ãããªååã§ãã
$`\quad l : \mrm{Pos}(B) \to X \In \mbf{Set}`$
ãã¿ãã³ã»ããªã¼ $`B`$ ã«å¯¾ãã $`\mrm{Pos}(B)`$ ãã¡ããã¨å®ç¾©ããã¦ãªãã¨ãã©ããªã³ã°ã®æ¦å¿µãããããªãã¾ããã$`\mrm{Pos}(B)`$ ãã¡ããã¨å®ç¾©ãã¾ãããã
ããããã®ã¢ã¤ãã£ã¢ã¯ãåç¯ã®å¸°ç´çå®ç¾©ã«æ²¿ã£ã¦ã$`\mrm{Pos}(B)`$ ã次ã®ããã«ãªãããã«å®ç¾©ãã¾ãã
- $`\mrm{Pos}(\bullet ()) \cong \mbf{1}`$ ï¼$`\mbf{1}`$ ã¯ç¹å®ãããåå éåï¼
- $`\mrm{Pos}(B \BCons B') \cong \mbf{1} + \mrm{Pos}(B) + \mrm{Pos}(B')`$ ï¼$`+`$ ã¯éåã®ç´åï¼
ä¸è¨ã®å®ç¾©ãããå ·ä½çã«ããããã«ã$`\mrm{Pos}(\bullet ())`$ ã®è¦ç´ ã«ã¢ãã¬ã¹ãæ¯ãã¾ããã¢ãã¬ã¹ã¯äºé²æ°ï¼èªç¶æ°ã®äºé²è¡¨ç¤ºï¼ã§ååã§ãããããå°ãæ±ããããã¢ãã¬ã¹å½¢å¼ãèãã¾ãã次ç¯ã§è¿°ã¹ã¾ãã
ãã¿ãã³ã»ã¢ãã¬ã¹
ãã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³ã«å²ãå½ã¦ãã¢ãã¬ã¹ããã¿ãã³ã»ã¢ãã¬ã¹ãBatanin addressãã¨å¼ã¶ãã¨ã«ãã¾ãããã¿ãã³ã»ã¢ãã¬ã¹ã¯ã3ã¤ã®æå 'iâ, 'u', 'r' ããä½ãããæååã§ããä¾ãã°ã"iurru" ã¯ãã¿ãã³ã»ã¢ãã¬ã¹ã§ããå®éã«ã¯ã2æå 'u', 'r' ã§ååã§ãããè¦èªæ§ãåããããããã 'i' ãå ¥ãã¦ã¾ããããããã®æåã®ç±æ¥ã¯æ¬¡ã®ããã§ãã
- 'i' 㯠initial ã®æå³
- 'u' 㯠up ã®æå³
- 'r' 㯠right ã®æå³
æååã¨ãã¦ã®ãã¿ãã³ã»ã¢ãã¬ã¹ã®æåã®æåã¯å¿ ã 'i' ã§ãããã®å¾ã«ã¯ãä»»æåï¼0åã§ãããï¼ã® 'u' ã¾ã㯠'r' ã並ã³ã¾ãã
ãã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³ï¼ãã¤å½¢é åï¼ã¸ã®ãã¿ãã³ã»ã¢ãã¬ã¹ã®å²ãå½ã¦æ¹ã¯ã帰ç´çå®ç¾©ã«åºã¥ãã¦å®ç¾©ãã¾ãã
- ã«ã¼ãã ãã®ããªã¼ã«å¯¾ãã $`\mrm{Pos} (\bullet ())`$ ã¯åå éåãªã®ã§ããã®å¯ä¸ã®ãã¸ã·ã§ã³ã«ã¢ãã¬ã¹ $`\T{i}`$ ãå²ãå½ã¦ãã
- $`B, B'`$ ããã¿ãã³ã»ããªã¼ã®ã¨ãã$`B\BCons B'`$ ã§è¿½å ãããæ°è¦è¾ºã®å·¦ã®é åã«ã¢ãã¬ã¹ $`\T{i}`$ ãå²ãå½ã¦ãã$`B`$ ã®ãã¸ã·ã§ã³ã®åã¢ãã¬ã¹ã«æå $`\T{u}`$ ãå·¦ã«è¿½å ãããã¹ããã¯ãããã¢ãã¬ã¹ãæ°ããã¢ãã¬ã¹ã«ããã$`B`$ ã®ãã¸ã·ã§ã³ã®åã¢ãã¬ã¹ã«æå $`\T{r}`$ ãå·¦ã«è¿½å ãããã¹ããã¯ãããã¢ãã¬ã¹ãæ°ããã¢ãã¬ã¹ã«ããã
次ã¯ããã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³ã«ã¢ãã¬ã¹ãå²ãæ¯ã£ãä¾ã§ãã
$`\quad \xymatrix{
{\T{iuu}\,\bullet} \ar@{-}[dr]_{\T{iu}}^{\T{iru}}
\ar@{.}[rrrrr]
&{}
&{\T{iruu} \, \bullet} \ar@{-}[dl]^{\T{irru} }
&{}
&{\T{iurru} \, \bullet} \ar@{-}[d]_{\T{iurr}}^{\T{iurrr}}
&{2}
\\
{}
\ar@{.}[rrrrr]
&{\bullet} \ar@{-}[drr]_{\T{i}}^{\T{ir}}
&{}
&{\T{irru}\, \bullet }\ar@{-}[d]^{\T{irr}}
&{\bullet}\ar@{-}[dl]^{\T{irrr}}
&{1}
\\
{}
\ar@{.}[rrrrr]
&{}
&{}
&{\bullet}
&{}
&{0}
}`$
æåã®æå $`\T{i}`$ ã¯åãé¤ãã¦ãå½±é¿ã¯ããã¾ãããé·ã 1 ã®æåå $`\T{i}`$ ã®ä»£ããã«ç©ºåï¼é·ã 0 ã®æååï¼$`\EL`$ ã使ãã¾ãã
ãã¿ãã³ã»ããªã¼ $`B`$ ã«ããããã¿ãã³ã»ã¢ãã¬ã¹ã®å²ãå½ã¦é¢æ°ã $`\mrm{baAddr}`$ ã¨ããã¨ã次ã®ãããªé¢æ°ã§ãã
$`\quad \mrm{BaAddr}_B : \mrm{BaTree} \to \{\T{u}, \T{r}\}^* \cup \{\EL \}`$
ã©ããªãã¿ãã³ã»ããªã¼ $`B`$ ã«å¯¾ãã¦ãã$`\mrm{baAddr}_B`$ ã¯åå°ã«ãªãã¾ãããããã£ã¦ã次ã®ãããªéåã®ååãããã¾ãã
$`\quad \mrm{Pos}(B) \cong \mrm{Img}(\mrm{baAddr}_B)`$
ãã°ãã°ã$`\mrm{Pos}(B)`$ 㨠$`\mrm{Img}(\mrm{baAddr}_B)`$ ã¯åä¸è¦ããã¾ããä¾ãã°ã$`\mrm{Pos}(B)`$ ä¸ã®é¢æ°ãå®ç¾©ãã代ããã«ã$`\mrm{Img}(\mrm{baAddr}_B)`$ ä¸ã®é¢æ°ãå®ç¾©ãã¦æ¸ã¾ãã¾ãã
ä¸ä¾ã¨ãã¦ããã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³ã«å¯¾ãã次å é¢æ° $`\mrm{dim}`$ ãããã¿ãã³ã»ã¢ãã¬ã¹ã«å¯¾ããé¢æ°ã¨ãã¦å®ç¾©ãã¦ã¿ã¾ãã
- $`\mrm{dim}(\EL) = 0`$
- $`\mrm{dim}(\xi \Snoc \T{u}) = \mrm{dim}(\xi) + 1`$
- $`\mrm{dim}(\xi \Snoc \T{r}) = \mrm{dim}(\xi)`$
ã¢ãã¬ã¹ã«å¯¾ãã¦å®ç¾©ããã $`\mrm{dim}`$ ãã$`\mrm{Pos}(B)`$ ä¸ã®é¢æ°ã¨ã解éãã¾ãã
ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°ã¯ããã¿ãã³ã»ã¢ãã¬ã¹å ¨ä½ã®é¨åéåã§å®ç¾©ãããé¢æ°ã¨ã¿ãªãã¾ãã
ãããã«
ãã¿ãã³ã»ããªã¼ã«å¯¾ãã2種é¡ã®å¸°ç´çå®ç¾©ã¨ããã¿ãã³ã»ããªã¼ã®ãã¸ã·ã§ã³ã®å®ç¾©ãç´å¾ããã°ããã¸ã·ã§ã³ã®éåãçä½éåãglobular setãã«ãªããã¨ããã©ããªã³ã°ãçä½éåã®ããã ã®å°ã¨ã¿ãªãããã¨ãããã¦ãã¿ãã³ã»ããªã¼ã¨ãã¼ã¹ãã£ã³ã°å³ã®é¢ä¿ãªã©ãç解ã§ããã§ãããã