ã²ã¨ã¤åã®è¨äºãçä½éåã¨çµã¿åããå¹¾ä½ãã§ãçä½éåã®åã«ã¤ãã¦ããããã¯èª¬æãã¾ããããã®è¨äºã§ã¯ã次å ãä½ãçä½éåéã®åã«ã¤ãã¦è¿°ã¹ã¾ããçä½éåã®çµµå³è¡¨ç¤ºã§ãããã¼ã¹ãã£ã³ã°å³ã¨ããã¹ã表示ã§ããææ¨ã«ã¤ãã¦ãè£è¶³ãã¾ãã
ä½æ¬¡å
ã®çä½éåãè¦ããã¨ã«ãããçä½éåã®åããéåå $`\mathbf{Set}`$ ãæåã°ã©ãã®å $`\mathbf{Graph}`$ ã®èªç¶ãªæ¡å¼µã§ãããã¨ãåããã§ãããã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\mfk}[1]{\mathfrak{#1}}
%\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\In}{ \text{ in } }
%\newcommand{\On}{ \text{ on } }
\newcommand{\id}{\mathrm{id} }
\newcommand{\op}{\mathrm{op} }
\newcommand{\Imp}{\Rightarrow }
%\newcommand{\Iff}{\Leftrightarrow }
\newcommand{\twoto}{\Rightarrow }
\newcommand{\T}[1]{\text{#1} }
%\newcommand{\EL}{\varepsilon} % Empty List
%\newcommand{\Cons}{\mathop{\blacktriangleright} }
%\newcommand{\Snoc}{\mathop{\blacktriangleleft} }
%\newcommand{\Apnd}{\mathop{\#} }
%\newcommand{\BCons}{\mathop{\|\!\blacktriangleright} }
\newcommand{\dimU}[2]{ {{#1}\!\updownarrow^{#2}} }
\newcommand{\NFSum}[3]{ \mathop{^{#1} \!\overset{#2}{+}\,\!^{#3} } }
\newcommand{\XRng}[1]{ \langle{#1}\rangle }
\newcommand{\Set}[1]{ {#1}\text{-}\mathbf{Set}}
`$
å 容ï¼
- n次å ã®çä½å
- çä½éåã®åç®æ¬¡å ã¨å®è³ªæ¬¡å
- æã¡åãé¢æã®èªç±å¿å´éä¼´ç³»
- (-1)次å ã0次å ã1次å ã®çä½éå
- ãã¼ã¹ãã£ã³ã°å³ã¨ææ¨
n次å ã®çä½å
ãçä½éåã¨çµã¿åããå¹¾ä½ãã§è¿°ã¹ãçä½åãglobe categoryã $`\mbf{G}`$ ã®å®ç¾©ãç¹°ãè¿ãã¾ãã
- $`|\mbf{G}| = \mbf{N} = \{0, 1, 2, \cdots\}`$ ï¼ç¡ééåï¼
- $`i\in \mbf{N}`$ ãã¨ã«ã次ã®å°ãããã
- $`s_i : i + 1 \to i \In \mbf{G}`$
- $`t_i : i + 1 \to i \In \mbf{G}`$
- æçå°ä»¥å¤ã®ãã¹ã¦ã®å°ã¯ã$`s_i, t_i`$ ã®çµåã§æ¸ããããã ãã以ä¸ã®çå¼çé¢ä¿ï¼çä½é¢ä¿å¼ã¨å¼ã¶ï¼ãããã
- $`s_{i + 1}; s_i = t_{i+1}; s_i \In \mbf{G}`$
- $`s_{i + 1}; t_i = t_{i+1}; t_i \In \mbf{G}`$
次å é¢æ° $`\mrm{dim}: |\mbf{G}| \to \mbf{N}`$ ã¯æçé¢æ°ã§ãã次å é¢æ°ã¯ããªã¼ãã£åï¼ãåè«ã§ä½¿ããå³å¼ãã¨ãå½¢ç¶ã // ãªã¼ãã£åãåç §ï¼ã¨ãã¦ã®æ¬¡æ°é¢æ°ã§ãã
$`\quad \mrm{dim}(i) = i`$
ã¤ã¾ãã対象 $`i`$ ã®æ¬¡å ãdimensionã㯠$`i`$ ã
çä½é¢ä¿å¼ãglobular {relation | equation | condition}ãã¯æ¬¡ã®å³ãå¯æå³å¼ã«ãªããã¨ã§ãã
$`\quad \xymatrix@C+2pc{
{i+ 2} \ar@{=}[r]\ar@{=}[r]
\ar[d]_{s_{i+1}}
\ar[dr]^>{s_{i+1}}
&{i + 2}
\ar[d]^{t_{i+1}}
\ar[dl]_>{t_{i+1}}
\\
{i+ 1} \ar@{=}[r]\ar@{=}[r]
\ar[d]_{s_{i}}
&{i + 1}
\ar[d]^{t_{i}}
\\
{i} \ar@{=}[r]\ar@{=}[r]
&{i}
}\\
\quad \text{commutative in }\mbf{G}
`$
é常ããå°ãã¨ãã¢ãã¼ãã¯å義èªã§ãããããã§ã¯ãçä½åã®å°ã«éã£ã¦ã¢ãã¼ãarrowãã¨å¼ã¶ãã¨ã«ãã¾ãã$`s_i`$ ã¯ã½ã¼ã¹ã¢ãã¼ãsource arrowãã$`t_i`$ ã¯ã¿ã¼ã²ããã¢ãã¼ãtarget arrowãã§ãã
次ã«ãèªç¶æ° $`n\in \mbf{N}`$ ã«å¯¾ãã¦ã$`n`$次å ã®çä½åãglobe category of dimension $`n`$ã $`\mbf{G}n`$ ãå®ç¾©ãã¾ãã
- $`|\mbf{G}n| = \{0, 1, \cdots, n\}`$ ï¼æééåï¼
- $`i\in \{0, 1, \cdots, n - 1\}`$ ãã¨ã«ã次ã®å°ãããã
- $`s_i : i + 1 \to i \In \mbf{G}n`$
- $`t_i : i + 1 \to i \In \mbf{G}n`$
- æçå°ä»¥å¤ã®ãã¹ã¦ã®å°ã¯ã$`s_i, t_i`$ ã®çµåã§æ¸ããããã ãã以ä¸ã®çå¼çé¢ä¿ï¼çä½é¢ä¿å¼ã¨å¼ã¶ï¼ãããã
- $`s_{i + 1}; s_i = t_{i+1}; s_i \In \mbf{G}n`$
- $`s_{i + 1}; t_i = t_{i+1}; t_i \In \mbf{G}n`$
対象ã$`(n + 1)`$åãããªãç¹ãé¤ã㦠$`\mbf{G}`$ ã¨åãã§ãã$`\mbf{G}0`$ ã¯å¯¾è±¡ã1ã¤ã¨æçå°ã ãã®åã§ãã$`\mbf{G}1`$ ã¯å¯¾è±¡ã2ã¤ã¨æçå°ä»¥å¤ã« $`s_0, t_0`$ ãããåã§ãã
$`\mbf{G}n`$ ãã $`\mbf{G}`$ ã¸ã®èªç¶ãªåãè¾¼ã¿é¢æãããã¾ãã
$`\quad \mbf{G}n \hookrightarrow \mbf{G} \In \mbf{Cat}`$
ã¾ãã$`n \le m`$ ãªã $`\mbf{G}n`$ ãã $`\mbf{G}m`$ ã¸ã®èªç¶ãªåãè¾¼ã¿é¢æãããã¾ãã
$`\quad \mbf{G}n \hookrightarrow \mbf{G}m \In \mbf{Cat}`$
å対åã¯å°æåã®ååã«ãã¾ãã
- $`\mbf{g}0 := {\mbf{G}0}^\op`$
- $`\mbf{g}1 := {\mbf{G}1}^\op`$
- $`\mbf{g}2 := {\mbf{G}2}^\op`$
- â¥â¥
- $`\mbf{g} := {\mbf{G}}^\op`$
è¨æ³ãæããããã«ã$`\mbf{G}, \mbf{g}`$ ã $`\mbf{G}\omega, \mbf{g}\omega`$ ã¨æ¸ããã¨ãããã¾ãã
ããã§ã¯ã$`\mbf{G}`$ ãçä½åã¨å¼ã³ã¾ããããå対åã§ãã $`\mbf{g}`$ ãçä½åã¨ãããã¨ãããã¾ãããããã¯ã$`\mbf{G}, \mbf{g}`$ ã®ä¸¡æ¹ã¨ãçä½åã¨å¼ã¶ãã¨ãããã¾ãï¼è©³ç´°ã¯ãçä½éåã¨çµã¿åããå¹¾ä½ // å ±å¤ãåå¤ãï¼æ··ä¹±ã®åå ï¼ãåç §ï¼ã
çä½éåã®åç®æ¬¡å ã¨å®è³ªæ¬¡å
ãçä½éåã¨çµã¿åããå¹¾ä½ãã§ã¯ãå $`\mbf{G}`$ ããéååã¸ã®å ±å¤é¢æãçä½éåã¨å¼ã³ã¾ãããçä½éåã®å®ç¾©ãå°ãæ¡å¤§ãã¦ã$`\mbf{G}n`$ ããéååã¸ã®å ±å¤é¢æãçä½éåãglobular setãã¨å¼ã¶ãã¨ã«ãã¾ãã
å¤æ° $`\mu`$ ã¯ãèªç¶æ°ã¾ã㯠$`\omega`$ ã®å¤ãã¨ãå¤æ°ã¨ãã¾ãã
$`\quad \mu \in (\mbf{N}\cup \{\omega\})`$
$`\mbf{G}\mu`$ ã¨æ¸ããããèªç¶æ° $`n`$ ã«å¯¾ãã $`\mbf{G}n`$ ããã¾ã㯠$`\mbf{G}\omega = \mbf{G}`$ ã表ãã¾ãã
è¨æ³ã®ç°¡ç¥åã®ããã«ã次ã®å®ç¾©ããã¾ãã
- $`\XRng{n} := \{0, 1,\cdots, n\}`$ ï¼$`0`$ ã $`n`$ ãå ¥ããã¨ã«æ³¨æï¼
- $`\XRng{\omega} := \mbf{N}`$
$`X`$ ãçä½éåã¨ãã¾ããã¤ã¾ãé©å½ãª $`\mu \in (\mbf{N}\cup \{\omega\})`$ ã«å¯¾ãã¦ã
$`\quad X \in |\Set{\mbf{G}\mu} |\\
\T{i.e }X : \mbf{G}\mu \to \mbf{Set} \In \mbf{CAT}
`$
ããã§ãã$`\Set{\mbf{G}\mu}`$ãã¯ã¹ãã´ã¡ãã¯ã®ãã¤ãã³è¨æ³ï¼ãçä½éåã¨çµã¿åããå¹¾ä½ // çä½éåãåç §ï¼ã§ãããã¤ãã³è¨æ³ã¯ä¾¿å©ã§ãåã¯å¥½ãã§ãã
çä½éå $`X`$ ã®â次å âã¯æ¬¡ã®2ã¤ã®å®ç¾©ãããã¾ãã
- $`X \in |\Set{\mbf{G}\mu}|`$ ã®ã¨ãã$`\mu`$ ã $`X`$ ã®åç®æ¬¡å ãnominal dimensionãã¨å¼ã¶ã
- éå $`\{ i \in \XRng{\mu} \mid X_i \ne \emptyset\}`$ ã空éåã§ã¯ãªãã¦æ大å ãããã°ãæ大å ã§ããèªç¶æ°ã $`X`$ ã®å®è³ªæ¬¡å ãactual dimensionãã¨å¼ã¶ã
- ä¸è¨ã®éåã空éåã®ã¨ãã$`-1`$ ã $`X`$ ã®å®è³ªæ¬¡å ãactual dimensionãã¨ããã
- ä¸è¨ã®éåã«æ大å ããªãã¨ãã¯ã$`\omega`$ ã $`X`$ ã®å®è³ªæ¬¡å ãactual dimensionãã¨ããã
åç®æ¬¡å ã¨å®è³ªæ¬¡å ã®å¤ã®ç¯å²ãæããããã«ã$`\mbf{G}(-1) := \emptyset`$ ï¼ç©ºåï¼ã¨å®ç¾©ãããã¨ãããã¾ããåç®æ¬¡å ã $`-1`$ ã§ããçä½éå $`X`$ ã¯ã次ã®é¢æã§ãã
$`\quad X: \emptyset \to \mbf{Set} \In \mbf{Cat}`$
ãã®ãã㪠$`X`$ ã¯ã²ã¨ã¤ã ãåå¨ãã¾ãããããã£ã¦ã次ãæç«ãã¾ãã
$`\quad \Set{\mbf{G}(-1)} \cong \mbf{1}`$
åç¯ã§è¿°ã¹ãè¦æºçãªãèªç¶ãªãåãè¾¼ã¿é¢æã¯ãçä½éåã®åã®ããã ã®é¢æãèªå°ãã¾ãã
$`\quad \Set{\mbf{G}\omega} \to \Set{\mbf{G}n} \In \mbf{CAT}`$
$`\quad \Set{\mbf{G}m} \to \Set{\mbf{G}n} \In \mbf{CAT}`$
ãã®ãããªãçä½éåã®åã®ããã ã®ï¼ãçä½åã®ããã ã®ãã§ã¯ãªãï¼é¢æã¯ãæã¡åãé¢æãtruncation functorãã¨å¼ã³ã¾ããæã¡åãé¢æã¯ãçä½éåï¼å®ä½ã¯é¢æï¼ã®åãå¶éããï¼é¢æã®ä¸é¨ãæ¨ã¦ãï¼æä½ã§ããæ å ±ãæ¨ã¦ããå¿ãããã®ã§ãå¿å´é¢æã¨è¨ã£ã¦ãããã§ãããã
ããã§ã®ã次å ãã¨ããè¨èã¯ã次ã®5ã¤ã®æå³ã»ç¨æ³ãããã®ã§æ³¨æãã¦ä¸ããã
- çä½åã®æ¬¡å ï¼ $`\mbf{G}n`$ ã®æ¬¡å 㯠$`n`$ ã$`\mbf{G} = \mbf{G}\omega`$ ã®æ¬¡å 㯠$`\omega`$
- çä½åã®å¯¾è±¡ã®æ¬¡å ï¼ å¯¾è±¡ $`i \in |\mbf{G}\mu|`$ ã®æ¬¡å 㯠$`i`$ ï¼æ¬¡å é¢æ°ãæçé¢æ°ï¼
- çä½éåã®åç®æ¬¡å ï¼ çä½éå $`X : \mbf{G}\mu \to \mbf{Set}`$ ã®åç®æ¬¡å 㯠$`\mu`$
- çä½éåã®å®è³ªæ¬¡å ï¼ ä¸è¨ã®å®ç¾©ã®ã¨ãã
- çä½éåã®ã»ã«ã®æ¬¡å ï¼ ã»ã« $`c\in X_i`$ ã®æ¬¡å 㯠$`i`$
(-1)次å ãèããã¨ãã¯ï¼
- (-1)次å ã®çä½å $`\mbf{G}(-1)`$ ã¯ç©ºåã空åã¯åå¨ããã
- (-1)次å ã®çä½åã®å¯¾è±¡ã¯åå¨ããªãã
- (-1)次å ã®çä½åã®å°ã¯åå¨ããªãã
- (-1)次å ã®çä½éåã¯ã²ã¨ã¤ã ãåå¨ãããåç®æ¬¡å ãå®è³ªæ¬¡å ã -1 ã
- (-1)次å ã®çä½éåã®ã»ã«ã¯åå¨ããªããã»ã«ãåå¨ããªãã®ã§ã(-1)次å ã®ã»ã«ã¨ããæ¦å¿µã¯ç¡æå³ã
æã¡åãé¢æã®èªç±å¿å´éä¼´ç³»
$`\Set{\mbf{G}}`$ ã¯ãåç®æ¬¡å ãç¡éã$`\omega`$ ããªçä½éåéã®åã§ããåã ã®çä½éåã®å®è³ªæ¬¡å ã¯æéããç¥ãã¾ãããä¸æ¹ãèªç¶æ° $`n`$ ã«å¯¾ãã $`\Set{\mbf{G}n}`$ ã¯ãåç®æ¬¡å ãæéå¤ $`n`$ ã§ããçä½éåéã®åã§ããå®è³ªæ¬¡å 㯠$`n`$ ããå°ããæ°ããç¥ãã¾ããã
åç¯ã§å®ç¾©ããæã¡åãé¢æã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{tr}_n : \Set{\mbf{G}} \to \Set{\mbf{G}n} \In \mbf{CAT}`$
æã¡åãé¢æã«ã¯ãå·¦éä¼´é¢æãåå¨ãã¦ãéä¼´ãã¢ãå½¢æãã¾ãã
$`\quad \mrm{sk}_n \dashv \mrm{tr}_n`$
ããã§ã"sk" 㯠skeletonãéª¨æ ¼ãã®ç縮ã§ããå·¦é«é¢æã¯éª¨æ ¼é¢æãskeletal functorãã¨å¼ã³ã¾ãããéª¨æ ¼ãã¨ããè¨èã¯ä»ã®æå³ã§ã使ãã®ã§ãç¨èªã³ã³ããªã¯ããèµ·ããã¦ãã¦âã¤ã¤ãªæãâã¯ããã®ã§ãããããã¯ï¼ã·ãã·ãï¼ç¿æ £ã«å¾ã£ã¦ããã¾ãã
$`X`$ ãn次å ã®çä½éåã ã¨ãã¦ããã®éª¨æ ¼æ¡å¼µ*1 $`\mrm{sk}_n(X)`$ ã¯ã次ã®å³å¼ãå¯æã«ãªãé¢æã§ããï¼é¢æãå層ã $`X`$ ã®ãé¢æ $`\mrm{sk}_n`$ ã«ããå¤ãã¾ãé¢æãï¼
$`\quad \xymatrix @C+1pc{
\mbf{G}n \ar@{^{(}->}[r] \ar[d]_X
& \mbf{G} \ar[dl]^<{\mrm{sk}_n(X)}
\\
\mbf{Set}
&{}
}\\
\quad \T{commutative in }\mrm{CAT}
`$
$`X`$ ã®éª¨æ ¼æ¡å¼µã¯ã$`\mbf{G}`$ ã®å¯¾è±¡ $`n + 1, n+ 2, \cdots`$ ã«ã¯ç©ºéåã対å¿ããã¾ãã
$`\quad {\mrm{sk}_n(X)}_{n+1} := \emptyset\\
\quad {\mrm{sk}_n(X)}_{n+2} := \emptyset\\
\quad \cdots
`$
空éåããã®å°ã¯ã²ã¨ã¤ãããªãã®ã§ã対å¿ããååã¯èªåçã«æ±ºã¾ãã¾ãã
$`X`$ ã®éª¨æ ¼æ¡å¼µã«é¢ãã¦æ¬¡ã®ãã ã»ããååãï¼ç³»çµ±çã«ï¼æç«ãã¾ãã
$`\quad \Set{\mbf{G}}(\mrm{sk}_n(X), Y) \cong \Set{\mbf{G}n}(X, \mrm{tr}_n(Y))`$
証æã¯é£ããããã¾ããã
åç¯ã§ã$`\mrm{tr}_n(\hyp)`$ ã¯å¿å´é¢æã ã¨è¨ãã¾ãããã$`\mrm{sk}_n(\hyp)`$ ã¯å¿å´é¢æã«å¯¾å¿ããèªç±é¢æãèªç±çæé¢æãã§ãããã£ã¦ããã®éä¼´ç³»ã¯èªç±å¿å´éä¼´ç³»ãfree-forgetful adjunctionãã«ãªãã¾ãã
æã¡åãé¢æã®å³éä¼´é¢æï¼ä½éª¨æ ¼é¢æãcoskeleton functorãã¨å¼ã°ããï¼ãå ·ä½çã«æ§æã§ãããã§ãããã¡ãã£ã¨é¢åãªã®ã§ä»ã¯è§¦ãã¾ããã
(-1)次å ã0次å ã1次å ã®çä½éå
åç¯ã¾ã§ã®èª¬æã§ã$`\mbf{G}(-1), \mbf{G}0, \mbf{G}1`$ ã¯æ¬¡ã®ãããªåã ã¨åããã¾ãã
- $`\mbf{G}(-1)`$ ã¯ç©ºåã対象ãå°ãæã£ã¦ãªãã
- $`\mbf{G}0`$ ã¯èªæãªåã対象ã1ã¤ãå°ã¯æçå°ã ããæã¤åã
- $`\mbf{G}1`$ ã¯ã対象ã2ã¤ãæçå°ã2ã¤ãæçå°ä»¥å¤ã« $`s_0, t_1`$ ã ããæã¤åã
$`\mbf{G}1`$ ã®ãã¹ã¦ã®å¯¾è±¡ã¨ãã¹ã¦ã®å°ï¼æçå°ãå«ãï¼ãæãã¨æ¬¡ã®ããã§ãã2ã¤ã®å¯¾è±¡ã4ã¤ã®å°ãããªãåã§ãã
$`\quad\xymatrix{
0 \ar@(dl, ul)[0,0]^{\id_0}
& 1 \ar@(dr, ur)[0, 0]_{\id_1}
\ar@/^/[l]^{t_0} \ar@/_/[l]_{s_0}
}`$
ãããã®å½¢ç¶ã¹ãã¼ãã«å¯¾å¿ããå½¢ç¶ä»ãéåã®åã¯æ¬¡ã®ããã§ãã
- $`\Set{\mbf{G}(-1)}`$ ã¯ããã 1ã¤ã®å¯¾è±¡ã¨æçå°ãæã¤åï¼èªæãªåï¼ã
- $`\Set{\mbf{G}0}`$ ã¯ãéåå $`\mbf{Set}`$ ã¨åååãªåã
- $`\Set{\mbf{G}1}`$ ã¯ãæåã°ã©ãã®å $`\mbf{Graph}`$ ã¨åååï¼ãããåãï¼åã
éååã¯ãã¢ãã¤ãï¼ç¾¤ï¼ç°ãªã©ã®åºæ¬çãªä»£æ°ç³»ãå®ç¾©ããåºç¤ã»èæ¯ã¨ãªãåã§ããæåã°ã©ãã®åãåºç¤ã»èæ¯ã¨ãã¦ã¢ãã¤ãï¼ã®ç¸å½ç©ï¼ãå®ç¾©ããã¨ãããã¯1-åã«ãªãã¾ãããã®ãã¨ãéã¿ãã¨ãåç®$`n`$次å ã®çä½éåã®å $`\Set{\mbf{G}n}`$ ãåç®ç¡é次å ã®çä½éåã®å $`\Set{\mbf{G}}`$ ããé«æ¬¡åãé«æ¬¡ã®ä»£æ°ç³»ã®åºç¤ã»èæ¯ã¨ãªããã¨ãæ³åã§ããã§ãããã
çä½éåã®å $`\Set{\mbf{G}n}`$ ã¯ãï¼çä½ã¢ããã¼ãã«ãããï¼ããã°ã$`n`$次ã®éååãã$`\Set{\mbf{G}}`$ ã¯ãç¡é次ã®éååããªã®ã§ãã0次ã®éååï¼é常ã®éååï¼ã®å¯¾è±¡ã§ããéåã¯ãããèªä½ã¯ä½ã®æ§é ãæã¡ã¾ãããããããé«æ¬¡ã®éååï¼çä½éåã®åï¼ã®å¯¾è±¡ã§ããçä½éåã¯ãçµã¿åããå¹¾ä½çæ§é ãæã¡ã¾ããçä½éåã¯çµã¿åããçãªâ空éâã¨å¼ãã§ããã§ããããéååããé«æ¬¡ã®éååï¼çä½éåã®åï¼ã¸ã®æ¡å¼µã¯ãæ§é ç©ãstructureããè¼ããåå°ãcarrier | underlying thingãããéåãã空éã¸ã¨æ¡å¼µãããã¨ã«ãªãã¾ãã
ãã¼ã¹ãã£ã³ã°å³ã¨ææ¨
ãã¼ã¹ãã£ã³ã°å³ã®ä¸ä¾ãããçä½éåã¨çµã¿åããå¹¾ä½ãããåæ²ãã¾ãã
$`\quad \xymatrix@C+1pc{
A
\ar@/^1.2pc/[r]^{f}_{\alpha\,\Downarrow}
\ar[r]|{f'}
\ar@/_1.2pc/[r]^{\beta\, \Uparrow}_{f''}
&B
&C
\ar[l]^{g}
&D
\ar@(ul, ur)[0,0]^h
}`$
ãã®ãã¼ã¹ãã£ã³ã°å³ã表ãçä½éåã $`X`$ ã¨ããã¨ã
$`\quad X : \mbf{G}2 \to \mbf{Set}\In \mbf{CAT}`$
ã¨èãããã¨ãã§ãã¾ããå
±å¤é¢æ $`X`$ ã®å¤å²ãå½ã¦ãæ¸ãã¨ï¼
$`\quad X(0) = X_0 := \{A, B, C, D\}\;\in |\mbf{Set}|`$
$`\quad X(1) = X_1 := \{f, f', f'', g, h\}\;\in |\mbf{Set}|`$
$`\quad X(2) = X_2 := \{\alpha, \beta \}\;\in |\mbf{Set}|`$
å°ã«å¯¾ããå¤å²ãå½ã¦ï¼ã½ã¼ã¹ååã¨ã¿ã¼ã²ããååï¼ã¯å³ããèªã¿åã£ã¦ãã ããã
2次å ã®çä½éåï¼$`\Set{\mbf{G}2}`$ ã®å¯¾è±¡ï¼ã¾ã§ãªãããã¼ã¹ãã£ã³ã°å³ã§è¦è¦çã«è¡¨ç¤ºãããã¨ãã§ãã¾ãã3次å ã®çä½éåãã3Dã°ã©ãã£ãã¯ã¹ã使ãã°ãªãã¨ãæãã¾ãï¼ææãã§ã¯é£ããï¼ããã¢ã³ã«ã¬å対ãã¨ã£ã¦ãã¹ããªã³ã°å³ï¼ãµã¼ãã§ã¤ã¹å³ã§æãã¨ããæ段ãããã¾ãã
è¦è¦çãªè¡¨ç¤ºããã¸ã¥ã¢ã©ã¤ã¼ã¼ã·ã§ã³ãã§ã¯ãªãã¦ãããã¹ãã«æ¸ãä¸ããã¨ãã§ãã¾ãããã¯ããçä½éåã¨çµã¿åããå¹¾ä½ãããã®åæ²ã§ããï¼
$`\T{signature } X \: \{\\
\quad \T{0-cell }A, B, C, D\\
\quad \T{1-cell }f, f', f'' : A\to B\\
\quad \T{1-cell }g : C\to B\\
\quad \T{1-cell }h : D\to D\\
\quad \T{2-cell } \alpha :: f \twoto f'\\
\quad \T{2-cell } \beta :: f'' \twoto f'\\
\}
`$
ç¢å°è¨å·ã¯ä¸éã®ç¢å° $`\Rrightarrow`$ ã¾ã§ã¯ LaTeX ã«ããã¾ãã次å ã4以ä¸ã«ãªã£ã¦ããææ°è¨æ³ã§ç¢å°ã®å¤ªãï¼ã¨ã³ãã³ã®åæ°ï¼ã示ãè¨æ³ãªã対å¿ã§ãã¾ããææ°è¨æ³ã¨ã¯ï¼
$`\T{signature } X \: \{\\
\quad \T{0-cell }A, B, C, D :^0 * \to^0 *\\
\quad \T{1-cell }f, f', f'' :^1 A \to^1 B\\
\quad \T{1-cell }g :^1 C\to^1 B\\
\quad \T{1-cell }h :^1 D \to^1 D\\
\quad \T{2-cell } \alpha :^2 f \to^2 f'\\
\quad \T{2-cell } \beta :^2 f'' \to^2 f'\\
\}
`$
0次å ã«é¢ãã¦ã¯ãããã¼ã®è¨å· $`*`$ ã使ã£ã¦æ¸ãæ¹ãæãã¦ãã¾ãã4次å ã®ã»ã«ãªããä¾ãã°æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \T{4-cell } \mathscr{F} :^4 \Gamma \to^4 \Delta`$
æå種ã»ãã©ã³ããå¤ãã¦ããã®ãæ°åã¨åãããããã®åé¡ãªã®ã§ãã»ã«ããã¹ã¦ã©ãã³æåå°æåã¤ã¿ãªãã¯ã§æ¸ãã¦ããã¾ãã¾ããã
$`\quad \T{4-cell } f :^4 a \to^4 b`$
人éã¯è¦è¦çãªææ¡ãå¾æãªã®ã§ãããã¹ãå½¢å¼ã§æ¸ãææ¨ã¯ãè¤éã«ãªãã¨è§£éå°é£ã«ãªãã¾ããããããé«æ¬¡å ã®çµã¿åããå¹¾ä½ç対象ç©ãcombinatorial geometric objectããç´æ¥ã«è¦è¦åããã¸ã¥ã¢ã©ã¤ã¼ã¼ã·ã§ã³ãããæ段ããªãã®ã§è´ãæ¹ãªãã§ããã
*1:ãéª¨æ ¼æ¡å¼µãã®ä»£ããã«ã空延é·ãempty prolongationããã¨ãã®ã»ããæ··ä¹±ãå°ãªãã¦è¯ããããªæ°ããããã©ã