æè¿ã®2åããã¿ãã³ã»ããªã¼ã®è¨äºãæ¸ãã¾ããã
ããã¯ãä»å¹´ã®5æé ã®è©±é¡ã®è¸ãè¿ãã§ãã
- ææ¨ã®çµç¹åã¨è¡¨ç¾æ¹æ³ã¨å¼ã³åã¯è²ã ã
- ææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼
- çä½éåéã®åã®æ§æ表示 1/2
- çä½éåéã®åã®æ§æ表示 2/2
ãã¿ãã³ã»ããªã¼ã«é¢é£ãã¦ããåºã¦ãããã¼ã¯ã¼ããå¹¾ã¤ãé¸ãã§ã¿ã¾ãã
- çä½éå
- ãã¼ã¹ãã£ã³ã°å³
- ãã¼ã¹ãã£ã³ã°ã¹ãã¼ã
- é«æ¬¡åï¼ç¡éå
- ææ¨
- ã³ã³ãã¥ã¼ã¿ãã
ãã®è¨äºã§ã¯ããããã®ãã¼ã¯ã¼ãã®ãªãã§ç¹ã«çä½éåã«ã¤ãã¦ã¶ãã¨ç´¹ä»ãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\mfk}[1]{\mathfrak{#1}}
%\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\In}{ \text{ in } }
%\newcommand{\On}{ \text{ on } }
%\newcommand{\id}{\mathrm{id} }
\newcommand{\op}{\mathrm{op} }
%\newcommand{\Iff}{\Leftrightarrow }
\newcommand{\twoto}{\Rightarrow }
\newcommand{\T}[1]{\text{#1} }
%\newcommand{\EL}{\varepsilon} % Empty List
%\newcommand{\Cons}{\mathop{\blacktriangleright} }
%\newcommand{\Snoc}{\mathop{\blacktriangleleft} }
%\newcommand{\Apnd}{\mathop{\#} }
%\newcommand{\BCons}{\mathop{\|\!\blacktriangleright} }
\newcommand{\dimU}[2]{ {{#1}\!\updownarrow^{#2}} }
\newcommand{\NFSum}[3]{ \mathop{^{#1} \!\overset{#2}{+}\,\!^{#3} } }
`$
å 容ï¼
- çä½éå
- çµã¿åããå¹¾ä½
- å ±å¤ãåå¤ãï¼æ··ä¹±ã®åå ï¼
- ç±³ç°åãè¾¼ã¿ã¨ãã¬ãã¯ã¹
- ãããã«
çä½éå
çä½éåã¯ããææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéå // å½¢ç¶ä»ãéåãã§è¿°ã¹ãå½¢ç¶ä»ãéåãshaped setãã®ä¸ç¨®ã§ããå½¢ç¶ä»ãéåã¨ã¯ãå½¢ç¶ã¹ãã¼ããshape schemaãã¨ããï¼å½¹å²ãåã®ï¼åããéååã¸ã®é¢æã§ãã
ä¸è¬è«ã®èª¬æã«ã¯ããåè«ã§ä½¿ããå³å¼ãã¨ãå½¢ç¶ã// è¨æ³ã®ä¸æ¡ãã§è¿°ã¹ãè¨æ³ã使ããã¨ã«ãã¾ãã$`\mfk{s}`$ ãå½¢ç¶ã¹ãã¼ãï¼ã¨ããå½¹å²ããæã¤ï¼åã¨ãã¦ãå ±å¤é¢æ $`X:\mfk{s} \to \mbf{Set}`$ ã次ã®ããã«å¼ã³ã¾ãï¼ãã¹ã¦å義èªï¼ã
- $`\mfk{s}`$-å½¢ç¶ä»ãéåã$`\mfk{s}`$-shaped setã
- $`\mfk{s}`$-å½¢ç¶ã®éå
- $`\mfk{s}`$-å½¢éå
- $`\mfk{s}`$-éåã$`\mfk{s}`$-setã
$`\mfk{s}`$-éåã®åãcategory of $`\mfk{s}`$-sets ãã¨ã¯ãé¢æåãä½å層ã®åã$`[\mfk{s}, \mbf{Set}]`$ ã§ããé¢æåãä½å層ã®åããã次ã®ããã«ãæ¸ãã¾ãã
$`\quad \mfk{s}\T{-}\mbf{Set} := [\mfk{s}, \mbf{Set}] = \mbf{Set}^{\mfk{s}} = \mbf{CAT}(\mfk{s}, \mbf{Set})`$
ããã¯ãã¹ãã´ã¡ãã¯éã使ç¨ãã¦ãããã¤ãã³è¨æ³ã§ãï¼ãææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéå // å½¢ç¶ä»ãéåãåç §ï¼ããã¤ãã³è¨æ³ã§è¡¨ãããåã®å¯¾è±¡ã¯å ±å¤é¢æã§ãããã¨ã«æ³¨æãã¦ãã ããã
å ·ä½çãªå $`\mbf{G}`$ ã以ä¸ã®ããã«å®ç¾©ãã¾ãã
- $`|\mbf{G}| = \mbf{N}`$
- $`i \in \mbf{N}`$ ãã¨ã«ãçæå° $`s_i, t_i : i + 1 \to i`$
- $`s_i, t_i`$ éã§çæãããèªç±åã«æ¬¡ã®é¢ä¿ãå
¥ããã
- $`s_{i + 1}; s_i = t_{n+1}; s_i`$
- $`s_{i + 1}; t_i = t_{n+1}; t_i`$
å $`\mbf{G}`$ ãéè¡çä½åãinverse globe categoryãã¨å¼ã³ã¾ããéè¡çä½åã¯ãå¾ã§åºã¦ããé è¡çä½åãdirect globe categoryãã®å対åã§ããéè¡çä½åãé è¡çä½åãã©ã¡ããçä½åã¨å¼ã¶ã®ãæ®éã§ãæ··ä¹±ã®åå ã«ãªã£ã¦ãã¾ãï¼æ¬¡ã ç¯ã§èª¬æï¼ã
éè¡çä½åã®å®ç¾©ã«åºã¦ããé¢ä¿ã¯ã次ã®ããã«å¼ã°ãã¾ãã
- çä½{é¢ä¿{å¼}? | æçå¼ | æ¹ç¨å¼ | æ³å}ãglobular {relation | equation | law}ã
çä½éåã®åãcategory of globular setsãã¨ã¯ã$`\mbf{G}`$-å½¢ç¶ä»ãéåã®å $`\mbf{G}\T{-}\mbf{Set}`$ ã®ãã¨ã§ããå¥ãªæ¸ãæ¹ãããã¨ï¼
$`\quad \mbf{G}\T{-}\mbf{Set} = [\mbf{G}, \mbf{Set}] = \mbf{Set}^{\mbf{G}} = \mbf{CAT}(\mbf{G}, \mbf{Set})`$
çä½éåã®åã¯ãéååã¸ã®å ±å¤é¢æãå ±å¤å³å¼ãã®åã§ããå ±å¤é¢æã®åã¯ä½å層ã®åã¨ãããã¾ããå ã«âçä½éåã®åâãå®ç¾©ããã®ã§ãå $`\mbf{G}\T{-}\mbf{Set}`$ ã®å¯¾è±¡ãçä½éåãglobular setãã ãã¨ãããã¨ã«ãªãã¾ãã
çä½éå $`X: \mbf{G}\to \mbf{Set}`$ ã«é¢ãã¦ã次ã®ç¨èªã使ãã¾ãã
- éå $`X_n = X(n)`$ ã®è¦ç´ ã$`n`$次å ã®çä½ã»ã«ãglobular cell of dimension nã
- åå $`X(s_n) : X_{n+1} \to X_n`$ ãã½ã¼ã¹ååãsource mapã
- åå $`X(t_n) : X_{n+1} \to X_n`$ ãã¿ã¼ã²ããååãtarget mapã
- ã½ã¼ã¹ååã¨ã¿ã¼ã²ããååãç·ç§°ãã¦é¢ååãface mapã
$`n`$次å ã®çä½ã»ã«ã¯ãçã$`n`$-ã»ã«ã$`n`$-cell ãã¨ãå¼ã³ã¾ãã
ã½ã¼ã¹ååã¨ã¿ã¼ã²ããåå $`X(s_n), X(t_n)`$ ãããã°ãã°åã« $`s_n, t_n`$ ã¨ãæ¸ãã®ã§æ³¨æãã¦ãã ããã
ç¥è¨ãè¨å·ã®ä¹±ç¨ã§åºå¥ãã«ããããç¥ãã¾ãããã以ä¸ã®ã¢ãã¯å¥ç©ã§ãã
- éè¡çä½åã®å¯¾è±¡ $`n\in |\mbf{G}|`$
- å ±å¤é¢æ $`X`$ ã®å¤ã§ããéå $`X_n = X(n) \in |\mbf{Set}|`$
- $`n`$-ã»ã« $`c \in X_n`$
以ä¸ã®ã¢ããå¥ç©ã§ãã
- éè¡çä½åã®å° $`s_n, t_n`$
- å ±å¤é¢æ $`X`$ ã®å¤ã§ããåå $`X(s_n), X(t_n)`$
çä½é¢ä¿å¼ã¯ãéè¡çä½åã®å®ç¾©ã®ä¸é¨ã§ãããå ±å¤é¢æ $`X`$ ã«é¢ãã¦ã¯ãé¢æã§ãããã¨ããéååã§ä»¥ä¸ã®çå¼ãæç«ãã¾ãã
- $`X(s_{i + 1}); X(s_i) = X(t_{n+1}); X(s_i) \In \mbf{Set}`$
- $`X(s_{i + 1}); X(t_i) = X(t_{n+1}); X(t_i) \In \mbf{Set}`$
ãããéååã®çå¼ãçä½é¢ä¿å¼ã¨å¼ã³ã¾ãããéè¡çä½å $`\mbf{G}`$ ã«ãããçå¼ã¨ãéåå $`\mbf{Set}`$ ã«ãããçå¼ã¯å¥ãªçå¼ã§ãã
$`i \ge 2`$ ã«å¯¾ã㦠$`X_i = \emptyset`$ ã§ããçä½éå $`X`$ ã¯ã次ã®æ§æç´ ã ãã§æ±ºã¾ãã¾ãã
- $`X_0 \in |\mbf{Set}|`$
- $`X_1 \in |\mbf{Set}|`$
- $`X(s_0) : X_1 \to X_0 \In \mbf{Set}`$
- $`X(t_0) : X_1 \to X_0 \In \mbf{Set}`$
ãã® $`X`$ ã¯æåã°ã©ãã§ããéã«è¨ãã¨ãçä½éåã¯ãæåã°ã©ãã®å¤æ¬¡å ã¸ã®ä¸è¬åã§ãã
次ã®å³ã¯ãããããã¢ãã¼ãããã«ã¢ãã¼ã§æããçä½éå $`X`$ ã®ä¸ä¾ã§ãã
$`\quad \xymatrix@C+1pc{
A
\ar@/^1.2pc/[r]^{f}_{\alpha\,\Downarrow}
\ar[r]|{f'}
\ar@/_1.2pc/[r]^{\beta\, \Uparrow}_{f''}
&B
&C
\ar[l]^{g}
&D
\ar@(ul, ur)[0,0]^h
}`$
$`A, B, C, D`$ ã¯0-ã»ã«ã$`f, f', f'', g, h`$ ã¯1-ã»ã«ã$`\alpha, \beta`$ ã¯2-ã»ã«ã§ããçä½éåãåãé«æ¬¡åãã®æ§é ãæã¦ã°ããã»ã«ãããã¯ããããå°ãã¨å¼ã¶ãã¨ã«ãªãã§ãããã
$`\quad X_0 =\{A, B, C, D\}`$
$`\quad X_1 =\{f, f', f'', g, h\}`$
$`\quad X_2 =\{\alpha, \beta \}`$
é¢ååï¼ã½ã¼ã¹ååã¨ã¿ã¼ã²ããååï¼ã¯ä»¥ä¸ã®ããã§ããè¨å·ã®ä¹±ç¨ã§ãé¢ååã $`s_i, t_i\:(i = 0, 1)`$ ã¨æ¸ãã¾ãã
$`\quad s_0 = \{f \mapsto A, f' \mapsto A, f'' \mapsto A, g\mapsto C, h\mapsto D\}`$
$`\quad t_0 = \{f \mapsto B, f' \mapsto B, f'' \mapsto B, g\mapsto B, h\mapsto D\}`$
$`\quad s_1 = \{\alpha \mapsto f, \beta \mapsto f''\}`$
$`\quad t_1 = \{\alpha \mapsto f', \beta \mapsto f'\}`$
å³ãæããã«çä½éåã表ãã«ã¯ææ¨ãsignatureãã®æ§æã便å©ã§ããææ¨ã®ååã¯ãçä½éåã®ååã¨åãã«ãã¦ãã¾ãã
$`\T{signature } X \: \{\\
\quad \T{0-cell }A, B, C, D\\
\quad \T{1-cell }f, f', f'' : A\to B\\
\quad \T{1-cell }g : C\to B\\
\quad \T{1-cell }h : D\to D\\
\quad \T{2-cell } \alpha :: f \twoto f'\\
\quad \T{2-cell } \beta :: f'' \twoto f'\\
\}
`$
çµã¿åããå¹¾ä½
çä½éåã«é¢ãã¦ããçä½ããçé¢ããåæ¿ããå¢çãã®ãããªå¹¾ä½çç¨èªã使ããã¾ããããã¯ãæã ãçä½éåã«å¯¾ãã¦ä½ãããã®å³å½¢çãªã¤ã¡ã¼ã¸ãæã¤ããã§ããããå®éåç¯ã®ããã«ãçä½éåãçµµã§æãã¾ããã
çä½éåãâã»ãã¨ã®å³å½¢âã ã¨ã¿ãªããã¨ãã§ãã¾ããâã»ãã¨ã®å³å½¢âã¨ã¯ä½ç¸ç©ºéã®ãã¨ã§ããçä½éåã®å $`\mbf{G}\T{-}\mbf{Set}`$ ããä½ç¸ç©ºéï¼ã¨é£ç¶ååï¼ã®å $`\mbf{Top}`$ ã¸ã®é¢æãä½ãã¾ãã
$`\quad \mrm{Geom} : \mbf{G}\T{-}\mbf{Set} \to \mbf{Top}\In \mbf{CAT}`$
é¢æ $`\mrm{Geom}`$ ã¯å¹¾ä½{ç}?å®ç¾ãgeometric realizationãã¨å¼ã°ããæã ãç´æçã«ãã ãã¦ããâã»ãã¨ã®å³å½¢âãæ§æãã¾ããçä½éå $`X`$ ã®å¹¾ä½å®ç¾ $`\mrm{Geom}(X) \in |\mbf{Top}|`$ ã¯ãã¨ããç¹éåãå°ãcarrier | underlying setãã¨ããä½ç¸ç©ºéã§ãã
ã¨ããããã§ãçä½éåã¯ä½ç¸ç©ºéã¨ãã¦ã®å´é¢ã確ãã«æã¤ã®ã§ãããé常ã¯ãå°ã¨ãªãç¹éåã¯èãã¾ãããn次å ã®çä½ã»ã«ã¯ãåã«éå $`X_n`$ ã®è¦ç´ ã¨ãã¦åãæ±ãã¾ãããã®è¦ç´ ãç¹éåãæã¤ã¨ã¯èãã¾ãããn-ã»ã«ãåãªãã¢ãããã¯ãªè¦ç´ ã ã¨ã¿ãªãã¦ãç¹éåãä½ç¸ç©ºéãæ¨ã¦å»ã£ãâå¹¾ä½å¦âãçµã¿åããå¹¾ä½ãcombinatorial geometryãã¨å¼ã¶ãã¨ã«ãã¾ãã
çµã¿åããå¹¾ä½ã§ã¯ä½ç¸çæ¹æ³*1ã¯ä½¿ãã¾ãããçµã¿åããçã»ä»£æ°çãªæ¹æ³ã使ãã¾ããã°ã©ãçè«ã¯ãï¼æ¬¡å ã¾ã§ã®çµã¿åããå³å½¢ãæ±ãçµã¿åããå¹¾ä½ã ã¨è¨ãã¾ããçä½éåã®çè«ã¯ãæåã°ã©ãã®é«æ¬¡å ã¸ã®ä¸è¬åã§ããçµã¿åããå³å½¢ãæ±ãçµã¿åããå¹¾ä½ã§ãã
çµã¿åããå¹¾ä½ã§ã¯ã建åã¨ãã¦å¹¾ä½å®ç¾ã¯ä½¿ããªãã®ã§ãããæ°æã¡ã®ä¸ã§ã¯å¹¾ä½å®ç¾ã®ã¤ã¡ã¼ã¸ãæã£ã¦ãã¾ããçµµãæãã¦èª¬æãããèããããã¦ããã®ããã®è¨¼æ ã§ããã¤ã³ãã©ã¼ãã«ã«ã¯å¹¾ä½å®ç¾ã«é ¼ã£ã¦ããã¨è¨ãã¾ãã
ãããããåè«çã«ã¯åãªãé¢æãçä½éåã¨å¼ãã§ããæç¹ã§ããçä½ãã®ãããªå¹¾ä½çã¤ã¡ã¼ã¸ãã¤ã³ãã©ã¼ãã«ã«ã¯åæãã¦ããã®ã§ãï¼æ¬é³ã¨å»ºåã®éãï¼ãå½¢ç¶ä»ãéåã«ã¯ãçä½éå以å¤ã«âåä½éåâãâæ¹ä½éåâãâæ¼ç®ä½éåãopetopic setãâãªã©ãããã¾ãããããã®å½¢ç¶ä»ãéåã®å½¢ç¶ã¹ãã¼ãã¯ãããããåä½åãsimplex categoryããæ¹ä½åãcube categoryããæ¼ç®ä½åãopetope categoryãã§ãã
nLabã®ç¨èªæ³ã«å¾ãã°ãå½¢ç¶ã¹ãã¼ãã¯âé«æ¬¡æ§é ã®å¹¾ä½å½¢ç¶éã®åâã§ããç¾æç¹ã§ã¯ãç¨èªæ³ãæ´çããã¦ãªããã¨ã¯ã次ã®nLabã¨ã³ããªã¼ã®ã¿ã¤ãã«ã®ãã©ãããããå¯ããããã§ãããã
å½¢ç¶ä»ãéåï¼å®ä½ã¯åãªãé¢æï¼ãå ±å¤ã¨ãããåå¤ã¨ãããã®æ£æçé¸æãç¨èªæ³ã»è¨æ³ãæ··ä¹±ããã¦ãã¾ãï¼æ¬¡ç¯ã§èª¬æï¼ã
å ±å¤ãåå¤ãï¼æ··ä¹±ã®åå ï¼
å½¢ç¶ä»ãéåã¯ãåè«ã®ä¸è¬è«ã§è¨ãã°åãªãé¢æã«éãã¾ããã
ä¸è¬è« | æé»ã«å³å½¢çã¤ã¡ã¼ã¸ |
---|---|
é¢æ | å½¢ç¶ä»ãéå |
é¢æã®åå | å½¢ç¶ã¹ãã¼ã |
é¢æã®ä½åå | éååã«åºå® |
é¢æã«ã¯å ±å¤é¢æã¨åå¤é¢æãããã¾ããå½¢ç¶ä»ãéåãå ±å¤é¢æã¨ãããï¼ ããã¨ãåå¤é¢æã¨ãããï¼ å¥ã«ã©ã£ã¡ã§ããã¾ãã¾ãããã©ã£ã¡ã§ããã¾ããªãã®ã§ã人ã«ããé¸æããã©ãã©ï¼æ£æçãå¶çºçï¼ã§ããã©ã£ã¡ãå¤æ°æ´¾ãã¨è¨ãã°ãããããåå¤é¢æãå¤æ°æ´¾ã§ãã
ãã®è¨äºã®ä»ã¾ã§ã®è©±ã§ã¯ãçä½éå $`X:\mbf{G}\to \mbf{Set}`$ ã¯å ±å¤é¢æãå ±å¤å³å¼ãã§ãããããããå ãåå¤é¢æã®å ´åãèãã¾ãã
å $`\mbf{G}`$ ã®å対åã $`\mbf{g}`$ ã¨ãã¾ãã次ã®é¢ä¿ãããã¾ãã
- $`\mbf{g} = \mbf{G}^\op`$
- $`\mbf{G} = \mbf{g}^\op`$
- $`|\mbf{G}| = |\mbf{g}|`$
- $`\mrm{Mor}(\mbf{G}) = \mrm{Mor}(\mbf{g})`$
å°ã®åã以å¤ã¯ $`\mbf{G}`$ 㨠$`\mbf{g}`$ ã¯åãã§ããã§ãããããã¾ã¼ãåºå¥ããªãã¦ãããã ãããã¨ãªãã®ã§ããããããæ··ä¹±ã®åå ã§ããããããããã¾ãã
次ã¯äºå®ã§ãã
- $`\mbf{G}`$ 㨠$`\mbf{g}`$ ã¯åãåã§ã¯ãªããéãã¢ãã¨ãã¦åºå¥ããå¿ è¦ãããã
- éåã¨ãã¦ã¯ $`\mrm{Mor}(\mbf{G}) = \mrm{Mor}(\mbf{g})`$ ã ããå°ã®åãï¼åã¨ä½åã®æå®ï¼ã¾ã§èããã¨ã$`\mbf{G}`$ ã®å°ã¨ $`\mbf{g}`$ ã®å°ã¯åºå¥ãã¹ãã§ããã
- éåã¨ã㦠$`|\mbf{G}| = |\mbf{g}|`$ ã§ãããã対象ã¯åããæããªãã®ã§ã$`\mbf{G}`$ ã®å¯¾è±¡ã¨ $`\mbf{g}`$ ã®å¯¾è±¡ãåºå¥ããå¿ è¦ã¯ãªãããããç°ãªãåã®å¯¾è±¡ã ãããã¨ããçç±ã§åºå¥ãã¦ãããã
ããã§ã¯ã$`\mbf{G}`$ ã®å¯¾è±¡ã¨ $`\mbf{g}`$ ã®å¯¾è±¡ã¯åºå¥ããï¼èªç¶æ°ã«ãªãï¼ã$`\mbf{G}`$ ã®å°ã¨ $`\mbf{g}`$ ã®å°ã¯ã©ãã³æåã¨ã®ãªã·ã£æåã§åºå¥ãã¾ãã
- $`s_i, t_i : i + 1 \to i \In \mbf{G}`$
- $`\sigma_i, \tau_i : i \to i + 1 \In \mbf{g}`$
å½¢ç¶ã¹ãã¼ãï¼$`\mbf{G}, \mbf{g}`$ ã¯å½¢ç¶ä»ãéåã®å½¢ç¶ã¹ãã¼ãï¼ã®å°ã¯ãã¢ãã¼ãã¨å¼ã³ãéååã®å°ã¯ãååãã¨å¼ãã§åºå¥ãããã¨ã«ãã¾ããå½¢ç¶ã¹ãã¼ãã®ã¢ãã¼ã¨å¯¾å¿ããååã®å¼ã³åã¯ï¼
- $`s_i, t_i`$ ã¯ãã½ã¼ã¹ã¢ãã¼ãã¿ã¼ã²ããã¢ãã¼ã¨å¼ã¶ãç·ç§°ãã¦é¢ã¢ãã¼ã
- $`\sigma_i, \tau_i`$ ã¯ãä½ã½ã¼ã¹ã¢ãã¼ãcosource arrowããä½ã¿ã¼ã²ããã¢ãã¼ãcotarget arrowãã¨å¼ã¶ãç·ç§°ãã¦ä½é¢ã¢ãã¼ãcoface arrowãã
- å ±å¤çä½éå $`X`$ ã«å¯¾ãã¦ã$`X(s_i), X(t_i)`$ ã¯ãã½ã¼ã¹ååãã¿ã¼ã²ããååã¨å¼ã¶ãç·ç§°ãã¦é¢ååã
- åå¤çä½éå $`Y`$ ã«å¯¾ãã¦ã$`Y(\sigma_i), Y(\tau_i)`$ ããã½ã¼ã¹ååãã¿ã¼ã²ããååã¨å¼ã¶ãç·ç§°ãã¦é¢ååã
- $`\mbf{G}`$ ã®å®ç¾©ã«ä½¿ãããé¢ã¢ãã¼ã®ããã ã®é¢ä¿å¼ã¯çä½é¢ä¿å¼
- $`\mbf{g}`$ ã®å®ç¾©ã«ä½¿ãããä½é¢ã¢ãã¼ã®é¢ä¿å¼ã¯ä½çä½é¢ä¿å¼ãcoglobular relationã
- å ±å¤çä½éåã§ãåå¤çä½éåã§ããé¢ååã®ããã ã®é¢ä¿å¼ï¼ååã®ããã ã®çå¼ï¼ã¯çä½é¢ä¿å¼
ä¸è¨ã¯ãçä½éåãå ±å¤ãåå¤ãã§åºå¥ããç¨èªã§ãããåºå¥ãããªããã¨ãããããã¾ããä¾ãã°ãã½ã¼ã¹ã¢ãã¼ $`s_i`$ ã¨ä½ã½ã¼ã¹ã¢ãã¼ $`\sigma_i`$ ã¨ã½ã¼ã¹åå $`X(s_i), Y(\sigma_i)`$ ãåºå¥ãããªãå¼ã³åãè¨æ³ã使ããããã¨ãããã¾ãã
å $`\mbf{G}`$ ããã®å対å $`\mbf{g}`$ ããã©ã¡ããçä½éåã®å½¢ç¶ã¹ãã¼ãï¼é¢æã®ååã®ãã¨ï¼ã§ãããåã®ç¨®å¥ã¨ãã¦ã¯ï¼èªæãªæ¬¡å é¢æ°ãæ·»ãã¦ï¼ãªã¼ãã£åã«ãªãã¾ãï¼ãåè«ã§ä½¿ããå³å¼ãã¨ãå½¢ç¶ã // ãªã¼ãã£åãåç §ï¼ãå $`\mbf{G}`$ ãéè¡çä½åã¨å¼ãã ã®ã¯ããªã¼ãã£åã¨ãã¦éè¡ãªã¼ãã£åã ããã§ããä¸æ¹ãå対åã§ãã $`\mbf{g}`$ ã¯é è¡ãªã¼ãã£åãªã®ã§é è¡çä½åãdirect globe categoryãã§ãããã ããéè¡çä½åã¨é è¡çä½åãåºå¥ãããã¨ã¯ã»ã¨ãã©ãªããåºå¥ãªãã«çä½åãglobe categoryãã¨å¼ã³ã¾ãã
å対åã¨åå¤é¢æã®å®ç¾©ã¯ãã«ã¿ããã«ç°¡åã§ãããå®éã«ãå対ããåå¤ããåºã¦ããã¨ããããããã¾ããããã¯ãã£ããæ·±å»ãªåé¡ã§ã以ä¸ã®éå»è¨äºã§å¯¾çãè°è«ãã¦ãã¾ãã
- 層åã¹ããªã³ã°å³ // è£è¿ãåå¤é¢æ -- revè¨æ³ãå°å ¥
- å対åï¼åå¤é¢æã¨ã2-åã®ã¹ããªã³ã°å³ -- ãã©ã¹ãã¤ãã¹è¨æ³ãå°å ¥
- å対åã¨åå¤é¢æã¯ããããã å³è©ã® op(...) è¨æ³ãå°å ¥ãä¸ç¢å°è¨æ³ãå°å ¥ããããå¾ã§ãªã¼ãã¼ã©ã¤ã³è¨æ³ã«ç½®ãæããã
- ç¶æ é·ç§»ç³»ã¨ãã¦ã®å層ã»ä½å層ã»ããé¢æ -- ãªã¼ãã¼ã©ã¤ã³è¨æ³ãå°å ¥
ç±³ç°åãè¾¼ã¿ã¨ãã¬ãã¯ã¹
çä½éåã®å®ç¾©ãåå¤é¢æã¨ããã»ããå¤æ°æ´¾ãªã®ã¯ãããããç±³ç°åãè¾¼ã¿ã®ã»ããã£ã³ã°ãåå¤é¢æã ããã§ããããå $`\mbf{g}`$ ã®ç±³ç°åãè¾¼ã¿ã¯æ¬¡ã®å½¢ã§ãã
$`{^\mbf{g}ã} : \mbf{g} \to [\mbf{g}^\op , \mbf{Set}] \In \mbf{CAT}`$
$`\mbf{g}`$ ã®ç±³ç°åã込㿠$`{^\mbf{g}ã}`$ ã¯å ±å¤é¢æã§ããé è¡çä½å $`\mbf{g}`$ åå¤é¢æãå層ãã®å $`[\mbf{g}^\op , \mbf{Set}]`$ ã«å ±å¤çã«åãè¾¼ããã®ã§ãã
é è¡çä½åã®å¯¾è±¡ï¼ã¤ã¾ãèªç¶æ°ï¼ $`i\in |\mbf{g}|`$ ã«å¯¾ãã¦ãç±³ç°åãè¾¼ã¿ã®åãå¤ãã¯ï¼
$`\quad {^\mbf{g}ã}^i \in |[\mbf{g}^\op , \mbf{Set}]|\\
\text{i.e. } {^\mbf{g}ã}^i \in |\mbf{G}\T{-}\mbf{Set}| \\
\text{i.e. } {^\mbf{g}ã}^i : \mbf{g}^\op \to \mbf{Set} \In \mbf{CAT}
`$
ãã® $`{^\mbf{g}ã}^i`$ ãã$`i\T{-}\mbf{g}`$-ãã¬ãã¯ã¹ã$`i\T{-}\mbf{g}`$-plexãã¨å¼ã³ã¾ãã$`\mbf{g}`$ ãäºè§£ããã¦ãããªããåã«$`i`$-ãã¬ãã¯ã¹ã$`i`$-plexãã¨å¼ã³ã¾ãï¼ãææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéåãåç §ï¼ããã¬ãã¯ã¹ã¯ãé è¡çä½åã«å¯¾ãã¦å®ç¾©ãããè¨èãªã®ã§ãéè¡çä½å $`\mbf{G}`$ ã«å¯¾ãã¦ã¯ $`i\T{-}\mbf{G}`$-ä½ãã¬ãã¯ã¹ã$`i\T{-}\mbf{G}`$-coplexãã¨å¼ã¶ã¹ãããç¥ãã¾ãããããããã¾ã§å¼ã³åãã¦ã¯ããªãããã§ãã
ããã¿ãã³ã»ããªã¼ã®åèè³æï¼åèæç®ãã§ç´¹ä»ãã¦ããè«æã§ã¯ããã¬ãã¯ã¹ãåæ¿ãdiskãã¨å¼ã¶ã®ãå¤æ°æ´¾ã§ãããã¬ãã¯ã¹ãçä½ãglobeãã¨å¼ã¶ä¾ãè¦ã¾ãããã誤解ãçãããã§å¥½ã¾ãããªãã¨æãã¾ãã
çä½éåã®$`i`$-ãã¬ãã¯ã¹ã$`i`$-åæ¿ãã¯çä½éåã®$`i`$-ã»ã«ã¨ã¯å¥ãªæ¦å¿µã§ãã$`i`$-ãã¬ãã¯ã¹ã¯ããèªä½ãç«æ´¾ãªçä½éåï¼é¢æï¼ã§ããã$`i`$-ã»ã«ã¯çä½éåã®âé¢æã¨ãã¦ã®å¤ã§ããéåâã®è¦ç´ ã«éãã¾ãããé¢æã¨ãã®å¤ãå¤ã§ããéåã¨ãã®è¦ç´ ã¯ã¾ã£ããã®å¥ç©ã§ãããåºå¥ãã¾ãããã
ãããã«
ã¢ãã¤ãã¯ãéåãåå°ãcarrier | underlying thingãã¨ãã¦ããã®ä¸ã«æ¼ç®ã¨æ³åãè¼ãã¦å®ç¾©ããã代æ°ç³»ã§ããåæ§ã«1-åã¯ãæåã°ã©ããåå°ã¨ãã¦ããã®ä¸ã«æ¼ç®ã¨æ³åãè¼ãã¦å®ç¾©ããã代æ°ç³»ã§ããé«æ¬¡åãåæ§ã«å®ç¾©ãããã¨ããåå°ã«ãªãã®ãçä½éåã§ããé«æ¬¡åï¼ç¡éåãå«ããï¼ã¯ãçä½éåãåå°ã¨ãã¦ããã®ä¸ã«æ¼ç®ã¨æ³åãè¼ãã¦å®ç¾©ããã代æ°ç³»ãªã®ã§ãã
éåã¯0次å ã®çä½éåã§ãããæåã°ã©ãã¯1次å ã®çä½éåã§ãã1-åè«ã«å¯¾ããéåè«ã¨ã°ã©ãçè«ã«ç¸å½ããåºç¤çè«ããé«æ¬¡åã«å¯¾ããçä½éåã®çè«ãªã®ã§ããçä½ä»¥å¤ã®å½¢ç¶ããã¼ã¹ã¨ããã¢ããã¼ããããã¾ãããçä½ãä¸çªåç´ãªå½¢ç¶ãªã®ã§ãæ§æããããï¼è¨ç®ããããã¨ããã¡ãªãããããã¾ãã
*1:å¤æ§ä½ãè·é¢ç©ºéã®æ¹æ³ããåºãæå³ã§ã¯ä½ç¸çæ¹æ³ã ã¨ãã¾ãã