ååãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 2/n åã®è¨è¿°ãã®æå¾ã§ã
次åã¯ãåè«ã使ã£ã¦äºéåãå®ç¾©ãããäºå®ã§ãã
ã¨æ¸ããã®ã§ãããäºéåã®è©±ã®åã«ãæåã®åãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãã§ã¯è¿°ã¹ãããªãã£ãâååã«é¢ãã説æâã追å ãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\cat}[1]{ \mathcal{#1} }
%\newcommand{\op}{ \mathrm{op} }
\newcommand{\In}{\text{ in }}
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\u}[1]{\underline{#1}}
%\newcommand{\o}[1]{\overline{#1}}
%\newcommand{\twoto}{ \Rightarrow }
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\T}[1]{\text{#1} }
%%
\require{color}
\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
`$
å 容ï¼
- åé¡ååã¨åºæå
- é¢ææå³è«
- åºæåã®ææ§ã
- ãªã¼ãã¼ãã¼ãï¼ ãã ã®ä¾
ããè¨äºï¼
åé¡ååã¨åºæå
ææ¨ã«ãã£ã¦ååãæ°è¦å°å ¥ãããããææ¨ãæ¢ç¥ã®ååã使ç¨ããããã¾ããææ¨ãå°å ¥ããååã¯ã種é¡ã§ããï¼ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãåç §ï¼ã
- ææ¨åãsignature nameã
- æ§æç´ å½¹å²ãåãconstituent role nameã
ææ¨åã¯ããã¡ããææ¨èªä½ã«ä»ããããååã§ãããææ¨ã«ãã£ã¦è¨è¿°ã»å®ç¾©ãããæ¦å¿µçäºç©ã®â種é¡ã®ååâã¨ãã¦ã使ç¨ãã¾ãã
$`\quad \T{Semigroup}, \T{Monoid}, \T{SmallCategory}`$
ãªã©ã®ååã¯ãæ¦å¿µçäºç©ã®â種é¡ã®ååâã§ããæ¦å¿µçäºç©ã®â種é¡ã®ååâãåé¡ååãclassifier nameãã¨ãå¼ã¶ãã¨ã«ãã¾ããã¤ã¾ããææ¨åã¯åé¡ååã¨ãã¦ã使ããããã¨ãããã¨ã§ãã
åé¡ååã¯ååã¨è¨ã£ã¦ãåãã§ããããããããæ§ã ãªåçè«ã«ããã¦ãåã¨ã¯ãªãããï¼ããã·ãªã¢ã¹ã«è°è«ããã¦ãã¦ãåã«å¯¾ãã¦æãå ¥ãã主義主張ãæã¤äººãããã§ããããããããã§ãåãã使ãã®ã¯ããã¦ããã¾ããã¨ã¯ããããåãtypeããã¨ããè¨èã¯ãåçè«ã®å³å¯ãªå®ç¾©ã®ãã¨ã§ã¯ãªãã¦ãå½èªè¾æ¸çæå³ã§ä½¿ããã¨ã¯ããã¾ããããããã§ãããã
åé¡ååã¯ãæ§æç´ å½¹å²ãåï¼ååºæã¯ãªã¬ã³ã¸è²ã§æ¸ãã¾ãï¼ãå¤æ°åãå°å ¥ããã¨ãã«ããã®ååãæãäºå®ã®æ¦å¿µçäºç©ã®ç¨®é¡ã®æå®ã«ä½¿ããã¾ããä¾ãã°ï¼
$`\quad \T{variable }S \T{ is }\T{Semigroup}\\
\quad \T{variable }M \T{ is }\T{Monoid}\\
\quad \T{variable }\cat{C} \T{ is }\T{SmallCategory}\\
\:\\
\quad \T{datum }\NN{MulSemigrp} \T{ is }\T{Semigroup}\\
\quad \T{datum }\NN{LeftStim} \T{ is }\T{Monoid}\\
\quad \T{datum }\NN{base} \T{ is }\T{SmallCategory}
`$
ããã¯ç¢ºãã«ååã¨ãã¦ã®ç¨æ³ã§ããã
åé¡ååã¨ã¯å¥ç¨®ãªååã¨ãã¦ãåã®åºæåãproper nameããããã¾ãã
$`\quad {\bf Semigrp}, {\bf Mon}, {\bf Cat}`$
ã¯ããããã
$`\quad`$ å群éã®åãã¢ãã¤ãéã®åãå°ããåéã®2-å
ãåæãåºæåã§ããåã®åºæåã¯å¤ªåããã¼ã«ãä½ãã使ãç¿æ
£ã§ãããç¿æ
£ãå®ãããä¿è¨¼ã¯ããã¾ããã
åï¼2-åãå«ãï¼ã®åºæåã絶対å¤è¨å·ã§å²ãã¨ãéåã®åºæåã¨ãã¦ä½¿ãã¾ãã
$`\quad |{\bf Semigrp}|, |{\bf Mon}|, |{\bf Cat}|`$
ã¯ããããã
$`\quad`$ å群éã®éåãã¢ãã¤ãéã®éåãå°ããåéã®éå
ãåæãåºæåã§ãããããã®éåã¯å¤§ããªéåãªã®ã§ãå $`{\bf Set}`$ ã®å¯¾è±¡ã§ã¯ããã¾ããï¼å¤§ããªéåéã®å $`{\bf SET}`$ ã®å¯¾è±¡ã§ãï¼ã
å¤æ°åãæ§æç´ å½¹å²ãåã®åï¼ååãæãäºå®ã®æ¦å¿µçäºç©ã®ç¨®é¡ï¼ã®æå®ã«ã¯ãéåã®åºæåã使ããã¨ãã§ãã¾ãã
$`\quad \T{variable }S \in |{\bf Semigrp}|\\
\quad \T{variable }M \in |{\bf Mon}|\\
\quad \T{variable }\cat{C} \in |{\bf Cat}|\\
\:\\
\quad \T{datum }\NN{MulSemigrp} \in |{\bf Semigrp}|\\
\quad \T{datum }\NN{LeftStim} \in |{\bf Mon}|\\
\quad \T{datum }\NN{base} \in |{\bf Cat}|
`$
ãããã¯ã次ã®ããã«æ¸ãã¦ãåãã§ãã
$`\quad \T{variable }S \In {\bf Semigrp}\\
\quad \T{variable }M \In {\bf Mon}\\
\quad \T{variable }\cat{C} \In {\bf Cat}\\
\:\\
\quad \T{datum }\NN{MulSemigrp} \In {\bf Semigrp}\\
\quad \T{datum }\NN{LeftStim} \In {\bf Mon}\\
\quad \T{datum }\NN{base} \In {\bf Cat}
`$
åããã¨ãè¨è¿°ããã®ã«ãå¹¾ã¤ãã®æ¸ãæ¹ãããã¾ãã
é¢ææå³è«
ææ¨ã«ããå°å ¥ãããåé¡ååï¼ææ¨åã§ãããï¼ã¨ãåã®åºæåã¯æ¬¡ã®ããã«å¯¾å¿ãã¦ãã¾ãã
$`\text{åé¡åå}`$ | $`\text{åã®åºæå}`$ |
---|---|
$`\T{Semigroup}`$ | $`{\bf Semigrp}`$ |
$`\T{Monoid}`$ | $`{\bf Mon}`$ |
$`\T{SmallCategory}`$ | $`{\bf Cat}`$ |
å¿ ãããåã綴ãã«ã¯ãªã£ã¦ã¾ããããããã¯ç¿æ £ãªã®ã§ããããããã¾ããã
ã©ã®ãããªæ¹æ³ã§ãåé¡ååã¨åã®åºæåã®å¯¾å¿ãä½ãããã®ã§ããããï¼ ãã¼ã´ã§ã¢ãWilliam Lawvereããåµå§ããé¢ææå³è«ãfunctorial semanticsãã®ã¡ã«ããºã ã使ãã¾ããä»ãé¢ææå³è«ã«ã¤ãã¦è¿°ã¹ããã¨ã¯ãã¾ããããé¢ææå³è«ãèæ¯ã¨ããã°ã次ã®ãããªå®ç¾©ãå¯è½ã§ãã
$`\quad \T{define }{\bf Semigrp} := (\T{The category of }(\T{Semigroup})\T{s})
\quad \T{define }{\bf Mon} := (\T{The category of }(\T{Monoid})\T{s})
`$
ããã¯ã©ããããã¨ãã¨è¨ãã¨ãææ¨ï¼ã¨ã¿ã¼ã²ããï¼ãä¸ããããã°ããã®ææ¨ã§å®ç¾©ããã代æ°ç³»ã代æ°æ§é ãã対象ã¨ããåãèªåçã«ä½ãããã¨ãããã¨ã§ãã
$`\quad (\T{The category of }(\hyp)\T{s})`$
ãåãä½ãåºãã¡ã«ããºã ã表ãã¦ãã¾ãããã¤ãã³ã®ã¨ããã«ææ¨åï¼åé¡ååã§ãããï¼ãå
¥ããã¨ã対å¿ããåãèªåçã«çæããã¾ãããã®åã«åºæåãä»ããã°ããããã§ãã
ãã ããææ¨ã®æ¸ãæ¹ããã©ã¼ããã | æ§æãã¯ä¸å®ã®ç´æã«å¾ãå¿ è¦ãããã¾ãããã¼ã´ã§ã¢æµã®é¢ææå³è«ã対å¿ãã¦ããææ¨ã¯ä»£æ°ææ¨ãalgebraic signatureãã¨ãããã©ã¼ãããã®ãã®ã§ãããã®ä»ã®ãã©ã¼ãããã®ææ¨ã«å¯¾ããé¢ææå³è«ï¼åã®èªåçæã¡ã«ããºã ï¼ãåå¨ãã¾ããããããã«ãã¦ãææ¨ã®æ¸ãæ¹ã®ç´æã¯ããã¾ãã
å°ããåã®ææ¨ $`\T{SmallCategory}`$ ï¼ãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 2/n åã®è¨è¿°ãåç §ï¼ãããå°ããåéã®2-å $`{\bf Cat}`$ ãèªåçæã§ããã§ããããï¼ åã®2-åã§ã¯æ¬¡å ãä¸ãã£ã¦ããï¼2次å ã«ãªãï¼ã®ã§ãå群ãã¢ãã¤ãã®ãããª1次å ã®å ´åã¨æ¯ã¹ã¦æ ¼æ®µã«é£ãããªãã¾ããåºæ¥ãªãã¯ãªããã©å¤§å¤ã ãã¨ãããã¨ã§ãã
ãã¼ã´ã§ã¢æµã®é¢ææå³è«ã®ãã·ããªã¼ã使ãã°ã対象ãè¨è¿°ããææ¨ããæºåããã°ãå°ã®è¨è¿°ã¯ä¸è¦ã¨ãªãã¾ããããã¯ä¾¿å©ã§ãããããããã·ããªã¼ã¯ä½¿ãããå ¨é¨æä½ãããé¸æè¢ãããã¾ããå°ãè¨è¿°ããææ¨ãæ示çã«æ¸ãã¦ãåã®å ¬çç³»ãæºãããã¨ã示ãã°åãä½ãã¾ããå ¨é¨æä½ãã§ä½ã£ãåã«åºæåãä¸ãããã¨ãåºæ¥ã¾ãã
åºæåã®ææ§ã
åºæåã¯ãå¯ä¸ç¹å®ã®ã¢ããåæãååã§ãããããæ®å¿µãªãããåºæåã¨ãããååã ããè¦ã¦ããã®ååãåæã対象ç©ãç¹å®ãããã¨ã¯åºæ¥ã¾ãããä¾ãã°ã太åããã¼ã«ãä½ãã® $`{\bf R}`$ ã¯å®æ°ã®éåãåæãåºæåã ã¨ããã¾ãããå®æ°ã®éå以å¤ãåæãããã«ã使ããã¾ãã
å®æ°ã«ã¯æ¨æºçãªå¤§å°é åºãããã¾ãããã®é åºãâè¾¼ã¿âã§èãã $`{\bf R}`$ ã¯é åºéåãªã®ã§ãå $`{\bf Set}`$ ã®å¯¾è±¡ã§ã¯ãªãªãã¦ãå $`{\bf Ord}`$ ï¼é åºéåã®åï¼ã®å¯¾è±¡ã§ããå®æ°ã®è¶³ãç®ã¨æãç®ãããã«é¢ãã諸ã ã®æ³åãâè¾¼ã¿âã§èãã㨠$`{\bf R}`$ ã¯ä½ã«ãªãã¾ãããã®ã¨ãã$`{\bf R}`$ ã¯å $`{\bf Field}`$ ï¼ä½ã®åï¼ã®å¯¾è±¡ã§ãã
åã®åºæå $`{\bf Set}`$ ã«ããã¨ããã§ãå¯ä¸ç¹å®ã®åãæããã©ããã¯ããããã®ã§ããéååã®ãã«ã«ãæ§é ãä»®å®ãããã¨ã¯å¤ãã§ããããããªãã¨ã$`{\bf Set}`$ ã¯ãã¬ã¼ã³ãªåã§ã¯ãªãã¦ãã«ã«ãåã§ããã¤ã¾ãã2-å $`{\bf CAT}`$ ã®å¯¾è±¡ã§ã¯ãªãã¦ã2-å $`{\bf CartCAT}`$ ã®å¯¾è±¡ã¨ã¿ãªãã¦ãã¾ãã
ã²ã¨ã¤ã®æ°åãdigitãããæ§æãããæ°è¡¨ç¾ãnumeralãã§ãã $`1`$ ã¯åºæåã¨ããã¾ãããä¸æçã«ç¹å®å¯¾è±¡ç©ãåæãã¦ããã§ããããï¼ ååï¼ã²ã¨ã¤ã®æ°åï¼ã ããè¦ã¦ãããããèªç¶æ°ã®ã¤ããªã®ãè¤ç´ æ°ã®ã¤ããªã®ããç¹å®ã®åå éåã表ãã¦ããã®ãããããã¯ã¢ãã¤ãã®åä½å ã®æ§æç´ å½¹å²ãåï¼ãã®ã¨ãåºæåã§ã¯ãªãï¼ãªã®ããããã¾ããã
ååãæãã¢ãã®ç¨®é¡ã表ãåé¡ååãæ·»ããã¨ããã®ãããªææ§æ§ãå°ãªããããã¨ãåºæ¥ã¾ããä¾ãã°æ¬¡ã®ããã§ãã
- $`{\bf R}\T{ as }\T{Set}`$
- $`{\bf R}\T{ as }\T{OrderedSet}`$
- $`{\bf R}\T{ as }\T{Field}`$
- $`{\bf Set}\T{ as }\T{LargeCategory}`$
- $`{\bf Set}\T{ as }\T{LargeCartesianCategory}`$
- $`{ 1 }\T{ as }\T{NaturalNumber}`$
- $`{ 1}\T{ as }\T{ComplexNumber}`$
- $`{ 1}\T{ as }\T{Set}`$
å®éã«ã¯ããã®ãããªææ§ãåé¿çã使ç¨ãããã±ã¼ã¹ã¯å°ãªããæèããåããã ããã¨ããæ³å®ããã¾ããéã«è¨ãã°ãåºæåã¨ããã©ããæèãªãã§ã¯è§£éã確å®ããªããã¨ãããã¨ã§ãã
ãªã¼ãã¼ãã¼ãï¼ ãã ã®ä¾
ã²ã¨ã¤ã®ååãè¤æ°ã®æå³ã»ç¨æ³ã§ä½¿ãåããã¨ããªã¼ãã¼ãã¼ãã§ãããªã¼ãã¼ãã¼ãã®ä¾ãæããã¨ããããªãã§ãããåã®ãã ã»ããã®ä¾ãæãã¾ãã
éååããã¬ã¼ã³ãªåã¨èãã¦ãåºæå $`{\bf Set}`$ ã§åæããã¨ã«ãã¾ãã念ã®çºææ§ãåé¿ããã¦ããã¨ï¼
$`\quad {\bf Set} := ({\bf Set} \T{ as }\T{LargeCategory})`$
ã©ããªåã§ãããã®ãã ã»ãããããã¾ãããã ã»ããã¯åä¸ã®éåã®ãã¨ã§ã¯ãªãã¦ã2ã¤ã®å¯¾è±¡ã®ãã¢ã«éåã対å¿ãããååã§ãã
$`\quad \mrm{Hom}_{\bf Set} : |{\bf Set}| \times |{\bf Set}| \to |{\bf Set}| \In {\bf SET}`$
ãã®ååã¯ãã¡ããã¡ãå¤ç¨ãããã®ã§ãåã« $`{\bf Set}`$ ã¨æ¸ãã¾ãã
$`\quad {\bf Set} : |{\bf Set}| \times |{\bf Set}| \to |{\bf Set}| \In {\bf SET}`$
ååã¨ãã¦ã® $`{\bf Set}`$ ã使ãããã¨ãã¯ã2ã¤ã®å¼æ°ãã¨ããªã£ã¦ãä¾ãã°
$`\quad {\bf Set}({\bf N}, {\bf R})`$
$`\quad {\bf Set}(X, Y)`$
ã¨ããªã®ã§ãæ··ä¹±ã®å¿é
ã¯ãã¾ãããã¾ããã
ããã«ã$`{\bf Set}`$ ã¯ãã é¢æã®æå³ã§ããªã¼ãã¼ãã¼ãããã¾ãã
$`\quad {\bf Set} : {\bf Set}^\mrm{op} \times {\bf Set} \to {\bf Set} \In {\bf CAT}`$
ãã®ç¨æ³ã® $`{\bf Set}`$ ã§ã¯ãå¼æ°ã«ååãå
¥ãã¾ããä¾ãã°
$`\quad {\bf Set}(f, g)`$
$`\quad {\bf Set}(f, B)`$
ã¨ããå¼æ°ã¯å¯¾è±¡ãéåãã ã¨æãããã§ããã¨å°æãã¾ãã
ãã é¢æã«ã¤ãã¦ã¯ã次ã®éå»è¨äºã§èª¬æãã¦ãã¾ãã
åºæå $`{\bf Set}`$ ã®ãªã¼ãã¼ãã¼ãã«å¯¾ããææ§ãåé¿ã¯ä¾ãã°æ¬¡ã®ããã§ãã
- $`{\bf Set}\T{ as }\T{LargeCategory}`$
- $`{\bf Set}\T{ as }\T{LargeMap}`$
- $`{\bf Set}\T{ as }\T{Bifunctor}`$
åç¯ã§è¨ã£ãã¨ãããææ§ãåé¿çãè¬ãããããã¨ã¯å°ãªãã®ã§ãæèã«ãããªã¼ãã¼ãã¼ã解決ããã¾ãã