$`x = y`$ ã¨æ¸ããã¦ããããããã®æå³ã¯æããã ãã¨å¤ãã®äººã¯æãã§ããããããã¤ã³ã¼ã«ï¼çå¼ã®æå³ãç¨æ³ã¯ãããªã«ç°¡åã§ããªãã§ããã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
%\newcommand{\mfk}[1]{\mathfrak{#1}}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\In}{ \text{ in } }
\newcommand{\On}{ \text{ on } }
\newcommand{\id}{\mathrm{id} }
%\newcommand{\op}{\mathrm{op} }
\newcommand{\Iff}{\Leftrightarrow }
\newcommand{\twoto}{\Rightarrow }
%\newcommand{\T}[1]{\text{#1} }
`$
å 容ï¼
- éåè«ã®ã¤ã³ã¼ã«ï¼çå¼
- å¤å ¸è¿°èªè«çã®ã¤ã³ã¼ã«ï¼çå¼
- åè«ã®ã¤ã³ã¼ã«ï¼çå¼
- ã¾ã¨ã
éåè«ã®ã¤ã³ã¼ã«ï¼çå¼
ç¾å¨ã®æ°å¦çè°è«ã¯ã建åã¨ãã¦ã¯éåè«ã«å¸°çããããã¨ã«ãªã£ã¦ãã¾ãï¼å®éã«ããããã¨ã¯è¨ã£ã¦ãªãï¼ã$`x = y`$ ãéåè«ã®æå³ã§è§£éãããªãã次ã®å½é¡ãè«çå¼ãã¨åãã§ãã
$`\quad x\subseteq y \land y \subseteq x`$
éåã®å å«é¢ä¿ãæå±é¢ä¿ã§æ¸ãä¸ãã°ã以ä¸ã®ããã«ãªãã¾ãã
$`\quad \forall z.\, z\in x \Iff z \in y`$
å¤æ° $`z`$ ãæå±ããéåãæ示ããã¦ã¾ããããããã¯ã$`z`$ ãéåè«ã®å®å®ãèµ°ãå¤æ°ã ããã§ããé常ã¯ãä½æ¥ç¨ã®å°ããªå®å®ãã°ãã¿ã³ãã£ã¼ã¯å®å®ãã®ä¸ã§è°è«ããã®ã§ãç¾ç¶ã®ä½æ¥ç¨å®å®ãcurrent working universeãã $`U`$ ã¨ãã¦ã次ã®ããã«ãæ¸ãã¾ãã
$`\quad \forall z\in U.\, z\in x \Iff z \in y`$
ã¤ã³ã¼ã«ããã®å®ç¾©ã ã¨ãã$`x, y`$ ãéåã§ãªãå ´åã¯ã©ããªããã ï¼ãã¨å¿é ã«ãªãã¾ãããç¾å¨ã®å ¬ççéåè«ã§ã¯ããã¹ã¦ã®ã¢ãã¯éåããªã®ã§ããããããéåã§ãªãå ´åãã¯èµ·ãããã¾ãããèªç¶æ°ã® $`0`$ ã $`7`$ ããå®æ°ã® $`\sqrt{2}`$ ã $`\pi`$ ï¼åå¨çï¼ãéåã§ãã
ãåå¨ç $`\pi`$ ãéåãã«éåæããã ãããç¥ãã¾ããããããã¯å»ºåã®è©±ãªã®ã§ãéå½¢å¼çã«ï¼æ°æã¡ã¨ãã¦ï¼ãåå¨ç $`\pi`$ ã¯éåã®æ°ãããªããã§ãå¥ã«ãã¾ãã¾ããã
å¤å ¸è¿°èªè«çã®ã¤ã³ã¼ã«ï¼çå¼
å¤å ¸è¿°èªè«çã®ãå¤å ¸ãã¯ããå¤ããããã¨ããéå»ã®ãã¨ããæå³ã¯å ¨ç¶ããã¾ãããããããããè«çã®ãªãã®ç¹å®ã®è«çãèå¥ããç®å°ã¨ãã¦ãå¤å ¸ãã使ããã¦ããã ãã§ããç¾ä»£ã®å§åç主æµã®è«çãå¤å ¸è«çã§ãã
å¤å ¸è¿°èªè«çã«ãããã¤ã³ã¼ã«è¨å·ã¯äºé è¿°èªè¨å·ãé¢ä¿è¨å·ãã®æ±ãã§ãããã®æå³è«ã«ã¯éåè«ãæ®éã«ä½¿ãã¾ããè«åãdomain of discourse | è°è«é åãã¨å¼ã°ããéå $`X`$ ãåã£ã¦ãã¤ã³ã¼ã«è¨å·ã表ãé¢æ°ãååãã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{eq}_X : X\times X \to \mbf{B}`$
$`\mbf{B}`$ ã¯ãäºå¤å¤å ¸çå½å¤ $`\mrm{True}, \mrm{False}`$ ãããªãäºå éåã§ãã
çå¼ $`x = y`$ ã®æå³ã¯é¢æ°å¼ã³åºã $`\mrm{eq}_X(x, y)`$ ã§ãã$`x = y`$ ã $`\mrm{eq}_X(x, y)`$ ãå½é¡ã¨å¼ãã§ããã¾ãã¾ããããå½é¡ã®ç´ æ´ãªæå³ãçå½ãå¤å®ã§ããæãã¨ç §ããåãããã¨ãºã¬ãããã¾ãããããã®çå¼ã¯ããã ã¡ã«ã¯çå½ãå¤å®ã§ãã¾ãããéå $`X`$ ãå ·ä½åãã¦ãè¦ç´ $`x, y`$ ãå ·ä½çãªè¦ç´ ã¨ãã¦ç¹å®ãã¦ã¯ããã¦çå¼ã®çå½ã確å®ãã¾ãã
ãã ãããå½é¡ãã¯ææ§å¤ç¾©èªã§ï¼ããå½é¡ãã¨ãåãã®ææ§æ§ãå³ç¤ºãåç §ï¼ãããã使ãã®ãç¿æ £ãªã®ã§ããå ·ä½åããã°ãçå½ãå¤å®ã§ããæããå½é¡ã¨å¼ãã§ã罪ã«ã¯ãªãã¾ããã
$`\mrm{eq}_X(x, y)`$ ã«ã¯ãè«åï¼ã¨å¼ã°ããéåï¼$`X`$ ãå«ã¾ããã®ã§ã¤ã³ã¼ã«è¨å·ï¼æ¨ªäºæ¬æ£ã®è¨å·ï¼ã«ãè«å $`X`$ ãæ·»ãã¦ã次ã®ããã«æ¸ãã®ãæ£ç¢ºã§ãã
$`\quad x =_X y`$
ã¾ã£ããåãæå³ã§ãåã¯æ¬¡ã®ããã«æ¸ããã¨ãããã¾ãã
$`\quad x = y \On X`$
åè«ã®ã¤ã³ã¼ã«ï¼çå¼
åç¯ã§ $`x = y \On X`$ ã¨ããæ¸ãæ¹ããã¾ããããã¨ãã«æ¬¡ã®ããã«æ¸ããã¨ãããã¾ãã
$`\quad x = y \In X`$
$`\text{on}, \text{in}`$ ã®åºå¥ã¯ï¼å®éã®ã¨ããï¼æ°ç´ãã¨ãè¨ãã¾ãããåºå¥ããåºæºã¯ã¡ããã¨ããã¾ãã
$`\cat{C}`$ ã¯åã¨ãã¾ããå¿ ããã1-åã¨ã¯éãããé«æ¬¡å°ãæã¤é«æ¬¡åããç¥ãã¾ããã$`f`$ ã $`\cat{C}`$ ã®1-å°ã§ãããã¨ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad f: A \to B \In \cat{C}`$
$`\alpha`$ ã $`\cat{C}`$ ã®2-å°ã§ãããã¨ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \alpha :: f \twoto g : A \to B \In \cat{C}`$
ããçãï¼ä¸é¨ã®æ å ±ãçç¥ãã¦ï¼æ¬¡ã®ããã«æ¸ãã¦ããã¾ãã¾ããã
$`\quad \alpha :: f \twoto g \In \cat{C}`$
$`\cat{C}`$ ã®1-å°ãç¹ã«æç1-å°ã§ããã¨ãã¯æ¬¡ã®ããã«æ¸ããã¨ã«ãã¾ãã
$`\quad \id: A \to B \In \cat{C}`$
æç2-å°ã®å ´åã§ããåã綴ã '$`\id`$' ã使ãã¾ãã2-å°ã§ãããã¨ã¯ã³ãã³ã®åæ°ã¨ç¢å°ã®â太ãâã§åããããåé¡ãªãã§ãããã
$`\quad \id :: f \twoto g \In \cat{C}`$
2ã¤ã®k-å°ã®ããã ã«æç(k+1)-å°ããããã¨ã¯ã2ã¤ã®k-å°ãçãããã¨ãªã®ã§ãä¸è¨ã® $`\id`$ ãç¨ããè¨è¿°ã¯ãå®ã¯çå¼ã¨åããã¨ã§ãã
- $`\cat{C}`$ ã«ããã¦ã$`A = B`$ ã¨ã¯ã$`\quad \id: A \to B`$ ã®ãã¨ã§ããã
- $`\cat{C}`$ ã«ããã¦ã$`f = g`$ ã¨ã¯ã$`\quad \id:: f \twoto g`$ ã®ãã¨ã§ããã
ç¹ã«éåå $`\mbf{Set}`$ ã§èããã¨ï¼
- éå $`A, B`$ ã«é¢ãã¦ã$`A = B`$ ã¨ã¯ã$`\quad \id: A \to B \In \mbf{Set}`$ ã®ãã¨ã§ããã
- åå $`f, g`$ ã«é¢ãã¦ã$`f = g`$ ã¨ã¯ã$`\quad \id:: f \twoto B \In \mbf{Set}`$ ã®ãã¨ã§ããã
1-åã§ããï¼ã¨é常ã¯ã¿ãªãï¼éååã«2-å°ãããã®ãï¼ ã¨ããã¨ã2-å°ã¯ããã¾ããååã1-å°ãã®ããã ã®ã¤ã³ã¼ã«ãã¾ãã«2-å°ãªã®ã§ããéååã§ã¯ãååã®ã¤ã³ã¼ã«ï¼ããã¯æç2-å°ï¼ä»¥å¤ã®2-å°ã¯ããã¾ããã
ãããã£ã¦ãéååã§ã¯ã以ä¸ã®å½é¡ã¯ãã¹ã¦åããã¨ã§ãã
- $`f = g`$
- $`\id :: f \twoto g`$
- $`\alpha :: f \twoto g`$ ï¼$`\alpha`$ ã¯ä»»æã®2-å°ï¼
ä»»æã®2-å°ãæçã«ãªãã¾ãããä»»æã®1-å°ãæçã«ãªãããã§ã¯ããã¾ããã対象ãéåãã«é¢ãã¦ã¯ã次ã®2ã¤ã®å½é¡ãåããã¨ã§ãã
- $`A = B`$
- $`\id : A \to B`$
ãã¦ã$`X`$ ãéåã®ã¨ãã次ã¯æå³ãããã§ããããï¼
$`\quad \id : x \to y \In X`$
ãã®ã¾ã¾ã§ã¯æå³ä¸æã§ãããéåã¯è¦æºçãcanonicalãã«1-åã¨ã¿ãªãã¾ããéå $`X`$ ã«ï¼è¦æºçã«ï¼å¯¾å¿ããåããããã ãã®ä¸æçè¨æ³ã¨ã㦠$`X^\uparrow`$ ã¨æ¸ãã¾ããå $`X^\uparrow`$ ã®å¯¾è±¡ã¯ãéå $`X`$ ã®è¦ç´ ã§ããå $`X^\uparrow`$ ã®å°ã¯ãæçå°ã ãã§ããæçå°ã ãããæããªãåã¯é¢æ£åãdiscrete categoryãã¨ããã¾ãã
é¢æ£å $`X^\uparrow`$ ã«å¯¾ãã¦ãªã次ã¯æå³ãããã¾ãã
$`\quad \id : x \to y \In X^\uparrow`$
2ã¤ã®k-å°ã®ããã ã«æç(k+1)-å°ããããã¨ãã¤ã³ã¼ã«è¨å·ã§æ¸ããã¨ããç´æã k = 0 ã¨ãã¦é©ç¨ããã¨ï¼
$`\quad x = y \In X^\uparrow`$
éå $`X`$ ã¨å $`X^\uparrow`$ ã®å¯¾å¿ã¯è¦æºçãªã®ã§ãéåã¨åãåä¸è¦ããã°ï¼
$`\quad x = y \In X`$
ã¾ã¨ã
éåè«çã¤ã³ã¼ã«ãå¤å ¸è¿°èªè«ççã¤ã³ã¼ã«ãåè«çã¤ã³ã¼ã«ãããã¤ã§ãæèãã¦åºå¥ãã¦ããããã§ã¯ããã¾ããããåºå¥ããã»ããè¯ããããªå ´é¢ã§ã¯ãåã¯æ¬¡ã®ããã«æ¸ãåãã¦ãã¾ãã
- $`x = y`$ : éåè«çãªã¤ã³ã¼ã«ãå®å®ã®ãªãã§ã®çãã
- $`x = y \On X`$ : å¤å ¸è¿°èªè«ççã¤ã³ã¼ã«ãè«åãã¨ã«ããããã®ã¤ã³ã¼ã«è¿°èª
- $`x = y \In X`$ : éåã¯é¢æ£åã¨ã¿ãªããã¤ã³ã¼ã«ã¯æç1-å°
ä»ã®è§£éã¨ãã¦ï¼ $`X`$ ä¸ã®äºé è¿°èªãé¢ä¿ãã¯ãç´ç©éå $`X\times X`$ ã®é¨åéåã¨ã¿ãªããã¨ãããã®ã§ã対è§éå $`\Delta_X \subseteq X\times X`$ ãã¤ã³ã¼ã«ã®æå³ã¨ãããã¨ãããã¾ãã$`\mbf{B}`$-å¤é¢æ°ã¨é¨åéåã®ä¸å¯¾ä¸å¯¾å¿ãããã®ã§ãå¤å ¸è¿°èªè«ççã¤ã³ã¼ã«è¿°èªã¨å¯¾è§éåã¯æ¬¡ã®ããã«å¯¾å¿ãã¦ãã¾ãã
$`\quad \mrm{Map}(X\times X, \mbf{B}) \ni \mrm{eq}_X
\longleftrightarrow \Delta_X \in \mrm{Pow}(X\times X)
`$
$`\qquad \mrm{eq}_X(x, y)
\longleftrightarrow (x, y) \in \Delta_X
`$
ã¤ã³ã¼ã«è¨å·ï¼æ¨ªäºæ¬æ£ã®è¨å·ï¼ã¨ãã¤ã³ã¼ã«è¨å·ã使ã£ãçå¼ã«ã¯ãè²ã ãªè§£éãããã¾ããã¨ãã«ï¼ãã¤ã§ãã¨ã¯è¨ã£ã¦ãªãï¼ã©ããªè§£éã®ãã¨ã§è°è«ãé²ãã§ããããæèããã»ãããããã¨ãããã¾ãã