æè¿ã®è¨äºããªã³ãã³ã®å®çãã§è¿°ã¹ãããªã³ãã³ãFred Lintonãã«ããï¼ã¨æãããï¼ä»£æ°-ã¢ãã«å¯¾å¿å®çãalgebra-model correspondence theoremããåã«ããªã³ãã³ã®å®çãã¨å¼ã¶ãã¨ã«ãã¾ãã
ãªã³ãã³ã®å®çã®å ·ä½åã®ãªãã§ä¸çªç°¡åã ã¨æãããâå群ã«å¯¾ãããªã³ãã³ã®å®çâãå®ä¾ã¨ãã¦ããªã³ãã³ã®å®çã®æ¦è¦ãè¿°ã¹ã¾ãã
ãªã³ãã³ã®å®çå¨è¾ºã«ã¯ã誤解ãæããmisleading | error-proneããã¨ãããããããããå¨ãã¾ããè½ã¨ãç©´ã ããã¨è¨ã£ã¦ããã§ãããããªã®ã§ãè½ã¨ãç©´ã«è½ã¡ãªãããã®æ³¨æäºé
ãè¿°ã¹ã¾ãã$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\o}[1]{ \overline{#1} }
\newcommand{\u}[1]{ \underline{#1} }
\newcommand{\id}{ \mathrm{id} }
\newcommand{\In}{ \text{ in }}
%\newcommand{\On}{ \text{ on }}
\newcommand{\Iff}{ \Leftrightarrow }
\newcommand{\Imp}{ \Rightarrow }
\newcommand{\op}{ \mathrm{op}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\twoto}{\Rightarrow }
\newcommand{\EQV}{\mathrel{\overset{\sim}{\equiv}} }
\newcommand{\T}[1]{\text{#1} }
\require{color}
\newcommand{\NX}[1]{ \textcolor{orange}{ {#1}} } % New Expression
\newcommand{\KX}[1]{ \textcolor{blue}{#1} } % Known EXpression
`$
å 容ï¼
- å群ã®ææ¨
- å群ã®ææ¨ã®ã¢ãã«
- å群ã®ææ¨ã®ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ãã
- ãªã³ãã³ã®å®ç
- 注æäºé ã¸ã®æ³¨æäºé
- ã»ãªãªã¼
- ã¢ãã«
- ãªãã¬ã¼ã·ã§ã³
- ã³ã³ããã¼ã·ã§ã³
- å ¥ãåã³ã³ããã¼ã·ã§ã³ã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³
- ç©´ãå¤æ°
- è¨ç®
å群ã®ææ¨
å群ã®ææ¨ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\T{signature }\NX{\mrm{Semigroup}}\: \{\\
\quad \T{sort }\NX{U}\\
\quad \T{operation }\NX{m}: U \KX{\times} U \to U\\
\quad \T{equation }\NX{\T{assoc}} :: (m \KX{\times} \KX{\id}_U) \KX{;} m \twoto (\KX{\id}_U \KX{\times} m) \KX{;} m : U \KX{\times} U \KX{\times} U \to U\\
\}
`$
æåè²ã®ç´æã¯ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã¨åãã§ï¼ ãªã¬ã³ã¸è²ã¯ååºã®ååãéè²ã¯æ¢ç¥ã®ååã§ããä¸åãªã¬ã³ã¸è²ã§å°å ¥ããååã¯ããã®å¾ã¯é»ã§æ¸ãã¦ã¾ãã
$`(U\times U)\times U`$ 㨠$`U\times (U\times U)`$ ã®ããã ã®å¤æã§ããçµåå¾åãassociatorã$`\alpha_{U,U,U}`$ ãå¾åã«æ¸ããªã次ã®ããã§ãã
$`\T{signature }\NX{\mrm{Semigroup}}\: \{\\
\quad \T{sort }\NX{U}\\
\quad \T{operation }\NX{m}: U \KX{\times} U \to U\\
\quad \T{equation }\NX{\T{assoc}} :: (m \KX{\times} \KX{\id}_U) \KX{;} m \twoto \KX{\alpha}_{U,U,U} \KX{;} (\KX{\id}_U \KX{\times} m) \KX{;} m : (U \KX{\times} U) \KX{\times} U \to U\\
\}
`$
ãããã®ææ¨ã¯ãç´ç©ããã«ã«ãç©ã $`\times`$ ãæã¤åï¼å ¸åä¾ã¯éååï¼ã§è§£éãããã¨ãåæã«ãã¦ãã¾ããåã§ã¯ãªãã¦è¤åãmulticategory | ãªãã©ãã | operadãã§è§£éããåæãªãã次ã®ãããªææ¨ã«ãªãã¾ãã
$`\T{signature }\NX{\mrm{Semigroup}}\: \{\\
\quad \T{sort }\NX{U}\\
\quad \T{operation }\NX{m}: (U, U) \to U\\
\quad \T{equation }\NX{\T{assoc}} :: m \mathop{\KX{;_1}} m \twoto m \mathop{\KX{;_2}} m : (U, U, U) \to U\\
\}
`$
ãããã¡ã¤ã« $`(U, U)\to U`$ ãæã£ããªãã¬ã¼ã·ã§ã³ $`m`$ ãçµµã«æããªãã¯ã¤åå½¢ Y ã«ãªãã¾ãã3æ¬ã®èãåã¯ã¤ã¤ã¼ | ãã¼ãããæã£ãããã¯ã¹ããã¼ããã§ãããä¸ã®2æ¬ãå ¥åãä¸ã®1æ¬ãåºåã§ãã
çµåæ³å $`\T{assoc}`$ ã®è¨ã£ã¦ãããã¨ãçµµã«æãã¾ããããã¡ããã¨æãã®é¢åã ããã象形æåã使ã£ãã¢ã¹ãã¼ã¢ã¼ãã§å³ç¤ºãã¾ãã
Y ã Y Y â Y
ä¸æ®µã® Yï¼è±¡å½¢æåï¼ããä¸æ®µã®ä¸çªç®ï¼å·¦ï¼ã®å ¥åã«âæ¥ãæ¨ãgraftingãâããæä½ã $`;_1`$ ã§ããä¸æ®µã®ãçªç®ï¼å³ï¼ã®å ¥åã«âæ¥ãæ¨ãgraftingãâããæä½ã¯ $`;_2`$ ã§ãã$`m \mathop{;_1} m`$ ã $`m \mathop{;_2} m`$ ã«å¤å½¢ãæ¸ãæã | æãæãããã¦ãããã¨ããã®ãçµåæ³åã§ããéåãã®å¤å½¢ãæ示çã«å®£è¨ããã¦ã¾ããããããã¹ã¦ã®å¤å½¢ã¯å¯éã§ããããã¨ãæé»ã«ä»®å®ããã¦ãã¾ã*1ã
ã¯ã¤åå½¢ Y ï¼èä»ãããã¯ã¹ï¼ã®èã¯é©å½ã«ä¼¸ã°ãã¦æãã¦ãããã®ã§ãçµåæ³åã¯æ¬¡ã®ããã«æãã¦ããã¾ãã¾ããã
Y I ã I Y Y â Y
ãããªãã$`(m \times \id_U) ; m \twoto (\id_U \times m) ; m`$ ã¨ã®é¢ä¿ãæç½ã§ãããã
$`m:U\times U\to U`$ 㨠$`m:(U, U)\to U`$ ã®éãã¯ãã¿ãã«1å¤æ°é¢æ°ã¨2å¤æ°é¢æ°ã®éãã¨åæ§ãªã®ã§ããããã¿ãã«1å¤æ°é¢æ°ã¨2å¤æ°é¢æ°ã®éããã¯ãªããªãã«ç解ãé£ããããã§ãã以ä¸ã®éå»è¨äºãåèã«ãªãã§ãããã
ã¿ãã«1å¤æ°é¢æ°ï¼ãã«ã«ãåã®å°ï¼ã¨å¤å¤æ°é¢æ°ï¼è¤åããªãã©ãããã®è¤å°ï¼ã¯ç¸äºã«å¤æã¯åºæ¥ã¾ãããããããã«ã¡ãªããã»ãã¡ãªãããããã®ã§ãç¨éã«å¿ãã¦ä½¿ãåãã¾ãããã®è¨äºã§ã¯ãå¤å¤æ°é¢æ°ã®ä¸è¬åã»æ½è±¡åã§ããè¤åããªãã©ãããã®è¤å°ãmultimorphismãã主ã«ä½¿ãã¾ãã
å群ã®ææ¨ã®ã¢ãã«
åç¯ã®ææ¨ã®ãªãã§ãè¤å°ã®ãããã¡ã¤ã« $`m:(U, U) \to U`$ ã使ã£ãææ¨ãèãã¾ããææ¨ã¯ãã½ã¼ãããªãã¬ã¼ã·ã§ã³ãçå¼çæ³åã宣è¨ãã¦ããã ãã§ãå®éã®å群ãå®ç¾©ãã¦ããããã§ã¯ããã¾ããã
å®éã®å群ã¨ã¯ãå ·ä½çã»åå¥ç¹å®ãªä»£æ°ç³»ã§ããå ·ä½çã»åå¥ç¹å®ãªä»£æ°ç³»ãå®ç¾©ããã«ã¯ãã¾ããã½ã¼ãè¨å·ãã½ã¼ãåã $`U`$ ã«å ·ä½çã»åå¥ç¹å®ãªéåãå²ãå½ã¦ãå¿ è¦ãããã¾ããä¸ä¾ã¨ãã¦æ¬¡ã®ããã«å²ãå½ã¦ã¾ãããã
$`\quad U \mapsto \mbf{N}_{\ge 10} = \{n\in \mbf{N} \mid n \ge 10\}`$
ãã®å²ãå½ã¦ã®ãã¨ã§ã$`(U, U)`$ 㯠$`(\mbf{N}_{\ge 10}, \mbf{N}_{\ge 10})`$ ã¨ãªãã¾ãããã®âéåã®ãªã¹ãâã®è§£éã¯ã2å¤æ°é¢æ°ã®å¼æ°ã®ä»æ§ã§ãã第ä¸å¼æ°ã®åã $`\mbf{N}_{\ge 10}`$ ã§ã第äºå¼æ°ã®åãåãã $`\mbf{N}_{\ge 10}`$ ã§ãã
ãªãã¬ã¼ã·ã§ã³è¨å·ããªãã¬ã¼ã·ã§ã³åã $`m`$ ã«ã¯ãå ·ä½çã»åå¥ç¹å®ãªé¢æ°ãååããå²ãå½ã¦ã¾ããå¼æ°ã®å㯠$`(\mbf{N}_{\ge 10}, \mbf{N}_{\ge 10})`$ ã§ãæ»ãå¤ã®å㯠$`\mbf{N}_{\ge 10}`$ ã§ãã2å¤æ°é¢æ°ã§ãããæçµçã«ã¯ã¿ãã«1å¤æ°é¢æ°ã«å¸°çããã®ã§ã$`m`$ ã«å²ãå½ã¦ãé¢æ°ã¯ä¾ãã°æ¬¡ã ã¨ãã¾ãã
$`\quad m \mapsto \mrm{addNat}_{\ge 10}\\
\quad \text{where }\mrm{addNat}_{\ge 10} : \mbf{N}_{\ge 10}\times\mbf{N}_{\ge 10} \to \mbf{N}_{\ge 10} \In \mbf{Set}
`$
ããã§åºã¦ãã $`\mrm{addNat}_{\ge 10}`$ ã¯ãå ·ä½çã»åå¥ç¹å®ãªé¢æ°ã§ãé常ã®èªç¶æ°ã®è¶³ãç®ã10以ä¸ã®èªç¶æ°éã«å¶éããé¢æ°ã§ãã
å群ã®çµåæ³åã表ãè¨å·ãååã$`\T{assoc}`$ ã«ã¯ãå®éã«çå¼ãæç«ããã¨ããäºå®ãå²ãå½ã¦ã¾ããç¥æ§ãªããçå¼ã®æç«ãä¸ç¬ã§ç¢ºèªã§ããã§ãããããæã 人éã¯ç¡ééåã«é¢ããäºå®ãã·ã©ãæ½°ãã§ã¯ç¢ºèªã§ããªãã®ã§ãäºå®ã®è¨¼æ ã¨ãªã証æãæ示ãã¾ããã¤ã¾ããè¨å·ãååã$`\T{assoc}`$ ã«å²ãå½ã¦ãã¹ãã¢ãã¯è¨¼æã§ããä»ã¯ããããã証æã¯ãããã®ã ã¨ãã¾ãã
$`\quad \T{assoc} \mapsto \T{ð}`$
OKãã¼ã¯ ð ã¯ãä¾ãã°ãååãæãã¢ãï¼ åå°ãä¾ã¨ãã¦ãã§ä½¿ã£ã¦ãããã®ã§ãã証æãããã¨æã£ã¦ããã¨ããæå³ã®ãã¼ã¯ã§ããæåã«OKãã¼ã¯ã使ã£ãã®ã¯ãææ§æ§ãæ¸ããï¼ Diagæ§æãäºä¾ã¨ãã¦ãã§ãã
3ã¤ã®å²ãå½ã¦ã®çµ
$`\quad (U \mapsto \mbf{N}_{\ge 10}, m \mapsto \mrm{addNat}_{\ge 10}, \T{assoc} \mapsto \T{ð})`$
ã«ãããå
·ä½çã»åå¥ç¹å®ãªä»£æ°ç³»ã¨ãã¦ã®å群ãå®ç¾©ããã¾ããå群ã®ææ¨ï¼ããèªä½ã§å群ã§ã¯ãªãï¼ããè¦ãã¨ããå
·ä½çã»åå¥ç¹å®ãªå群ã¯ã¢ãã«ãmodelãã¨ããã¾ããã¤ã¾ãã次ã®ããã«è¨ãã¾ãã
- å群ã¨ã¯ãå群ã®ææ¨ã®ã¢ãã«ã§ããã
å ·ä½çã»åå¥ç¹å®ãªå群 $`(U \mapsto \mbf{N}_{\ge 10}, m \mapsto \mrm{addNat}_{\ge 10}, \T{assoc} \mapsto \T{ð})`$ ã $`(\mbf{N}_{\ge 10}, \mrm{addNat}_{\ge 10})`$ ã®ããã«ç¥è¨ããã®ãæ®éã§ãã
åã ã®å群ãä½ã§ãããã¯ããããªããã®ã§ãããããå¯ãéãã¦ãã¹ã¦ã®å群ã®ã¯ã©ã¹ï¼å¤§ããéåï¼ãå®ç¾©ã§ãã¾ããããã°ããã§ã¯ãªãã¦ãå群ã®ããã ã®æºååå°ãhomomorphismãã¨ããæ¦å¿µãèªåçã«å®ç¾©ã§ããã®ã§ï¼ãããé¢ææå³è«ã®ãã½ï¼ãå群ã®åãcategory of semigroupsããèªåçã«å®ç¾©ã§ãã¾ããå群ã®åã¨ã¯ãå群ã®ææ¨ $`\mrm{Semigroup}`$ ã®ã¢ãã«ã®åãcategory of modelsããªã®ã§ã次ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{Model}(\mrm{Semigroup}) \;\in |\mbf{CAT}|`$
æ£ç¢ºã«è¨ãã°ãã¢ãã«ãæ§æãã¦ããã¿ã¼ã²ããåãéååãªã®ã§ï¼
$`\quad \mrm{Model}(\mrm{Semigroup}, \mbf{Set})\;\in |\mbf{CAT}|`$
ãã®è¨äºã§ã¯ã¿ã¼ã²ããåãéååã«åºå®ããã®ã§ãã¿ã¼ã²ããåã¯çç¥ãã¾ãã
å群ã®ææ¨ã«éããããªãããã®ææ¨ $`\Sigma`$ ãããã¨ããææ¨ $`\Sigma`$ ã®ã¢ãã«ã®åã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \mrm{Model}(\Sigma)\;\in |\mbf{CAT}|`$
å群ã®ææ¨ã®ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ãã
ãªã³ãã³ã®å®çã«ã¯ã¢ãããç»å ´ãã¾ãããã®ã¢ãããããªã³ãã³ã®å®çã®ä¸»å½¹ã§ããããååãä»ãã¦ãªãããã§ããããã§ã¯ããªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ãããLinton-Lawvere monadãã¨å¼ã¶ãã¨ã«ãã¾ããLinton ã Lawvere ãé æå㯠L ãªã®ã§ããªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯é»æ¿æåã¨ã« $`\mathbb{L}`$ ã§è¡¨ãã¾ã*2ã
ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯ãææ¨ $`\Sigma`$ ã«å¯¾ãã¦æ±ºã¾ãã®ã§ã次ã®ããã«æ¸ãã¾ãã
$`\quad \mathbb{L}_\Sigma = (\mathbb{L}_\Sigma, \mu, \eta)/\mbf{Set}`$
ããã§ãã¢ããèªä½ã¨ã¢ããã®å°é¢æãunderlying functorããåãè¨å·ã§è¡¨ãâè¨å·ã®ä¹±ç¨âã使ã£ã¦ã¾ãã$`\mu`$ ã¯ã¢ããä¹æ³ã$`\eta`$ ã¯ã¢ããåä½ã§ãã$`\mbf{Set}`$ ã¯ã¢ããã®åºç¤åãground categoryãã§ããã¤ã¾ãããªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯ãéååä¸ã®ã¢ããã§ãã
ææ¨ $`\Sigma`$ ã¨ãã¦ãå群ã®ææ¨ $`\mrm{Semigroup}`$ ãåã£ãã¨ãããã®ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯ãé空ãªã¹ãã»ã¢ããã«ãªãã¾ããã¨è¨ã£ã¦ãåçªéããã§ãããããåçªããåããã®ããªã³ãã³ã®å®çã§ããã¨ããããä»ã¯ãè¬ã®ãã·ããªã¼ã«ãã£ã¦ãå群ã®ææ¨ $`\mrm{Semigroup}`$ ããé空ãªã¹ãã»ã¢ãããçã¿åºãããã¨æã£ã¦ãã ããã
$`\quad \mathbb{L}_{\mrm{Semigroup}} = (\mrm{List}_+, \mrm{flatten}, \mrm{singl})/\mbf{Set}`$
å³è¾ºã®é空ãªã¹ãã»ã¢ããã«ã¤ãã¦èª¬æãã¾ãã
- éå $`X`$ ã«å¯¾ã㦠$`\mrm{List}_+(X)`$ ã¯ã空ãªã¹ãã¯é¤ãããªã¹ãã®éåã
- é¢æ°ãååã $`f:X \to Y`$ ã«å¯¾ã㦠$`\mrm{List}_+(f):\mrm{List}_+(X) \to \mrm{List}_+(Y)`$ ã¯ããªã¹ãã®âãããé¢æ°âã
- éå $`X`$ ã«å¯¾ãã $`\mrm{flatten}_X :\mrm{List}_+(\mrm{List}_+(X)) \to \mrm{List}_+(X)`$ ã¯ãå ¥ãåã®ãªã¹ããå¹³å¦åãflattenãããé¢æ°ã
- éå $`X`$ ã«å¯¾ãã $`\mrm{singl}_X : X \to \mrm{List}_+(X)`$ ã¯ã$`X`$ ã®è¦ç´ ã²ã¨ã¤ã ããããªãåé ãªã¹ããsingleton listãã対å¿ãããé¢æ°ã
ãªã³ãã³ã®å®ç
ãªã³ãã³ã®å®çã¯ãææ¨ $`\Sigma`$ ã«å¯¾ãã¦ã次ã®ååå¤ã主張ãã¾ãã
$`\quad \mrm{EM}(\mathbb{L}_\Sigma) \EQV \mrm{Model}(\Sigma) \In \mbf{CAT}`$
ããã§ã$`\mrm{EM}(\hyp)`$ ã¯ã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢åã§ã$`\EQV`$ ã¯ååå¤ï¼åååã¨ã¯éããªãï¼ã®è¨å·ã ã¨ãã¾ãã
$`\Sigma := \mrm{Semigroup}`$ ã¨å ·ä½åããã¨ï¼
$`\quad \mrm{EM}(\mathbb{L}_\mrm{Semigroup}) \EQV \mrm{Model}(\rm{Semigroup}) \In \mbf{CAT}`$
å³è¾ºã® $`\mrm{Model}(\rm{Semigroup})`$ ã«ã¤ãã¦ã¯æ¢ã«èª¬æãã¾ãã -- ããã¯å群ã®ææ¨ã®ã¢ãã«ã®åãã¤ã¾ãã¯å群ã®åã§ããã左辺ã«åºã¦ãã $`\mathbb{L}_\mrm{Semigroup}`$ ã¯ï¼çµæã ããè¨ãã°ï¼é空ãªã¹ãã»ã¢ãã $`\mrm{List}_+`$ ã§ããããããã£ã¦ï¼
$`\quad \mrm{EM}(\mrm{List}_+) \EQV \mrm{Model}(\rm{Semigroup}) \In \mbf{CAT}`$
ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢å $`\mrm{EM}(\mrm{List}_+)`$ ã®å¯¾è±¡ãã©ããªã¢ããã¨è¨ãã¨ï¼ $`A = (\u{A}, \alpha_A)`$ ã®ããã«æ¸ããã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã§ããããå ·ä½çã«ã¯ï¼
- $`\u{A}`$ ã¯éåï¼ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®å°éåï¼ã
- $`\alpha_{A}`$ ã¯ã$`\mrm{List}_+(\u{A}) \to \u{A}`$ ã¨ããé¢æ°ï¼ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®æ¼ç®ï¼ã
- æ¼ç® $`\alpha_A`$ ã¯ãã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®æ³åï¼çµåæ³åã¨åä½æ³åï¼ãæºããï¼ç°¡åãªèª¬æã¯ãä¸è¬åãã¤ãã¼ã°ã©ã åè« // ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ãåç §ï¼ã
ãªã³ãã³ã®å®çãä¸ããååå¤ããç¹ã« $`\Sigma = \mrm{Semigroup}`$ ã®å ´åã«èãããªãï¼
- ä»»æã®å群ï¼å群ã®ææ¨ã®ã¢ãã«ï¼ $`S = (\u{S}, m_S)`$ ã«ãã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ° $`A = (\u{A}, \alpha_A)`$ ã対å¿ããã
- ä»»æã®å群ã®å° $`f:S \to T`$ ã«å¯¾ãã¦ãã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®å° $`\varphi : A \to B`$ ã対å¿ããã
- ãã®å¯¾å¿ã¯é¢æã§ããã
- ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã«å群ã対å¿ãããéåãã®é¢æãããã
- ããããäºãã«éåãã®2ã¤ã®é¢æã¯ãå群ã®åã¨ï¼é空ãªã¹ãã»ã¢ããã®ï¼ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®åã®ããã ã®ååå¤ãä¸ããã
ä¸è¬çãªãªã³ãã³ã®å®çã®ã¡ã«ããºã ãåãããªãã¦ããå群ã®å ´åï¼ç¹æ®äºä¾ï¼ãªããååå¤ãå ·ä½çã«æ§æãããã¨ãåºæ¥ãã§ããããå群ã®å ´åã観å¯ãããã¨ã«ãããä¸è¬çãªãªã³ãã³ã®å®çã®ãã£ã¼ãªã³ã°ãæ´ããã¨ãåºæ¥ãã¨æãã¾ãã
注æäºé ã¸ã®æ³¨æäºé
éå»è¨äºãä¸è¬åãã¤ãã¼ã°ã©ã â P-ãã³ãã«ãP-ãã¡ããªã¼ãã¯ããä¸è¬åãã¤ãã¼ã°ã©ããã¨ããå¼ã³åãããP-ãã³ãã«ãã¾ãã¯ãP-ãã¡ããªã¼ãã«å¤æ´ããããã¨ããå 容ã§ãããå¤æ´ã®çç±ã¯ããé ç¹ãã辺ããªã©ã®ç¨èªã誤èªã»èª¤è§£ã»æ··ä¹±ãæãããã ããã§ãã次ã®ããã«æ¸ãã¦ãã¾ãã
å®ã«ã¾ã£ããè¨éã®æªå½±é¿ã¯æããããã®ã§ãã
ãªã³ãã³ã®å®çå¨è¾ºã¯ãè¨éã®æªå½±é¿ãçå¨ãæ¯ããå ´æã«ãªã£ã¦ãã¾ãããã»ãªãªã¼ãã¨ããè¨èããä½è¨ãªé£æ³ããã¦ãã¾ã£ãããããªãã¬ã¼ã·ã§ã³ãã¨ããè¨èã®ã³ã³ããªã¯ãããã¡åã | ãããã£ã³ã°ãã§æ··ä¹±ããããã代æ°ãã¨ããè¨èã®ãªã¼ãã¼ãã¼ãã«è¦ããã ããã¾ãã
ã¾ãããã¢ãã¤ãã®ãããªä»£æ°ç³»ã®åä½ã¨ã¢ããåä½ã¯é¢ä¿ãããã®ã ãããã¨ãã£ãééã£ãæ¨æ¸¬ãããããã¾ããæ¨æ¸¬ã®æ ¹æ ã¯ãåä½ãã¨ããè¨èã®ä¸è´ã ãã§ããã¾ãã«ãè¨éã«ãã¶ããããã¦ãã¾ãã代æ°ç³»ã®åä½ãã¢ããåä½ã¨ç¡é¢ä¿ãªã®ã¯ãåç¯ã®å群ã®ä¾ï¼å群ã«åä½ã¯ãªãï¼ããæããã§ãããã
ãã¼ã´ã§ã¢ã®ãã»ãªãªã¼ãã¯âãã種ã®åâã¨ããæå³ãããªãããããªãã¬ã¼ã·ã§ã³ãã¯æèã«ãããé¢æ°ãè¤å°ãã³ã³ããã¼ã¿ããããã表ãäºå®ã®ååãè¨å·ããªã©ã®æå³ã§ä½¿ããã¾ãããªãã§ãããã§ãã代æ°ãalgebraããã¨å¼ãã§ãã¾ããã¨ã¯ãåºãè延ããæªç¿ã§ããè¨èã®ä¸è´ãé¡ä¼¼ã§æ¨æ¸¬ãããªãã¦ã®ã¯ãè¨èªéæã§ã -- 絶対ã«ãããªãããã«ã
ããããå ã¯ãè½ã¨ãç©´ï¼ä¸»ã«è¨éç±æ¥ã®é¥ç©½ï¼ã«è½ã¡ãªãããã®æ³¨æäºé ãè¿°ã¹ã¾ãã
ã»ãªãªã¼
ãã¼ã´ã§ã¢ã¯ã代æ°ç³»ï¼å群ãã¢ãã¤ããç°ãªã©ï¼ã®å®ç¾©ã®ããã«ææ¨ã使ã£ã¦ãã¾ããããã®ä»£ããã«ä»£æ°ã»ãªãªã¼ãalgebraic theoryãããããã¯ç¥ãã¦ã»ãªãªã¼ãtheoryãã¨å¼ã°ããæ§é ã使ã£ã¦ãã¾ããã»ãªãªã¼ã¯ãã種ã®åãªã®ã§ãç¾å¨ã§ã¯ãã¼ã´ã§ã¢åãLawvere categoryãã¨å¼ã°ãããã¨ãå¤ãã§ãï¼ããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã¨ãã®å¨è¾ºãåç §ï¼ãä»ã«ãå±±ã®ããã«å¥åãããã¾ããéå»è¨äºãç¨èªã®ããªã¨ã¼ã·ã§ã³è¨è¿°ã®ããã®æ£è¦è¡¨ç¾ // ã¦ã³ã¶ãªããä¾ãã§ä¾ã«åºãã¦ãã¾ãã
ãã¼ã´ã§ã¢ã®ä»£æ°ã»ãªãªã¼ã¯å¾ã§ä¸è¬åãããã®ã§ããªãªã¸ãã«ã®ä»£æ°ã»ãªãªã¼ã¯åç´ä»£æ°ã»ãªãªã¼ãsimple algebraic theoryããã¾ãã¯ãã¼ã´ã§ã¢ä»£æ°ã»ãªãªã¼ãLawvere algebraic theoryãã¨å½¢å®¹è©ä»ãã§å¼ã¶ãã¨ãããã¾ããããã« SAT ã¾ã㯠LAT ã¨ããçç¥èªã使ããã¾ããåã¯ãçç¥èªã® SAT ï¼ã¾ã㯠LATï¼ã使ãã®ãããã¨æãã¾ãããªããªããtheory ã¨ãã誤èªèªçºæ§ãé«ãè¨èã T ä¸æåã«ãªã£ã¦é ããããã§ããã¨ããçç±ã§ãããã§ã¯ãã¼ã´ã§ã¢ã®ä»£æ°ã»ãªãªã¼ï¼ã¨å¼ã°ããåï¼ã¯SATåãSAT categoryãã¨å¼ã³ã¾ããï¼[追è¨]ããã»ãªãªã¼ãã¯ä½¿ããããããªããªããåç §ã[/追è¨]ï¼
ãã¼ã´ã§ã¢èªèº«ã¯ä½¿ã£ã¦ã¾ããããSATåã®çæç³»ã¨ãã¦SATææ¨ãSAT signatureããããã¾ããè²ã ãªSATææ¨ããåä¸ã®SATåãçæã§ããã¨ããæå³ã§ãSATææ¨ã«ã¯æ£æçèªç±åº¦ãããéãã¾ãããã¼ã´ã§ã¢ã¯æ£æçèªç±åº¦ãå«ã£ãã®ã§ããããããããç¾å®çã«ã¯SATææ¨ã使ããããå¾ãªãã®ã§ãSATææ¨ãé¿ããæ 度ã¯åãã¾ããã
ãã¼ã´ã§ã¢ã¯SATåã使ãã¾ããããSATè¤åãSATãªãã©ãã | SAT {multicategory | operad}ãã使ãã¢ããã¼ããããã¾ããSATè¤åã®çæç³»ã¯SATè¤ææ¨ãSAT multi-signatureãã¨å¼ã¹ã°ããã§ããããå群ã®ä¾ã§åºãã $`m:(U, U)\to U`$ ã¨ãããããã¡ã¤ã«ã¯SATè¤åãSATãªãã©ããããæ³å®ãã¦ããã®ã§ããã®ææ¨ã¯SATè¤ææ¨ã ã£ãã¨ãããã¨ã«ãªãã¾ãã
SATåã使ãããSATè¤åãSATãªãã©ãããã使ããã¯ãç¨éã¨å¥½ã¿ã«ãã決ããã°ãããã¨ã§ãããåã¯SATè¤åãSATãªãã©ãããã®ã»ãã好ã¿ã§ãï¼SATè¤åã«ãã ãã£ã¦ã¯ãã¾ãããï¼ã
ãªããããç¥ãããSATãLATãã®æ¡å¼µã»ä¸è¬åã¨ãã¦ãGATãgeneralized algebraic theoryããEATãessentially algebraic theoryããããã¾ãã
ã¢ãã«
ãã®è¨äºã§ãSATææ¨ã¾ãã¯SATè¤ææ¨ã«å¯¾ãã¦ã¢ãã«ãå®ç¾©ãã¾ãããå群ã®ææ¨ã®ã¢ãã«ãå群ã§ãããææ¨ï¼è¤ææ¨ã使ããªãå ´åã¯ãSATåã¾ãã¯SATè¤åã«å¯¾ãã¦ã¢ãã«ãå®ç¾©ãã¾ãã
- SATææ¨ã§çæãããSATåã®ã¢ãã«ã¯ãSATææ¨ã®ã¢ãã«ã¨åãã
- SATè¤ææ¨ã§çæãããSATè¤åãSATãªãã©ãããã®ã¢ãã«ã¯ãSATè¤ææ¨ã®ã¢ãã«ã¨åãã
ãã¢ãã«ãã2ã¤ã®æå³ã§ä½¿ããã¦ãã¾ããå人çã«ã¯ãSATåï¼SATè¤åã«å¯¾ãã¦å®ç¾©ãããã¢ãã«ã¯ã表ç¾ãrepresentationããã¨å¼ãã§åºå¥ãã¦ãã¾ãã
- SATææ¨ã§çæãããSATåã®è¡¨ç¾ã¯ãSATææ¨ã®ã¢ãã«ã¨åãã
- SATè¤ææ¨ã§çæãããSATè¤åãSATãªãã©ãããã®è¡¨ç¾ã¯ãSATè¤ææ¨ã®ã¢ãã«ã¨åãã
ãã®ã表ç¾ãã®ç¨æ³ã¯ãã群ã®ç·å½¢è¡¨ç¾ããªã©ã®ã表ç¾ãã¨åãæå³ã»è§£éãªã®ã§ããã£ããå ·åãããã¨æãã¾ãã
ã¨ã¯ããããã¢ãã«ãã表ç¾ãã代æ°ãã®ä½¿ãæ¹ã»ä½¿ãåãã¯ã°ãã£ã°ãã£ãªã®ã§ããææ¨ï¼è¤ææ¨ã®ã¢ãã«ããåï¼è¤åã®è¡¨ç¾ãã¨ãã使ãåããå人çãã¼ã«ã«ã«ã¼ã«ã«éãã¾ããã
ãªãã¬ã¼ã·ã§ã³
ææ¨ã®å®£è¨ã«ã$`\T{operation }m:(U, U)\to U`$ ã®ããã«ãã¼ã¯ã¼ã $`\T{operation}`$ ã使ãã¾ããããã¼ã¯ã¼ãã®é¸å®ã¯è¶£å³çã»æ£æçãªãã§ã$`\T{operation}`$ ã¨ããã¯ã¼ãã使ã£ãããã©ãã ãã£ã¦ã®ã¯ç¡æå³ãªè©±ã§ããããSATè¤ææ¨ã«é¢ãã¦ã¯ããã¼ã¯ã¼ã $`\T{operation}`$ ã«ããSATè¤åãSATãªãã©ãããã®çæç³»ãsystem of generatorsãã¨ãªããªãã¬ã¼ã·ã§ã³ã宣è¨ãã¦ãã¾ãã
è¤åããªãã©ãããã®ãªãã¬ã¼ã·ã§ã³ã¨ã¯ãåã®å°ã¨é¡ä¼¼ã®æ¦å¿µã§ãè¤å°ãmultimorphismãã¨ãå¼ã³ã¾ãããè¤å°ãã使ã£ãã»ããç¡é£ã§ãããªããªããããªãã¬ã¼ã·ã§ã³ãã¯æ¼ç®ãååãã®æå³ã§ãæ®éã«ä½¿ãããã§ãã
$`\cat{M}`$ ãè¤åããªãã©ãããã¨ãã¦ããªãã©ããçµåã®ç¹å®ã®æåã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad (;_2) : \cat{M}( (A, B), A) \times \cat{M}((A, A), C) \to \cat{M}((A, A, B), C) \In \mbf{Set}`$
ããã§ã$`\cat{M}( \hyp , \hyp)`$ ã¯åã®ãã ã»ããã¨åæ§ã§ãç¹å®ã®ãããã¡ã¤ã«ãè¤ãããã¡ã¤ã«ããæã¤è¤å°ã®éåã§ããè¤å°ã®ãªãã©ããçµåãä¸ããåå $`(;_2)`$ ã®ãã¨ãããªãã©ããã®ãªãã¬ã¼ã·ã§ã³ã¨å¼ã¶ãã¨ãããã¾ããããã¯ããªããªãã«æ²æ¨ãªçµæãã¾ããã¾ãã次ã®ãããªè¨ãåããã¾ããéãã®ã§ãã
- ãªãã©ããã®ãªãã¬ã¼ã·ã§ã³ã¯ããªãã©ããã®ãªãã¬ã¼ã·ã§ã³ãå¼æ°ã«åããªãã¬ã¼ã·ã§ã³ã§ããã
ãããã«ã²ã©ããæ··ä¹±ãç·©åããããã«ã次ã®ãããªè¨ãåãã使ãã¾ãã
- ãªãã©ããã®ã³ã³ããã¼ã¿ã¯ããªãã©ããã®ãªãã¬ã¼ã·ã§ã³ãå¼æ°ã«åãååã§ããã
- ãªãã©ããã®ãªãã¬ã¼ã·ã§ã³ã¯ããªãã©ããã®è¤å°ãå¼æ°ã«åãé¢æ°ã§ããã
ã³ã³ããªã¯ããã¦ããè¨èããªãã¬ã¼ã·ã§ã³ããããã³ã³ããã¼ã¿ããååããè¤å°ããé¢æ°ããªã©ã«ç½®ãæãã¦ãã¾ãããã³ã³ããã¼ã¿ããè¤å°ããååãé¢æ°ããã使ãåããã°æ··ä¹±ã¯èµ·ããªãã§ãããããä¸æã¯åããããã¦ãã¾ãããæè¿ã¾ã横çã«ãªã£ã¦ããã³ã³ããã¼ã¿ãã¯ããªãã¬ã¼ã·ã§ã³ãã§æ¸ã¾ãã¦ãã¾ãã横çã ãã§ã¯ãªãã¦ããã³ã³ããã¼ã¿ãããã³ã³ããã¼ã·ã§ã³ãã¨ä¼¼ã¦ãï¼èª¤èªã®ãªã¹ã¯ãããï¼ã®ã§é¿ãã¦ãã£ã¦ãã¨ãããã¾ãï¼æ¬¡ç¯åç §ï¼ã
ã³ã³ããã¼ã·ã§ã³
ããã§ã®ã³ã³ããã¼ã·ã§ã³ã¯ linear combination ã¨åãç¨æ³ã® combination ã§ããlinear 㯠vector space ã®ãã¨ã表ãã®ã§ãvector-space combination ã¨è¨ã£ã¦ãåãã§ãã
"linear combination" ã¯ããç·å½¢çµåãã¨ç¿»è¨³ããã¾ããããçµåã㯠"composition" ã¨ãã¶ãã¾ããç´è¨³ã®ãçµã¿åããããä»ã®æå³ï¼ä¾ãã°ã¿ãã«ï¼ã«è§£éããããã§ããããã§ã«ã¿ã«ãæ¸ããã³ã³ããã¼ã·ã§ã³ãã¨ãã¾ãã
vector-space combinationããã¯ãã«ç©ºéã³ã³ããã¼ã·ã§ã³ãã® vector-space ã®æãä»ã®ä»£æ°ç³»ã«ç½®ãæããã¨ãsemigroup combinationãå群ã³ã³ããã¼ã·ã§ã³ãã ring combinationãç°ã³ã³ããã¼ã·ã§ã³ã monoidal-category combinationãã¢ãã¤ãåã³ã³ããã¼ã·ã§ã³ã ãªã©ã¨è¨ãã¾ããããã¯ãããããã®ä»£æ°ç³»ã«ããã¦è¨±ãããï¼è§£éå¯è½ãªï¼å¼ãexpressionãã®ãã¨ã§ããä¾ãã°ï¼
- ãã¯ãã«ç©ºéã³ã³ããã¼ã·ã§ã³ã¯ãå®æ°ã»å¤æ°ããã¨ã«ã足ãç®ã¨ã¹ã«ã©ã¼åã§çµã¿ç«ã¦ãããå¼
- å群ã³ã³ããã¼ã·ã§ã³ã¯ãå®æ°ã»å¤æ°ããã¨ã«ãæãç®ï¼ã¨å¼ã¶äºé æ¼ç®ï¼ã ãã§çµã¿ç«ã¦ãããå¼
- ç°ã³ã³ããã¼ã·ã§ã³ã¯ãå®æ°ã»å¤æ°ããã¨ã«ã足ãç®ã¨æãç®ã§çµã¿ç«ã¦ãããå¼
- ã¢ãã¤ãåã³ã³ããã¼ã·ã§ã³ã¯ãå®æ°ã»å¤æ°ããã¨ã«ãå°ã®çµåã¨ã¢ãã¤ãç©ã§çµã¿ç«ã¦ãããå¼
ãå¼ãã使ããã«ãã³ã³ããã¼ã·ã§ã³ãã¨ãã¦ããã®ã¯ãããã¹ã表ç¾ã«éãããã¹ããªã³ã°å³ãªã©ã«ããçµµå³è¡¨ç¾ãèããããã§ããã¹ã±ããã£ãã¯ãªç¶æ³ï¼ãã¹ã±ããã£ãã¯ãåç §ï¼ã§ã¯ãããã¹ã表ç¾ã¯åºã¦ããªãã§çµµå³è¡¨ç¾ã ããç¸æã«ãã¾ããçµµå³çãªã³ã³ããã¼ã·ã§ã³ã¯ãã¹ããªã³ã°å³ãã¹ããªã³ã°å³é¡ä¼¼ã®å³ãstring-diagram-like diagramãã§ãã
å ¥ãåã³ã³ããã¼ã·ã§ã³ã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³
ãã¹ããªã³ã°å³ãã¹ããªã³ã°å³åç»ãâ使ããâã¨ã¯ï¼ãã®æå¾ã§ãã¿ããªãã¹ããªã³ã°å³ã使ããããã¨æ¨å¥¨ãã¦ã¾ãããã®çç±ã«ã¯ãããã¹ã表ç¾ã§ã¯ãã¾ã表ç¾ã§ããªãã£ãããç¡é§ã«ç ©éã«ãªã£ã¦ãã¾ããã¨ããããã¨ãããã¨ãããã¾ãã
å
¥ãåã³ã³ããã¼ã·ã§ã³ãnested combinationãã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³ãflat combinationãã®åºå¥ããããã¹ã表ç¾ã§ã¯é£ããã§ããä¾ãã°ã
$`\quad (2x + 1) + (3y -2)`$
ã¨ããããã¹ãã®å¼ãå
¥ãåãå¹³å¦ãã®åºå¥ã¯é£ãããã¨ãããåççã«åºå¥ã§ããªãã§ããæ¬å¼§ãããããå
¥ãåã ã¨ãè¨ããªãã®ã§ã*3ã
çµµå³è¡¨ç¾ï¼ä¾ãã°ã¹ããªã³ã°å³ï¼ã«ããã¦ã¯ãå ¥ãåãæç½ã«ç¤ºãå¹¾ã¤ãã®æ段ãããã¾ããä¾ãã°ãã·ã¼ã ãseamãï¼ãç©´ãã¹ããããã¨ãªã¢ãã·ã¼ã ãåç §ï¼ã使ã£ã¦å ¥ãåã表ç¾ã§ãã¾ããå ¥ãåã³ã³ããã¼ã·ã§ã³ã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³ã®åºå¥ã¯æ¥µãã¦éè¦ã§ããéã«è¨ãã¨ãå ¥ãåã³ã³ããã¼ã·ã§ã³ã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³ã®åºå¥ãåºæ¥ãªãç¶æ³ã¯è´å½çã«ããºã¤ã®ã§ãã
ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã®ã¢ããä¹æ³ã¨ã¯ãè©°ã¾ãã¨ãããå ¥ãåã³ã³ããã¼ã·ã§ã³ã®å ¥ãåãå¹³å¦åãflattenãããæä½ã§ããã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®æ¼ç®ã¯ãå¹³å¦ã³ã³ããã¼ã·ã§ã³ã«å¯¾ãã¦ä¸æ°ã«è¨ç®çµæãæ±ããæä½ã§ããå ¥ãåã³ã³ããã¼ã·ã§ã³ã¨å¹³å¦ã³ã³ããã¼ã·ã§ã³ã®ããã ãè¡ã£ããæ¥ãããããã¨ããå®ã¯ããªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããæ§æã®ãã¢ã«ãªãã¾ãã
ç©´ãå¤æ°
ãã¹ããªã³ã°å³ãã¹ããªã³ã°å³åç»ãâ使ããâã¨ã¯ï¼ // ç©´ãå¢çãã¹ããªã³ã°å³ãã³ãã¬ã¼ããã«ããã¦ãã¹ããªã³ã°å³ãã³ãã¬ã¼ããstring diagram templateãã¨ç©´ãholeãã«ã¤ãã¦èª¬æãã¾ããããã£ã³ãã¹ã«ãããç©´ã¨ã¯ãããã¹ãã®å¼ãªãå¤æ°ã§ããç©´ï¼å¤æ°ã®å義èªã¨ãã¦ããã¸ã·ã§ã³ãpositionãããã¬ã¼ã¹ãã«ãã¼ãplaceholderããã¹ããããslotããä¸å®å ãindeterminateããªã©ãããã¾ãããããã®è¨èéã¯ãå¤å°ã®ãã¥ã¢ã³ã¹ã¯ããã«ããå義èªã§ããå½èªè¾æ¸çï¼ãããã¯è±èªè¾æ¸çï¼ãã¥ã¢ã³ã¹ã«æ³¨æãåãã¦ãã¾ãã¨ãè¨éã®æªãã§ãã©ã¤ãªæèãéªéããã¾ãã
ç©´ã«å 容ãä¸èº« | contentããè©°ãã¦åãããã¨ã¯ãå¤æ°ã¸ã®ä»£å ¥ãsubstitutionãã¨åãã§ããå å¡«ãfillingããæ¿å ¥ãinsertionããã¯ãè¾¼ã¿ãinsetããå ·ä½åãinstantiationããå²ãå½ã¦ãassignmentãã¯ãä»£å ¥ã¨å義èªã§ã -- åãæä½ãæå³ãã¾ããç©´ããã¹ããªã³ã°å³ãã¹ããªã³ã°å³ãã³ãã¬ã¼ãã§åããã¨ãã¯ãçµåãcompositionããæ¥ãæ¨ãgraftingããè²¼ãåãããgluingãã溶æ¥ãweldingããè£ç¸«ãsewingããªã©ã¨ãããã¾ããèå¾ã«ããã¡ã³ã¿ã«ã¢ãã«ï¼ã¡ã¿ãã¡ã¼ï¼å ¸åçå ·ä½ä¾ã¨æ´å²ççµç·¯ã«ããããã¾ãã¾ãªç¨èªãçã¿åºããã¾ããéã«è¨ãã¨ãã¡ã³ã¿ã«ã¢ãã«ï¼ã¡ã¿ãã¡ã¼ï¼å ¸åçå ·ä½ä¾ã¨æ´å²ççµç·¯ãé¤å»ãã¦ãã¾ãã°ããã©ã¼ãã«ã«ã¯ãã¹ã¦åããã¨ã§ãã
ååãè¨å·ãè¦ãã ãã§ã¯ãã¾ãéã«æããçµµãè¦ãã ãã§ã¯ãç©´ãå¤æ°ãã¨ä¸èº«ãè©°ã¾ã£ããã½ãªãããªãããã¯ã¹ãå®æ°ãã®åºå¥ã¯é£ããã§ããç©´ãå¤æ°ãã¯å å¡«å¯è½ãfillableãï¼ç½®ãæãå¯è½ãreplaceableãã§ãã½ãªããããã¯ã¹ãå®æ°ãã«å¯¾ãã¦ã¯å å¡«ï¼ç½®ãæããåºæ¥ã¾ãããããããããããã½ãªããããã¯ã¹ãå®æ°ãã¨ãã¦æ±ã£ã¦ããããã¯ã¹ããå®ã¯ç©´ã§ãããã¨ã¡ãã¶å°è¿ãããããã¨ã¯ãã°ãã°ããã¾ããä¸å¦æ ¡ã§ããã$`ax + b`$ ã® $`x`$ ã¯å¤æ°ã ã $`a, b`$ ã¯å®æ°ãã¨è¨ã£ã¦ãããªãããã$`a`$ ã« $`2`$ ã$`b`$ ã« $`1`$ ãä»£å ¥ããã $`2x + 1`$ãã¨ãã¡ãã¶å°è¿ãããã¾ããã»ãã¨ã«å®æ°ãªãä»£å ¥ã§ãããããªãããã*4ã
è¨ç®
代æ°ç³»ã¨ã¯ãè¨ç®ãè¡ãããã®ä»æããã§ããããã¦ãææ¨ã¨ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯ã代æ°ç³»ãå®ç¾©ããããã®ä»æããã§ããææ¨ã¯ã¢ãã«ã¨ãã¦ä»£æ°ç³»ãå®ç¾©ãããªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããã¯ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã¨ãã¦ä»£æ°ç³»ãå®ç¾©ãã¾ãããªã³ãã³ã®å®çãããã¢ãã« ââ 代æ°ã対å¿ãä¸ããã®ã§ã2ã¤ã®å®ç¾©æ¹æ³ã¯åçãªå®ç¾©è½åãæã¡ã¾ãã
ã¢ãã«ã¨ãã¦å®ç¾©ããã代æ°ç³»ã§ã¯ãå¹¾ã¤ãã®åºæ¬æ¼ç®ãprimitive operationãéãè¨ç®ãã¼ã«ã¨ãã¦æä¾ããã¾ããä¸æ¹ã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã§ã¯ãæãä¸è¬çãªåä¸ã®ç·æ¼ç®ãcollective operationãã ããæä¾ããã¾ããã¢ãã«ã«ä»£æ°ã対å¿ä»ããã¨ãã«ã¯ãåºæ¬æ¼ç®ãçµã¿åããã¦ç·æ¼ç®ãæ§æãã¦ããã©ã®ãããªçµã¿åããæ¹ããã¦ãåä¸ã®ç·æ¼ç®ãä¸æçã«æ±ºã¾ãããã¨ã示ãå¿ è¦ãããã¾ãããã®ããã«ãã代æ°ç³»ã«ãããè¨ç®ã¨ã¯ä½ãï¼ãã¨ããåãã¨ããã«æ£é¢ããåããåããã¨ã«ãªãã¾ãã
ç·æ¼ç®ã¯ãä»»æã®å¹³å¦ã³ã³ããã¼ã·ã§ã³ã«å¯¾ãã¦ä¸æ°ã«è¨ç®çµæãåºåãã¾ããããããç·æ¼ç®ãåºæ¬æ¼ç®ã®çµã¿åããã®ã¯ãã§ãå®éã«ã¯è¨ç®éç¨ãcomputation processããéè¡ãã¦çµæãå¾ããã¦ããã¯ãã§ããå¹³å¦ã³ã³ããã¼ã·ã§ã³ãå ¥ãåã³ã³ããã¼ã·ã§ã³ã«å解ãã¦ãå ¥ãåã®å å´ããã³ãã³ãã¨åºæ¬æ¼ç®ã®ç¹°ãè¿ãããã¦ããã¯ãã§ããã²ã¨ã¤ã®å¹³å¦ã³ã³ããã¼ã·ã§ã³ã«å¯¾ãã¦ããã®ãããªã³ãã³ãã¨éè¡ããè¨ç®éç¨ã¯è¨å¤§ãªæ°ããããåå¨ããããç¥ãã¾ãããã©ããªè¨ç®éç¨ã§è¨ç®ãã¦ããæçµçµæã¯åãã§ããã㨠-- ä¸è¬çµåæ³åãgeneral associative lawãã¯ããªã³ãã³ã®å®çã®ã³ã¼ãã¼ã¹ãã¼ã³ã§ãã
è¨ç®éç¨ã¯ã空éæ¹åã¨æéæ¹åã«å±éããçµã¿åããå¹¾ä½ç対象ç©ãcombinatorial geometric objectãã¨ãã¦è¡¨ç¾ããã®ãé©åã ã¨æãããã®ã§ããªã³ãã³ã®å®çãã¹ã±ããã£ãã¯ãªç¶æ³ã§å®å¼åãã¦è¨¼æããã®ã¯èªç¶ããªã¼ã¬ããã¯ãã ã¨åã¯èãã¦ãã¾ãã
*1:å¤å½¢ãæ¸ãæã | åºæ¬é·ç§»ããéååå ã®2-å°ã¨ãã¦è§£éãã¾ããéååã®2-å°ã¯å¸¸ã«å¯éã§ãããä»»æã®åãçå¼ã«ãã2-åã¨ã¿ãªããåç §ã
*2:ææ¸ãã®ã¨ãã¯ã'L' ãéãæ¸ãããã°ããã§ãããã
*3:è¨ç®ã®åªå é ãprecedenceãã示ãæ¬å¼§ã¨ã¯å¥ã«ãå ¥ãåãæ§æããæ¬å¼§ãå°å ¥ããã°ãããã¹ãã§ãå ¥ãåã表ç¾ã§ãã¾ããããå®éã«ãã®ãããªè¡¨ç¾ææ³ã使ããã¦ããããã§ã¯ããã¾ããã
*4:ãå®æ°ããã»ãã¨ã«åå¥ç¹å®ã®å ·ä½ç©ãæããã¨ãããã¾ãããå¤ãã®å ´åã¯ã¹ã³ã¼ããéãå¤æ°ã®ãã¨ã§ãã