éä¼´ç³»ãadjunctionãã®å
¸åçä¾ã¨ããã¨ããã¯ãèªç±å¿å´éä¼´ç³»ãfree-forgetful adjunctionãã§ãããããããã¨ãã«ãªã¼åã»åã«ãªã¼åãå
¸åçã ã¨è¨ããã§ããããéååã§èããã¨ãã¦ãã«ãªã¼åã»åã«ãªã¼åã«ãã次ã®ãã ã»ããååãããã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in } }
`$
$`\quad \mbf{Set}(X\times Y, Z)\cong \mbf{Set}(X, Z^Y)`$
ããã§ãææ°ãç´¯ä¹ãå½¢å¼ã® $`Z^Y`$ ã¯é¢æ°éåãé¢æ°ç©ºé | åå空éãã§ãã
$`\quad Z^Y := \mrm{Map}(Y, Z)`$
ä¸è¨ååã«ãã㦠$`Y = \mbf{1}`$ ï¼$`\mbf{1}`$ ã¯ç¹å®ãããåå éåï¼ã¨ç½®ãã¨ãã«ãªã¼åã»åã«ãªã¼åã®ãã ã»ããååã¯ï¼
$`\quad \mbf{Set}(X\times \mbf{1}, Z)\cong \mbf{Set}(X, Z^\mbf{1})`$
$`X\times \mbf{1} \cong X`$ ã$`Z^\mbf{1}\cong Z`$ ãªã®ã§ãä¸è¨ã®ååã¯é¢ç½ãããã¾ãããããéååã¨ã¯éããªãå $`\cat{C}`$ ã絡ã¾ããã¨å°ãé¢ç½ããªãã¾ãã次ã®ãããªãã ã»ããååãæç«ãã¦ãå ¨ä½ã¨ãã¦éä¼´ç³»ãadjunctionããå½¢æãã¾ãã
$`\quad \cat{C}(X \cdot 1_\cat{C}, B)\cong \mbf{Set}(X, \cat{C}(1_\cat{C}, B) )`$
以ä¸ã«ãé çªã«èª¬æãã¾ãã
å 容ï¼
- é¢æ£ä½å®åãªåã®ä½ãã
- çµå¯¾è±¡ãæã¤åã®ãã¤ã³ãã»ãã
- çµå¯¾è±¡ã®ä½ããé¢æã¨ãã¤ã³ãã»ããé¢æã®éä¼´ç³»
- ã¨ããã§
é¢æ£ä½å®åãªåã®ä½ãã
$`X`$ ãéåã¨ãã¦ãåå $`F: X\to |\cat{C}|`$ ã¯ãé¢æ£åã¨ã¿ãªãã $`X`$ ããã®é¢æã ã¨è¨ããã®ã§ã次ã®ããã«è§£éãã¾ãã
$`\text{For }X \in |\mbf{Set}|\\
\quad F: (X \text{ as category}) \to \cat{C} \In \bf{CAT}`$
$`(X \text{ as category})`$ ãåã« $`X`$ ã¨ãæ¸ãã¾ãã
å $`\cat{C}`$ ã¯ãä»»æã®âéåï¼é¢æ£åâããã®é¢æãä½æ¥µéãæã¤åï¼é¢æ£ä½å®åãªåï¼ã ã¨ãã¾ãã
éå $`X`$ ã¨å $`\cat{C}`$ ã®å¯¾è±¡ $`A`$ ã«å¯¾ãã¦ãä½ãããcopowerã $`X\cdot A`$ ãå®ç¾©ãã¾ããä½ããã¯ããããpowerã $`A^X`$ ã®å対ã§ãããä»ããã§ã¯ä½ããã ãå®ç¾©ãã¾ãã
ä¸è¬ã«ãå $`\cat{D}, \cat{E}`$ 㨠$`\cat{E}`$ ã®å¯¾è±¡ $`E`$ ã«å¯¾ãã¦ãå®æ°é¢æãconstant functorãã次ã®ããã«æ¸ãã¾ãã
$`\quad K_{\cat{D},\cat{E}}^E : \cat{D}\to \cat{E}\In \mbf{CAT}\\
\text{For } A \in |\cat{D}|\\
\quad K_{\cat{D},\cat{E}}^E(A) := E\\
\text{For } f: A\to B \In \cat{D}\\
\quad K_{\cat{D},\cat{E}}^E(f) := \id_E
`$
æå K ã使ãã®ã¯ããã¤ãèª Konstant ããã§ãããã
ãã¦ãä½ããã§ããã$`X\cdot A`$ ã®å ·ä½çãªæ§æã¯æ¬¡ã®ããã§ãã
$`\quad X\cdot A := \mrm{colim}\, K_{X, \cat{C}}^A`$
$`X\cdot A`$ ã¨ã¯ãã対象 $`A`$ ã® $`X`$-ååã®ã³ãã¼ã®ç´åãã ã¨è¨ãã¾ãããã£ã¦ã次ã®ããã«æ¸ããã¨ãããã¾ãã
$`\quad X\cdot A := {\displaystyle \sum_{x \in X} A}`$
ãã®å ·ä½çæ§æã¯ã$`\cat{C}`$ ãé¢æ£ä½å®åã§ããï¼ä½æ¥µéãåå¨ããï¼ãã¨ã«ä¾æ ãã¦ãã¾ãã
ä½ããã®å ¬ççãªç¹å¾´ä»ãã¯ã以ä¸ã®ãããªãã ã»ããååã§ä¸ããããéä¼´ç³»ãåå¨ãããã¨ã§ãã
$`\quad \cat{C}(X\cdot A, B) \cong \mbf{Set}(X, \cat{C}(A, B))`$
æ½è±¡çä½ããã¯éåå以å¤ã§ãå®ç¾©ã§ãã¾ããnLabé ç® copower ãåç §ãã¦ãã ããã
çµå¯¾è±¡ãæã¤åã®ãã¤ã³ãã»ãã
å $`\cat{C}`$ ã¯çµå¯¾è±¡ãæã¤ã¨ãã¦ãç¹å®ãããçµå¯¾è±¡ã $`1_\cat{C}`$ ã¨æ¸ãã¾ããå $`\cat{C}`$ ãäºè§£ããã¦ãããªãããã®çµå¯¾è±¡ãåã« $`1`$ ã¨æ¸ãã¾ããããã¯ããæ°ã®ã¤ããã¨ç´ããããã§ãããã注æãã¦ãã ãããã¨ãé¡ãããããã§ä½¿ãã¾ãã
çµå¯¾è±¡ããã®å°ã¯ãã¤ã³ãã£ã³ã°å°ãpointing morphismãããããã¯åã«ãã¤ã³ããpointãã¨å¼ã³ã¾ããéååã§èããã°ããã¤ã³ãã¯éåã®è¦ç´ ã¨åä¸è¦å¯è½ãªã®ã§ããããã«âãã¤ã³ãâã§ãããã¤ã³ããããã¤ã§ãâéåã®è¦ç´ ã®ãããªã¢ãâã ã¨ã¯éããªãã®ã§æ³¨æãã¦ãã ãããä¾ãã°ãå®ãã¯ãã«ç©ºéã®å $`\mbf{Vect}_\mbf{R}`$ ã®ãã¤ã³ãã¯ã¼ããã¯ãã«ããããã¾ãã*1ã
対象 $`A`$ ã®ãã¤ã³ãã®å ¨ä½ã¯ã次ã®ãã ã»ããã§ãã
$`\quad \cat{C}(1, A)`$
$`A`$ ã®ãã¤ã³ãã®éåã ããããã¤ã³ãã»ãããpoint setãã§ãã
ãã¤ã³ãã»ããã¯ããã ã»ããåé¢æãhomset bifunctorãã®ç¬¬ä¸å¼æ°ã $`1`$ ã«åºå®ãããã®ãªã®ã§ãå ±å¤é¢æã«ãªãã¾ãã
$`\quad \cat{C}(1, \hyp) : \cat{C} \to \mbf{Set} \In \mbf{CAT}`$
çµå¯¾è±¡ã®ä½ããé¢æã¨ãã¤ã³ãã»ããé¢æã®éä¼´ç³»
ãã®è¨äºã§ã¯ãä½ããããã¤ã³ãã»ãããå ·ä½çã«å®ç¾©ãã¾ããããã®å ·ä½çãªå®ç¾©ã«åºã¥ãã¦ã次ã®ãã ã»ããååã示ããã¨ãåºæ¥ã¾ãã
$`\quad \cat{C}(X\cdot A, B) \cong \mbf{Set}(X, \cat{C}(A, B))`$
ãã®ååãä¸ããååã $`\Phi^A_{X, B}`$ ã¨ãã¾ãã
$`\quad \Phi^A_{X, B} : \cat{C}(X\cdot A, B) \to \mbf{Set}(X, \cat{C}(A, B)) \In \mbf{Set}`$
ãããååã§ãããã¨ããã次ã®ãããªåæ¹å対å¿ããããã¨ã«ãªãã¾ãã
$`\quad \cat{C}(X\cdot A, B) \ni f \longleftrightarrow \varphi \in \mbf{Set}(X, \cat{C}(A, B))`$
$`X\cdot A`$ ãä½æ¥µéï¼ä½éã®ä½é ç¹ï¼ã§å®ç¾©ããã¦ããã®ã§ã$`f: X\cdot A \to B`$ ã¯ã次ã®ãããªå°ã®æã¨åä¸è¦ã§ãã¾ãã
$`\quad (f_x : A \to B \In \cat{C})_{x\in X}`$
$`\mbf{Set}(X, \cat{C}(A, B))`$ ã®è¦ç´ ãåãå½¢ã®å°ã®æã¨ãã¦æ¸ããã®ã§ãéåã®è¦ç´ éã®ããã ã®ä¸å¯¾ä¸å¯¾å¿ã«ãªãã¾ãã
ãã ã»ããååãæ´åçã»ç³»çµ±çã«ä¸ãããããã¨ã示ãå¿ è¦ãããã¾ãããå²æãã¾ãã
å $`\cat{C}`$ ã«ç¹å®ãããçµå¯¾è±¡ $`1 = 1_\cat{C}`$ ãããã¨ãããã ã»ããååã¯æ¬¡ã®å½¢ã«ãªãã¾ãã
$`\quad \cat{C}(X\cdot 1, B) \cong \mbf{Set}(X, \cat{C}(1, B)) \In \mbf{Set}`$
å ¨ä½ã¨ãã¦éä¼´ç³»ã«ãªãã®ã§ã次ã®ããã«æ¸ãã¾ãã
$`\quad (\hyp \cdot 1) \dashv \cat{C}(1, \hyp)`$
ãã®éä¼´ç³»ã¯æ¬¡ã®ããã«è¨ãã¾ãã
- å·¦éä¼´é¢æã¯ãéåã $`\cat{C}`$ ã®å¯¾è±¡ã¨ã¿ãªãé¢æ
- å³éä¼´é¢æã¯ã$`\cat{C}`$ ã®å¯¾è±¡ãéåããã¤ã³ãã»ãããã¨ã¿ãªãé¢æ
ã¨ããã§
ãªãã§ãã®è©±ããããã¨ããã¨ãã¨ããè«æã§ä½ãããã¢ã¹ã¿ãªã¹ã¯è¨å· $`*`$ ã§æ¸ãã¦ãã£ã¦ãåè¦ã§æå³ä¸æã ã£ãããã§ãã$`\hyp * 1`$ ã $`\cat{C}(1, \hyp)`$ ã®éä¼´ã¨æ¸ãã¦ãã£ã¦ãããã¼ãä½ããã®ä¸ç½®æ¼ç®åè¨å·ãã¢ã¹ã¿ãªã¹ã¯ã ã£ããã ãã¨ãããã¾ããã
éååã®ä»£ããã«ååã«è¯ãå*2 $`\cat{V}`$ ãèãã¦ã$`\cat{V}`$-è±ç©£åã®ã»ããã£ã³ã°ã§ããä½ããé¢æã¨ãã é¢æã®éä¼´ç³»ã®è©±ãã§ãã¾ãã
*1:ãã¯ãã«ç©ºéã®åã§ã¯ãçµå¯¾è±¡ããã®å°ã§ã¯ãªãã¦ããã³ã½ã«ç©ã®ã¢ãã¤ãåä½ããã®å°ãèããã®ãé©åã§ãã
*2:ååã«è¯ãåãã³ã¹ã¢ã¹ãcosmosãã¨å¼ãã ããã¾ããã³ã¹ã¢ã¹ã®å®ç¾©ã¯äººã«ããéãã¾ãããããã¼ã»ã³ã¹ã¢ã¹ãBenabou cosmosããå ¸åçã§ãã