ã°ãã¿ã³ãã£ã¼ã¯æ§æã«ã¯éåãã®æ§æããã£ã¦ããããã®ãã¢ãâã¤ã³ããã¯ã¹ä»ãåã®åâã¨âãã¡ã¤ãã¼ä»ãåã®åâã®ååå¤ãä¸ãã¾ãããã³ãã«-ãã¡ããªã¼å¯¾å¿ã¯ãã®ç¹æ®ã±ã¼ã¹ã§ããå層ã¨âè¦ç´ ã®åâã®å¯¾å¿ãç¹æ®ã±ã¼ã¹ã¨ãªãã¾ãããã®ã¸ãã®äºæ
ããã®è¨äºã§æ´çãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\op}{ \mathrm{op} }
\newcommand{\In}{\text{ in }}
\newcommand{\base}[1]{ {{#1}\!\lrcorner} }
\newcommand{\dimU}[2]{ {{#1}\!\updownarrow^{#2}} }
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\u}[1]{\underline{#1}}
\newcommand{\o}[1]{\overline{#1}}
\newcommand{\twoto}{ \Rightarrow }
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\NFProd}[3]{ \mathop{_{#1} \!\underset{#2}{ \times }\,\!_{#3} } }
%\newcommand{\T}[1]{\text{#1} }
%%
%\require{color}
%\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
`$
å 容ï¼
- ãã³ãã«-ãã¡ããªã¼ã®åå¤å¯¾å¿
- è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã³ãã«
- è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã¡ããªã¼
- è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã¡ã¤ãã¼ä»ãå
- è¨æ³ã»æ¦å¿µã®æ´çï¼ ã¤ã³ããã¯ã¹ä»ãå
- ã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æã«ããåå¤å¯¾å¿
ãã³ãã«-ãã¡ããªã¼ã®åå¤å¯¾å¿
ãã³ãã«ã¨ãã¡ããªã¼ã®å 容çãªãã¨ã«é¢ãã¦ã¯ä»¥ä¸ã®éå»è¨äºã¨ãããããªã³ã¯ããã¦ããè¨äºéãåç §ãã¦ãã ããã
$`\cat{C}`$ ãåã¨ãã¦ã$`S \in |{\bf Set}|`$ ã¯éåã ã¨ãã¦ã$`S`$ ä¸ã®$`\cat{C}`$-å¤ãã¡ããªã¼ã®åã¯æ¬¡ã®ããã«å®ç¾©ãã¾ãã
$`\quad \mrm{Fam}[S](\cat{C}) := {\bf CAT}(\dimU{S}{1}, {\bf Set}) \; \In {\bf CAT}\\
\text{Then}\\
\quad |\mrm{Fam}[S](\cat{C})| = {\bf SET}(S, |{\bf Set}|) \; \In {\bf SET}
`$
ããã§ã$`\dimU{S}{1}`$ 㯠$`S`$ ããä½ã£ã é¢æ£åã§ã*1ã$`{\bf CAT}(\dimU{S}{1}, {\bf Set})`$ ã¯ãèªç¶å¤æãå°ã¨ããé¢æåã«ãªãã¾ãããã®ä½ãæ¹ã¯ãå®ã¯Diagæ§æã§ããDiagæ§æã«ã¤ãã¦ã¯ä»¥ä¸ã®éå»è¨äºãåç §ãã¦ãã ããã
- Diagæ§æï¼ åè«çæ§ææ³ã®å æ¬çãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦
- Diagæ§æã®å¤ç¨®ã¨ãã®æ¸ãæ¹
対象 $`X \in |\cat{C}|`$ ã«å¯¾ããã¹ã©ã¤ã¹åããªã¼ãã¼å | over categoryãã $`\cat{C}/X`$ ã¨æ¸ãã¾ããã¹ã©ã¤ã¹åã®å¥ãªå¼ã³åï¼æå³ã¯å¤ãããï¼ã $`X`$ ä¸ã®ãã³ãã«ã®åã§ããã¹ã©ã¤ã¹åã®å¥ãªæ¸ãæ¹ï¼æå³ã¯å¤ãããï¼ã¨ãã¦æ¬¡ãããã¾ãã
$`\quad \mrm{Bun}[X](\cat{C}) := \cat{C}/X \;\In {\bf CAT}`$
$`\cat{C}`$ ã®å¯¾è±¡ $`X`$ ãéåã ã¨ã¯éããªãã®ã§ã$`\mrm{Fam}[X](\cat{C})`$ ã¨æ¸ãã¦ãããã¯ç¡æå³ããç¥ãã¾ããããããã$`\cat{C} = {\bf Set}`$ ã®å ´åãªãã$`\mrm{Fam}[X](\cat{C})`$ ã¯ï¼$`X`$ ãéåãªã®ã§ï¼å¿ ãæå³ããã¡ã¾ããããã©ã«ã㧠$`\cat{C} = {\bf Set}`$ ã¨ç½®ãã¦ã次ã®ç¥è¨ãæ¡ç¨ãã¾ãã
$`\quad {\bf Fam}[S] := \mrm{Fam}[S]({\bf Set})\;\In {\bf CAT}\\
\quad {\bf Bun}[S] := \mrm{Bun}[S]({\bf Set})\;\In {\bf CAT}
`$
ããã«ã次ã®ååå¤ãããã¾ãã
$`\quad {\bf Fam}[S] \cong {\bf Bun}[S] \In {\bf CAT}`$
ãã®ååå¤ãä¸ããé¢æã $`\mrm{Gr}_S, \mrm{Gr}_S^{-1}`$ ã¨ãã¾ã*2ã
$`\quad \xymatrix@C+1pc{
{{\bf Fam}[S]} \ar@/^1pc/[r]^{\mrm{Gr}_S}
& {{\bf Bun}[S]} \ar@/^1pc/[l]^{\mrm{Gr}_S^{-1}}
}\; \In {\bf CAT}
`$
$`\mrm{Gr}_S^{-1}`$ ã¯ãå³å¯ãªæå³ã§ã® $`\mrm{Gr}_S`$ ã®éé¢æã¨ãããã¨ã§ã¯ããã¾ããã次ã®ãããªå¯éãªèªç¶å¤æ $`\eta, \varepsilon`$ ãåå¨ãããã¨ãããã¨ã§ãã
$`\quad \xymatrix{
{{\bf Fam}[S]} \ar@{=}[r] \ar[d]_{\mrm{Gr_S}}
\ar@{}[dr]|{\underset{\swarrow}{\cong}\, \eta}
& {{\bf Fam}[S]} \ar@{=}[d]
\\
{{\bf Bun}[S]} \ar[r]_{\mrm{Gr}_S^{-1}}
& {{\bf Fam}[S]}
}\\
\quad \In {\bf CAT}
`$
$`\quad \xymatrix{
{{\bf Bun}[S]} \ar@{=}[r] \ar[d]_{\mrm{Gr_S^{-1}}}
\ar@{}[dr]|{\underset{\nearrow}{\cong}\, \varepsilon}
& {{\bf Bun}[S]} \ar@{=}[d]
\\
{{\bf Fam}[S]} \ar[r]_{\mrm{Gr}_S}
& {{\bf Bun}[S]}
}\\
\quad \In {\bf CAT}
`$
ä¸è¨ã¯ããã¼ã¹ãã£ã³ã°å³ã«ãã£ã¦ååå¤ãè¨è¿°ãã¦ãã¾ãããã¼ã¹ãã£ã³ã°å³ã«ããæ³åã®è¨è¿°æ³ã¯ä»¥ä¸ãåç §ãã¦ãã ããã
å¯éèªç¶å¤æã«ããæ³åï¼ã¹ã¼ãæ³åï¼ãããã¹ãã§æ¸ããªãï¼ä»¥ä¸ã®ã¢ã¹ã¿ãªã¹ã¯ã¯é¢æã®å³å¼é çµåè¨å·ï¼ï¼
$`\quad \eta :: \mrm{Id}_{{\bf Fam}[S]} \overset{\cong}{\twoto} \mrm{Gr}_S * \mrm{Gr}_S^{-1}
: {\bf Fam}[S] \to{\bf Fam}[S] \In {\bf CAT}\\
\quad \varepsilon :: \mrm{Gr}_S^{-1} * \mrm{Gr}_S \overset{\cong}{\twoto} \mrm{Id}_{{\bf Bun}[S]}
: {\bf Bun}[S] \to{\bf Bun}[S] \In {\bf CAT}
`$
é¢æ $`\mrm{Gr}_S, \mrm{Gr}_S^{-1}`$ ã®ä¸ä»ãã® $`S`$ ã¯ãæèããæãããªãçç¥ãã¦ãã¾ãã¾ããã
$`\mrm{Gr}`$ ã¯ã°ãã¿ã³ãã£ã¼ã¯æ§æãGrothendieck constructionãã®ç¹å¥ãªå ´åã§ãã$`\mrm{Gr^{-1}}`$ ã¯ãã°ãã¿ã³ãã£ã¼ã¯æ§æã®å¼±ããã¹ã¼ããªãæå³ã§ã®éã«ãªãã®ã§ãéã°ãã¿ã³ãã£ã¼ã¯æ§æãinverse Grothendieck constructionãã§ãã
ã°ãã¿ã³ãã£ã¼ã¯æ§æã¨éã°ãã¿ã³ãã£ã¼ã¯æ§æã¯ããã³ãã«ã®åã¨ãã¡ããªã¼ã®åã®âååå¤â対å¿ãä¸ãã¾ãã以ä¸ãåå¤å¯¾å¿ãã¯ãâååå¤âãä¸ãã対å¿ï¼é¢æã®ãã¢ï¼ã®æå³ã§ãã
è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã³ãã«
ãã³ãã«-ãã¡ããªã¼å¯¾å¿ã¯ãã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æã®ç¹å¥ãªå ´åã§ãã£ã¦ãããä¸è¬çãªå ´åã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æãããã¾ããç¹å¥ãªå ´åã¨ä¸è¬çãªå ´åãã¾ã¨ãã¦è¨è¿°ããããã«ãè¨æ³ã»æ¦å¿µãæ´çãã¾ãã
ãã³ãã«ï¼ãã³ãã«ã®åã®å¯¾è±¡ï¼ã $`A`$ ãªã©ã®ã©ãã³æå大æåã§è¡¨ãã¦ããã³ãã«ã®æ§æç´ ãconstituent | componentãã¯æ¬¡ã®ããã«æ¸ãã¾ãã
- $`\base{A}`$ ï¼ $`A`$ ã®ãã¼ã¹éåãbase setã*3
- $`\o{A}`$ ï¼ $`A`$ ã®ãã¼ã¿ã«éåãtotal set | entire setã
- $`\pi^{A} : \o{A} \to \base{A} \In {\bf Set}`$ ï¼ $`A`$ ã®å°å½±ãprojectionã
ãå°å½±ãã¨å¼ã¶ããã¨ãã£ã¦å ¨å°ã®ä»®å®ã¯ãã¦ãã¾ãããå°å½±ã¯ä»»æã®ååã§ãã
ãã³ãã« $`A`$ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad A = (\base{A}, \o{A}, \pi^A)`$
ãã®æ¸ãæ¹ã¯ãåé·ãªè¡¨ç¾ã§ãã$`\pi^A`$ ã決ã¾ãã°ä»ã¯æ±ºã¾ã£ã¦ãã¾ãããã§ãã
$`\quad \base{A} := \mrm{cod}(\pi^A)\\
\quad \o{A} := \mrm{dom}(\pi^A)\\
\quad A := (\pi^A : \o{A} \to \base{A} \In {\bf Set})
`$
ããããã¨ãã«åé·ãªè¡¨ç¾ã®ã»ãã便å©ãªãã¨ãããã¾ãã
åä¸ã®ãã¼ã¹éåãæã¤ãã³ãã«ã ãã§ã¯ãªãã¦ãç°ãªããã¼ã¹éåãæã¤ãã³ãã«ã®ããã ã®æºååå°ããã³ãã«å° | bundle morphismããèãããã¨ãã§ãã¾ãã
$`\quad A = (\base{A}, \o{A}, \pi^A)`$
$`\quad B = (\base{B}, \o{B}, \pi^B)`$
ã2ã¤ã®ãã³ãã«ã¨ãã¦ããã®ããã ã®ãã³ãã«å° $`\varphi`$ ã¯æ¬¡ã®æ§æç´ ãããªãã¾ãã
- $`\base{\varphi} :\base{A} \to \base{B} \In{\bf Set}`$ ï¼ $`\varphi`$ ã®ãã¼ã¹ãã¼ããbase partã
- $`\o{\varphi} : \o{A} \to \o{B} \In{\bf Set}`$ ï¼ $`\varphi`$ ã®ãã¼ã¿ã«ãã¼ããtotal partã
ãæ§æç´ ããæåãããã¼ããã¯å義èªã§ããã使ãåãã¦ããã®ã¯ç¿æ £ï¼æ´å²ççµç·¯ã§ãç¹ã«æå³ã¯ããã¾ããã
ãã³ãã«å° $`\varphi`$ ã¯æ¬¡ã®æ³åãæºããã¾ããåè§å½¢å ã®ã¤ã³ã¼ã«è¨å·ãå³å¼ã®å¯ææ§ã表ãã¾ãï¼ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ // å³å¼ã«ããæ³åã®è¨è¿°ãåç §ï¼ã
$`\quad \xymatrix{
\o{A} \ar[d]_{\pi^A} \ar[r]^{\o{\varphi}}
\ar@{}[dr]|{ {=} }
& \o{B} \ar[d]^{\pi^B}
\\
\base{A} \ar[r]_{\base{\varphi}}
& \base{B}
}\\
\quad \In {\bf Set}
`$
ãã³ãã« $`B`$ 㨠$`f:\base{A} \to \base{B} \In {\bf Set}`$ ã«å¯¾ãã¦ã$`B`$ ã® $`f`$ ã«ãããã¡ã¤ãã¼å¼ãæ»ããfiber pullbackã $`f^\# B`$ ã¯æ¬¡ã®ããã«å®ç¾©ãã¾ãï¼ããã¡ã¤ãã¼ã®è¨ç®ã®åæ©ã¨ãã¦ã®ãã«ããã¯å ¬å¼ ãåç §ï¼ã
$`\quad f^\# B := (\base{A}, (\base{A} \NFProd{f}{\base{B}}{\pi^B} \o{B}), f^\# (\pi^B) )`$
ãã®å®ç¾©ã¯ã次ã®ãã«ããã¯å³å¼ã«åºã¥ãã¦ãã¾ãã
$`\quad \xymatrix {
{ \base{A} \NFProd{f}{ \base{B} }{\pi^B} \o{B} }
\ar[r]_{ } \ar[d]_{ f^\# (\pi^B)}
\ar@{}[dr]|{\text{p.b.}}
& \o{B} \ar[d]^{\pi^B}
\\
\base{A} \ar[r]_{f}
& \base{B}
}\\
\quad \In {\bf Set}
`$
ãã³ãã«å° $`\varphi`$ ã¯æ¬¡ã®å½¢ã«ãæ¸ãã¾ãã
$`\quad \varphi = (\base{\varphi}, \varphi^\flat)
`$
ããã§ã$`\varphi^\flat`$ ã¯ãã³ãã«å°ã®ãã¡ã¤ãã¼ãã¼ããfiber partãã§æ¬¡ã®æ³åãæºããã¾ãã
$`\quad \xymatrix {
\o{A} \ar[r]^-{\varphi^\flat} \ar[d]_{\pi^A}
\ar@{}[dr]|{=}
& { f^\# B}
\ar[d]^{\pi^{f^\# B} = \,\base{\varphi}^\#(\pi^B) }
\\
\base{A} \ar@{=}[r]
& \base{A}
}\\
\quad \In {\bf Set}
`$
ãã¼ã¹éåãåºå®ããªããã¹ã¦ã®éåãã³ãã«ï¼éååã«ããããã³ãã«ï¼ã対象ã¨ããåã $`{\bf Bun}`$ ã¨æ¸ãã¾ããå $`{\bf Bun}`$ ã¯ãéååããä½ã£ãã¢ãã¼åãarrow categoryãã¨åãåã§ããåååãååå¤ã§ã¯ãªãã¦åä¸ãªåã§ãã
$`\quad {\bf Bun} = \mrm{Arr}({\bf Set})`$
ã¢ãã¼åã«ã¤ãã¦ã¯ã以ä¸ã®éå»è¨äºã§èª¬æãã¦ãã¾ãã
è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã¡ããªã¼
以ä¸ããã¡ããªã¼ã¯éååã«å¤ãåããã¡ããªã¼ã®ãã¨ã ã¨ãã¾ãããã¡ããªã¼ï¼ãã¡ããªã¼ã®åã®å¯¾è±¡ï¼ã $`F`$ ãªã©ã®ã©ãã³æå大æåã§è¡¨ãã¦ããã¡ããªã¼ã®æ§æç´ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
- $`\base{F}`$ ï¼ $`F`$ ã®ã¤ã³ããã·ã³ã°éåãindexing set | ãã¼ã¹éå | base setã
- $`F`$ ï¼ ååã¨ãã¦ã® $`F`$ ãã®ãã®
ãã¡ããªã¼ $`F`$ ã¯æ¬¡ã®ããã«ãæ¸ãã¾ãã
$`\quad F = (\base{F}, F)`$
ãã®æ¸ãæ¹ãåé·ã§ãããã$`F`$ ã®åã§ããã¤ã³ããã·ã³ã°éåããã¼ã¹éåããæ示ãã¦ããã¨ä¾¿å©ãªãã¨ãããã¾ãã
åä¸ã®ã¤ã³ããã·ã³ã°éåããã¼ã¹éåããæã¤ãã¡ããªã¼ã ãã§ã¯ãªãã¦ãç°ãªãã¤ã³ããã·ã³ã°éåããã¼ã¹éåããæã¤ãã¡ããªã¼ã®ããã ã®æºååå°ããã¡ããªã¼å° | family morphismããèãããã¨ãã§ãã¾ãã
$`\quad F = (\base{F}, F)`$
$`\quad G = (\base{G}, G)`$
ã2ã¤ã®ãã¡ããªã¼ã¨ãã¦ããã®ããã ã®ãã¡ããªã¼å° $`\alpha`$ ã¯æ¬¡ã®æ§æç´ ãããªãã¾ãã
- $`\base{\alpha} :\base{F} \to \base{G} \In{\bf Set}`$ ï¼ $`\alpha`$ ã®ãã¼ã¹ãã¼ããbase partã
- $`\alpha^\flat : F \to \base{\alpha}^*(G) \In {\bf Fam}[\base{F}]`$ ï¼ $`\alpha`$ ã®ãã¡ã¤ãã¼ãã¼ããfiber partã
ããã§ã$`\base{\alpha}^*(G)`$ ã¯ã$`G`$ ã® $`\base{\alpha}`$ ã«ãããã¬çµåå¼ãæ»ããpre-composition pullbackãã§ãã
$`\quad \base{\alpha}^*(G) := \base{\alpha} ; G : \base{F} \to |{\bf Set}| \In {\bf SET}`$
ãã¡ã¤ãã¼ãã¼ã $`\alpha^\flat`$ ã¯èªç¶å¤æãªã®ã§ã次ã®ãããªæåãæã¡ã¾ãã
$`\text{For }a\in \base{F}\\
\quad \alpha^\flat_a : F(a) \to G(\base{\alpha}(a) ) \In {\bf Set}
`$
è¨å·ã®ä¹±ç¨ã§ã$`\alpha^\flat`$ ãåã« $`\alpha`$ ã¨æ¸ããã¨ãããã¾ããããã«ã$`\base{\alpha}`$ ãåã« $`\alpha`$ ã¨ãªã¼ãã¼ãã¼ãï¼è¨å·ã®å¤ç¾©ç使ç¨ï¼ãããã¨ãããã¾ããä¹±ç¨ã»ãªã¼ãã¼ãã¼ãããã¨ãç°¡æ½ã«æ¸ãã¾ãã
$`\text{For }a\in \base{F}\\
\quad \alpha_a : F(a) \to G(\alpha(a)) \In {\bf Set}
`$
$`\alpha^\flat`$ ã¯èªç¶å¤æã§ããã$`\base{F}`$ ãé¢æ£åï¼äºå®ä¸ãåãªãéåï¼ãªã®ã§ãèªç¶æ§ãnaturalityãã®æ¡ä»¶ã¯èªæã«æç«ãã¾ãã
ã¤ã³ããã·ã³ã°éåããã¼ã¹éåããåºå®ããªããã¹ã¦ã®éåãã¡ããªã¼ã対象ã¨ããåã $`{\bf Fam}`$ ã¨æ¸ãã¾ããä¸è¬çãªã°ãã¿ã³ãã£ã¼ã¯æ§æãåæï¼å åãï¼ãã¦è¨ãã°ã$`{\bf Fam}`$ ã¯ãã¤ã³ããã¯ã¹ä»ãå $`{\bf Fam}[\hyp]`$ ã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã§ãã
$`\quad {\bf Fam} := {\displaystyle \int_{{\bf Set}} {\bf Fam}[\hyp] }`$
è¨æ³ã»æ¦å¿µã®æ´çï¼ ãã¡ã¤ãã¼ä»ãå
次ã¯ãã¹ã¦å義èªã§ãã
- ãã¡ã¤ãã¼ä»ãåã{fibered | fibred} categoryã
- åã®ãã¡ã¤ãã¬ã¼ã·ã§ã³ãfibration of categoriesã
- ã°ãã¿ã³ãã£ã¼ã¯ã»ãã¡ã¤ãã¬ã¼ã·ã§ã³ãGrothendieck fibrationã
ããã§ã¯ãããã¡ã¤ãã¼ä»ãåãã¾ãã¯ãåã«ããã¡ã¤ãã¬ã¼ã·ã§ã³ãã使ãã¾ããå¼ã³åã¯æ±ºãã¾ããããã¡ã¤ãã¼ä»ãåã®å 容ç説æã¯ããã§ã¯ãã¾ããã
ãã¡ã¤ãã¼ä»ãåããã¡ã¤ãã¬ã¼ã·ã§ã³ãã $`\cat{C}`$ ãªã©ã®ã«ãªã°ã©ãã£ã¼ä½æåã§è¡¨ãã¦ããã¡ã¤ãã¼ä»ãåã®æ§æç´ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
- $`\base{\cat{C}}`$ ï¼ $`\cat{C}`$ ã®ãã¼ã¹åãbase categoryã
- $`\o{\cat{C}}`$ ï¼ $`\cat{C}`$ ã®ãã¼ã¿ã«åãtotal category | entire categoryã
- $`\pi^{\cat{C}} : \o{\cat{C}} \to \base{\cat{C}} \In {\bf CAT}`$ ï¼ $`\cat{C}`$ ã®å°å½±é¢æãprojection functorã
ãã¼ã¹å°ï¼ãã¼ã¹åã®å°ï¼ãããã¼ã¿ã«åã®ãã«ã«ãå°ãCartesian morphismãã«æã¡ä¸ãå¯è½ã§ãããã¨ããæ¡ä»¶ãä»ãã¾ãï¼è©³ç´°ã¯å²æï¼ã
ãã¡ã¤ãã¼ä»ãåããã¡ã¤ãã¬ã¼ã·ã§ã³ã $`\cat{C}`$ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \cat{C} = (\base{\cat{C}}, \o{\cat{C}}, \pi^\cat{C})`$
$`\pi^\cat{C}`$ ã決ã¾ãã°ä»ã¯æ±ºã¾ã£ã¦ãã¾ãã®ã§ããã®æ¸ãæ¹ã¯åé·ãªè¡¨ç¾ã§ãã
ç°ãªãï¼ããç¥ããªãï¼ãã¼ã¹åãæã¤ãã¡ã¤ãã¼ä»ãåã®ããã ã®æºååé¢æãmorphism between fibered categoriesãã¯ãã¡ã¤ãã¼ä»ãé¢æã{fibered | fibred} functorãã¨å¼ã³ã¾ãã
$`\quad \cat{C} = (\base{\cat{C}}, \o{\cat{C}}, \pi^\cat{C})`$
$`\quad \cat{D} = (\base{\cat{D}}, \o{\cat{D}}, \pi^\cat{D})`$
ã2ã¤ã®ãã¡ã¤ãã¼ä»ãåã¨ãã¦ããã®ããã ã®ãã¡ã¤ãã¼ä»ãé¢æ $`\Phi`$ ã¯æ¬¡ã®æ§æç´ ãããªãã¾ãã
- $`\base{\Phi} :\base{\cat{C}} \to \base{\cat{D}} \In{\bf CAT}`$ ï¼ $`\Phi`$ ã®ãã¼ã¹ãã¼ããbase partã
- $`\o{\Phi} : \o{\cat{C}} \to \o{\cat{D}} \In{\bf CAT}`$ ï¼ $`\Phi`$ ã®ãã¼ã¿ã«ãã¼ããtotal partã
ãããã¯æ¬¡ã®å¯ææ§ãæºããã¾ããã¤ã³ã¼ã«è¨å·ã¯ãåè§å½¢ãå¯æã§ãããã¨ã示ãã¾ãã
$`\quad \xymatrix{
\o{\cat{C}} \ar[d]_{\pi^\cat{C}} \ar[r]^{\o{\Phi}}
\ar@{}[dr]|{=}
& \o{\cat{D}} \ar[d]^{\pi^\cat{D}}
\\
\base{\cat{C}} \ar[r]_{\base{\Phi}}
& \base{\cat{D}}
}\\
\quad \In {\bf CAT}`$
ããã«ã$`\o{\Phi}`$ ã¯ã$`\o{\cat{C}}`$ ã®ãã«ã«ãå°ã $`\o{\cat{D}}`$ ã®ãã«ã«ãå°ã«ç§»ãã¾ãã
$`F: {\cat{A}} \to \base{\cat{D}}`$ ãä»»æã®é¢æã¨ãã¦ããã¡ã¤ãã¼ä»ãå $`\cat{D}`$ ã«å¯¾ãã¦ä½ã£ã以ä¸ã®ã³ã¹ãã³ããã«ããã¯å³å¼ã«æ¡å¼µã§ãããï¼ãåè«ã«ããããã¬ã¼ã å å¡«åé¡ããåç §ï¼ãåé¡ã¨ãªãã¾ãã
$`\quad \xymatrix{
{}
& \o{\cat{D}} \ar[d]^{\pi^\cat{D}}
\\
\cat{A} \ar[r]_{F}
& \base{\cat{D}}
}\\
\quad \In {\bf CAT}
`$
å³å¯2-å $`{\bf CAT}`$ ã«ããããã«ããã¯ãèããã®ã§ã1-åã¨åãã¨ããããã«ã¯ããã¾ããããããã1-åã®ãã«ããã¯ã«è¿ãå®ç¾©ãæ¡ç¨ããã¨ããã¡ã¤ãã¼ä»ãå $`\cat{D}`$ ãé¢æ $`F`$ ã«æ²¿ã£ã¦å¼ãæ»ãããã¡ã¤ãã¼ä»ãå $`F^\# \cat{D}`$ ãæ§æã§ãã¾ãã
ã¾ãã次ã®ãããªãã¡ã¤ãã¼ä»ãåã®é£éãããåã«å°å½±é¢æãçµåãåæããããã¨ã§æ°ãããã¡ã¤ãã¼ä»ãåãä½ãã¾ãã
$`\quad \xymatrix{
\o{\cat{C}} \ar[d]^{\pi^\cat{C}}
\\
{\base{\cat{C}} = \o{\cat{D}} } \ar[d]^{\pi^\cat{D}}
\\
\base{\cat{D}}
}\\
\quad \In {\bf CAT}
`$
ã¤ã¾ãããã¡ã¤ãã¼ä»ãåï¼ã®å°å½±é¢æï¼å ¨ä½ã®æã¯ã2-å $`{\bf CAT}`$ å ã«ããã¦ããã¡ã¤ãã¼å¼ãæ»ãã¨çµåã«é¢ãã¦éãããclosed | å®å®ãã | stableãæãå½¢æãã¾ãããã®æ§è³ªãããã®ã§ããã¡ã¤ãã¼ä»ãåéã¯ãéåãã³ãã«éã¨ã»ã¼åãããã«æ±ãã¾ãã次ã®è¨æ³ã»æ¦å¿µã¯æå³ãæã¡ã¾ãã
- $`F^\# \cat{D}`$ ï¼ ãã¡ã¤ãã¼ä»ãå $`\cat{D}`$ ããé¢æ $`F`$ ã«ãããã¡ã¤ãã¼å¼ãæ»ããããã¡ã¤ãã¼ä»ãå
- $`\Phi = (\base{\Phi}, \Phi^\flat)`$ ï¼ ãã¡ã¤ãã¼ä»ãé¢æã®ããã¼ã¹ãã¼ãã¨ãã¡ã¤ãã¼ãã¼ãã«ãã表示
ãã¡ã¤ãã¼ä»ãåã®å ¨ä½ãèãããã¨ãã§ãã¾ããã1-åã¨ãã¦çµç¹åãããã2-åã¨ãã¦çµç¹åãããã§è©±ãå¤ãã£ã¦ãã¾ãããã¡ãã1-åã¬ãã«ã®æ§æã®ã»ããç°¡åã§ãã
$`{_1 {\bf FibCAT}}[\cat{A}]`$ ã¯ãå $`\cat{A}`$ ããã¼ã¹åã¨ãããã¡ã¤ãã¼ä»ãåéã®1-åã¨ãã¾ããå°ã¯ãã¼ã¹åãåºå®ãããã¡ã¤ãã¼ä»ãé¢æã§ããå·¦ä¸ã® $`1`$ ã¯ã1-åã§ãããã¨ã示ãã¦ãã¾ãã$`{_1 {\bf FibCAT}}`$ ã¯ããã¼ã¹åãåºå®ããªããã¹ã¦ã®ãã¡ã¤ãã¼ä»ãåéã®1-åã§ãã
1-åã¬ãã«ãªããé常ã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã使ããã®ã§ã次ã®å®ç¾©ãå¯è½ã§ãã
$`\quad {_1{\bf FibCAT}} := {\displaystyle \int_{\dimU{\bf CAT}{1}} {_1{\bf FibCAT}}[\hyp] }`$
è¨æ³ã»æ¦å¿µã®æ´çï¼ ã¤ã³ããã¯ã¹ä»ãå
ã¤ã³ããã¯ã¹ä»ãåã«é¢ããå 容ç説æã¯ããã§ã¯ãã¾ãããã¤ã³ããã¯ã¹ä»ãåã«é¢ããæ¯è¼çæ°ããè¨äºã ã¨ä»¥ä¸ãããã¾ãã
- æè¿ã®åçè«ï¼ æ¡å¼µå æ¬æ§é ãæã£ãã¤ã³ããã¯ã¹ä»ãå // ã¤ã³ããã¯ã¹ä»ãå
- 2éã¤ã³ããã¯ã¹ä»ãåã¨åã©ãã¯ã¹ä½é
ã¤ã³ããã¯ã¹ä»ãåã $`P`$ ãªã©ã®ã©ãã³æå大æåã§è¡¨ãã¦ãã¤ã³ããã¯ã¹ä»ãåã®æ§æç´ ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
- $`\base{P}`$ ï¼ $`P`$ ã®ã¤ã³ããã·ã³ã°åãindexing category | ãã¼ã¹å | base categoryã
- $`P`$ ï¼ é¢æã¨ãã¦ã® $`P`$ ãã®ãã®
ã¤ã³ããã¯ã¹ä»ã $`P`$ ã¯æ¬¡ã®ããã«ãæ¸ãã¾ãã
$`\quad P = (\base{P}, P)\\
\text{Where}\\
\quad P : \base{P}^\op \to \dimU{\bf CAT}{1} \In \mathbb{CAT}
`$
åä¸ã®ã¤ã³ããã·ã³ã°åããã¼ã¹åããæã¤ã¤ã³ããã¯ã¹ä»ãåã ãã§ã¯ãªãã¦ãç°ãªãã¤ã³ããã·ã³ã°åããã¼ã¹åããæã¤ã¤ã³ããã¯ã¹ä»ãåã®ããã ã®æºååå°ãhomomorphism between indexed categoriesããèãããã¨ãã§ãã¾ãã
$`\quad P = (\base{P}, P)`$
$`\quad Q = (\base{Q}, Q)`$
ã2ã¤ã®ã¤ã³ããã¯ã¹ä»ãåã¨ãã¦ããã®ããã ã®æºååå° $`\alpha`$ ã¯æ¬¡ã®æ§æç´ ãããªãã¾ãã
- $`\base{\alpha} :\base{P} \to \base{Q} \In \dimU{\bf CAT}{1}`$ ï¼ $`\alpha`$ ã®ãã¼ã¹ãã¼ããbase partã*4
- $`\alpha^\flat : P \to \base{\alpha}^*(P) \In {\bf IndCAT}[\base{P}]`$ ï¼ $`\alpha`$ ã®ãã¡ã¤ãã¼ãã¼ããfiber partã
ããã§ã$`\base{\alpha}^*(Q)`$ ã¯ã$`Q`$ ã® $`\base{\alpha}`$ ã«ããé¢æã®ãã¬çµåå¼ãæ»ããpre-composition pullbackãã§ããé¢æã®å³å¼é çµåè¨æ³ã¯ã¢ã¹ã¿ãªã¹ã¯ã¨ãã¾ãã
$`\quad \base{\alpha}^*(P) := \base{\alpha}^\op * P : \base{P}^\op \to \dimU{\bf CAT}{1} \In \mathbb{CAT}`$
ãã¡ã¤ãã¼ãã¼ã $`\alpha^\flat`$ ã¯èªç¶å¤æãªã®ã§ã次ã®ãããªæåãæã¡ã¾ãã
$`\text{For }A\in |\base{P}|\\
\quad \alpha^\flat_A : P(A) \to Q(\base{\alpha}(A) ) \In \dimU{\bf CAT}{1}
`$
è¨å·ã®ä¹±ç¨ã¨ãªã¼ãã¼ãã¼ããããã¨ãç°¡æ½ã«æ¸ãã¾ãã
$`\text{For }A\in |\base{P}|\\
\quad \alpha_A : P(A) \to Q(\alpha(A)) \In \dimU{\bf CAT}{1}
`$
èªç¶å¤æ $`\alpha^\flat`$ ã®èªç¶æ§ãnaturalityãã®æ¡ä»¶ã¯ä»¥ä¸ã®å¯æå³å¼ã«ãªãã¾ããç°¡æ½ã«ããããã«ãè¨å·ã®ä¹±ç¨ã¨ãªã¼ãã¼ãã¼ãã使ãã¾ãã
$`\text{For } f:A \to B \In \base{P}\\
\quad \xymatrix{
P(A) \ar[r]^{\alpha_A}
\ar@{}|{=}
& Q(\alpha(A))
\\
P(B) \ar[r]^{\alpha_B} \ar[u]^{P(f)}
& Q(\alpha(B)) \ar[u]_{Q(\alpha(f) ) }
}\\
\quad \In \dimU{\bf CAT}{1}
`$
ã¤ã³ããã·ã³ã°åããã¼ã¹åããåºå®ããªããã¹ã¦ã®ã¤ã³ããã¯ã¹ä»ãåã対象ã¨ããåã $`{\bf IndCAT}`$ ã¨æ¸ãã¾ãã$`{\bf IndCAT}`$ ã¯ãã¤ã³ããã¯ã¹ä»ãå $`{\bf IndCAT}[\hyp]`$ ã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã§ãã
$`\quad {\bf IndCAT} := {\displaystyle \int_{ \dimU{\bf CAT}{1} } {\bf IndCAT}[\hyp] }`$
ã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æã«ããåå¤å¯¾å¿
$`\cat{A}`$ ããµã¤ãºãå°ããã¨ã¯éããªãåã ã¨ãã¦ã$`\mrm{Gr}_\cat{A}, \mrm{Gr}_\cat{A}^{-1}`$ ã¯ã次ã®ååå¤ãä¸ããé¢æï¼ã®ãã¢ï¼ã§ããååå¤ãä¸ãããã¢ã¨ãããã¨ã¯ãåä½ã»ä½åä½ãã¨ãã«å¯éã¨ãªãéä¼´ãã¢ã ã¨ãè¨ãã¾ãã
$`\quad \xymatrix@C+1pc{
{ {\bf IndCAT}[\cat{A}]} \ar@/^1pc/[r]^{\mrm{Gr}_\cat{A} }
& {{\bf ClvFibCAT}[\cat{A}]} \ar@/^1pc/[l]^{\mrm{Gr}_\cat{A}^{-1} }
}\\
\quad \In \dimU{\bf CAT}{1}
`$
ãã®ãã¢ã«ã¤ãã¦èª¬æãã¾ãã
$`{\bf IndCAT}[\cat{A}]`$ ã¯é¢æåãªã®ã§ãåãã£ã¦ããã¢ãã¨ãã¾ãããï¼èª¬æçç¥ï¼ã$`{\bf ClvFibCAT}[\cat{A}]`$ ã¯ãåç¯ã§æ´çãããã¡ã¤ãã¼ä»ãåéã®åã§ããã$`{\bf Clv}`$ ãä»ãã¦ãã¾ãï¼å·¦ä¸ä»ãã® $`1`$ ã¯çç¥ãã¾ããï¼ãããã¯ã"cloven" ã®ãã¨ã§ããããã°å æ¤ç´¢ã§ "cloven" ãæ¢ãã¨ã3ã¤ã®è¨äºãããããã¾ãã
- 14å¹´ã¶ãã«ãã¡ã¤ãã¼ä»ãå
- ãã¡ã¤ãã¬ã¼ã·ã§ã³ã«ããããã«ã«ãæã¡ä¸ãã«ããå¹³è¡ç§»å
- åã®ãã¡ã¤ãã¬ã¼ã·ã§ã³
éå»è¨äºã«ããã¦ãåè© "cleavage" ã®ç¿»è¨³èªã¯ãåéãã¨ãäºè£ãã§ã©ã£ã¡ããããï¼ ã¨ãè¿·ã£ã¦ã¾ãããåè©ã形容è©ãäºè£ãcleavage, clovenãã«ãã¾ããäºè£ã¯ããã¡ã¤ãã¼ä»ãåã«å ·ä½æ§ãæããããã®ã§ããã¡ã¤ãã¼ä»ãåããã¤ã³ããã¯ã¹ä»ãåãæ§æããéã°ãã¿ã³ãã£ã¼ã¯æ§æã確å®ã«ãã¾ããä¸è¨ã®é¢æã®ãã¢ãååå¤ãä¸ãããã¨ã確å®ã«ããããªããäºè£ãã¡ã¤ãã¼ä»ãåãcloven fibered categoryãéï¼ã¨äºè£ãä¿ã¤ãã¡ã¤ãã¼ä»ãé¢æéï¼ã®å $`{\bf ClvFibCAT}[\cat{A}]`$ ã使ãã»ããããã§ãããã
$`\mrm{Gr}_\cat{A}`$ ã¯ãã¤ã³ããã¯ã¹ä»ãå $`P`$ ã«æ¬¡ã®ãããªãã¡ã¤ãã¼ä»ãåã対å¿ããã¾ãã
$`\quad \mrm{Gr}_\cat{A}(P) := (\pi^P : {\displaystyle \left(\int_{ \base{P} } P\right) } \to \base{P} \In
\dimU{\bf CAT}{1} )
`$
ããã§ã$`\pi^P`$ ã¯ãã°ãã¿ã³ãã£ã¼ã¯æ§æã«ä¼´ãæ¨æºçãªå°å½±é¢æã§ããäºè£ãæ§æã§ããã®ã§ã$`\mrm{Gr}_\cat{A}(P)`$ 㯠$`{\bf ClvFibCAT}[\cat{A}]`$ ã®å¯¾è±¡ã«ãªãã¾ãã
ä¸æ¹ã$`\mrm{Gr}_\cat{A}^{-1}`$ ã¯ãäºè£ãã¡ã¤ãã¼ä»ãå $`\cat{C}`$ ã«æ¬¡ã®ãããªã¤ã³ããã¯ã¹ä»ãåã対å¿ããã¾ãã
$`\quad \mrm{Gr}_\cat{A}^{-1}(\cat{C}) := \lambda\, x : \cat{A}. \cat{C}_{@ x}
`$
ããã§ã$`\lambda`$ ã¯ã©ã ãè¨æ³ã®ã©ã ãè¨å·ã§ããå $`\cat{A}`$ ã®å¯¾è±¡ $`A`$ ã«ããã¡ã¤ãã¼ä»ãåã®ãã¡ã¤ãã¼ $`\cat{C}_{@ A} := (\pi^\cat{C})^{-1}(A)`$ ã対å¿ããã¾ãã$`\cat{A}`$ ã®å° $`f`$ ã«ã¯ããã¡ã¤ãã¼éã®âæ°´å¹³æ¹åã®ç§»åâã«ããé¢æ $`\cat{C}_{@ f}`$ ã対å¿ããã¾ãã
ãã³ãã«-ãã¡ããªã¼ã®åå¤å¯¾å¿ãååå¤ãã¯ãã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æã«ããåå¤å¯¾å¿ã®ç¹æ®ã±ã¼ã¹ã§ããã¾ããå層ã¨è¦ç´ ã®åãcategory of elementsãã®åå¤å¯¾å¿ãã°ãã¿ã³ãã£ã¼ã¯æ§æã»éæ§æã«ããåå¤å¯¾å¿ã®ç¹æ®ã±ã¼ã¹ã«ãªãã¾ãã
ãã®è¨äºã§ã¯ã2-å $`{\bf CAT}`$ ã®2-å°ãï¼æçãé¤ãã¦ï¼æ¨ã¦å»ã£ã1-å $`\dimU{\bf CAT}{1}`$ ã§è°è«ãã¾ããããã®ã»ããç°¡åã ããã§ããããããããåºãç¯å²ã®å¿ç¨ã®ããã«ã¯ã2-å $`{\bf CAT}`$ ããã®ã¾ã¾ä½¿ãå¿ è¦ãããã¾ãã2-å°ãå ¥ãã¨ãå½ç¶ã«é¢åã«ãªãã¾ããã¨ããããã¯1-å°ã¾ã§ã«ãã¦ããã¾ããã
*1:è¨å· $`\dimU{\hyp}{k}`$ ã®ä¸è¬çãªæå³ã¯ãåã®æ¬¡å 調æ´ããåç §ã
*2:$`\mrm{Gr}^{-1}`$ ã¯ãããã¡ã¤ãã¼ã®è¨ç®ã®åæ©ã¨ãã¦ã®ãã«ããã¯å ¬å¼ãã§ã¯ãã¡ã¤ãã¼é¢æ $`R`$ ã¨å¼ãã§ããé¢æã§ãã
*3:$`\base{\hyp}`$ ã¨ããæ¸ãæ¹ã¯ããDiagæ§æã®å¤ç¨®ã¨ãã®æ¸ãæ¹ãã§å°å ¥ãããã®ã§ãã
*4:$`\base{\alpha} :\base{P}^\op \to \base{Q}^\op`$ ã¨ãã¦ããã¨ãã»ãã®å°ã楽ã§ãæ··ä¹±ãå°ãªãããç¥ãã¾ããã