ç´åã®è¨äºããªã³ãã³ã®å®çï¼ æ¦è¦ãå®ä¾ã注æäºé
ãã®ã注æäºé
ã¸ã®æ³¨æäºé
ãã¨ãã»ãªãªã¼ãã§è¿°ã¹ãããã«ããã»ãªãªã¼ãã¨ããè¨èã使ãã®ã¯åºæ¥ãã ãé¿ãããããã®çç±ã¯ï¼$`
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\mbf}[1]{ \mathbf{#1} }
\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\In}{ \text{ in }}
`$
- å°ã®æã§ä½¿ãæ¥å¸¸èªãçè«ãã¨ç´ããããããã ãããã¯ãã«ã«ã¿ã¼ã ã¨ãã¦ã® "theory" ãã«ã¿ã«ãæ¸ããã»ãªãªã¼ãã«ããã°åé¡ã¯ç·©åããã
- ãã»ãªãªã¼ãã¨ããè¨èãããä½è¨ãªï¼ã¨ãã«æ害ãªï¼é£æ³ããã人ããããé£æ³ãããã©ã¼ãã«ãªå®ç¾©ã«åºã¥ããã©ã¤ãªæèãéªéããã
- ãã»ãªãªã¼ãã¯ææ§å¤ç¾©èªã§ãããä¾ãã°ãè«çã®æèã§ã¯ããå°åºã«é¢ãã¦éãããclosed under {derivation | inference}ãè«çå¼ã®éåãã¨ããæå³ã§ã»ãªãªã¼ã使ãã
- ãã¼ã´ã§ã¢ã®ã»ãªãªã¼ã®çè«ãtheory of theoriesãã«éã£ã¦ãããã¼ã´ã§ã¢åãã»ãªãªã¼ã¨å¼ã¶äººã¨ãææ¨ãã»ãªãªã¼ã¨å¼ã¶äººãããã
ç´åã®è¨äºã®ãã»ãªãªã¼ãã§ã¯ãããã¼ã´ã§ã¢ã»ã»ãªãªã¼ï¼ãã¼ã´ã§ã¢åãã®ä»£ããã«ãSATåãSAT categoryããã使ãã°ããã ããã¨è¨ãã¾ããã以åï¼ä¾ãã°ããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã¨ãã®å¨è¾ºãã§ï¼ $`\mbf{LawTh}`$ ã¨æ¸ãã¦ããå㯠$`\mrm{SAT}\mbf{Cat}`$ ã¨æ¸ããã¨ã«ãªãã¾ãã
$`\mrm{SAT}\mbf{Cat}`$ ã¯ãSATåéãããªãåã§ããSATåã¯ãã«ã«ãåã®ç¹å¥ãªãã®ãªã®ã§ã次ã®å å«é¢ä¿ãæç«ãã¾ãã
$`\quad \mrm{SAT}\mbf{Cat} \subseteq \mbf{CartCat} \In 2\mbf{CAT}`$
èªç¶å¤æãèããã°ã$`\mrm{SAT}\mbf{Cat}`$ 㨠$`\mbf{CartCat}`$ï¼å°ãããã«ã«ãåéã®2-åï¼ã¯2-åã§ããèªç¶å¤æãä¸è¦ãªãã$`\mbf{CAT}`$ å ã§èãã¾ãã
è¤åããªãã©ãããã使ãã¢ããã¼ããæ¡ç¨ãããªãã$`\mrm{SAT}\mbf{Multicat}`$ ã使ãã¾ãã$`\mrm{SAT}\mbf{Multicat}`$ ã®å¯¾è±¡ã¯è¤åã§ãããè¤é¢æã1-å°ãã¨è¤èªç¶å¤æã2-å°ãï¼ãå路代æ°ã¨ã°ã©ãç½®æã¢ãããåç §ï¼ã«ãã2-åã«ãªãã¾ããSATè¤åã¯ä¸è¬çè¤åã®ç¹å¥ãªãã®ãªã®ã§ã次ã®å å«é¢ä¿ãæç«ãã¾ãã
$`\quad \mrm{SAT}\mbf{Multicat} \subseteq \mbf{Multicat} \In 2\mbf{CAT}`$
ãã¦ã$`\mrm{SAT}\mbf{Cat}`$ ã $`\mrm{SAT}\mbf{Multicat}`$ ã®å¯¾è±¡ãç·ç§°ãã¦å¼ã³ããã¨ãã¯ä½ã¨å¼ã¹ã°ããã§ããããï¼ ãã£ã±ããã»ãªãªã¼ãã¨å¼ã¶ãããªãããã§ããã
SATãsimple algebraic thoeryãã¯ããã¼ã´ã§ã¢ã®ãªãªã¸ãã«ã®âã»ãªãªã¼âã§ãããMATãmany-sorted albebraic theoryããGATãgeneralized algebraic theoryããããã¾ããæ§ã 㪠theory of algebraic theories ã対象ãsubject matterãã¨ãã¦ããæ§é ç©ã¯ãç·ç§°çã«ãã»ãªãªã¼ãã§ãã
ãªã³ãã³ã®å®çã®ä¸»å¼µãããããã¦è¿°ã¹ã¦ã¿ãã¨ï¼
- ã»ãªãªã¼ï¼ã¾ãã¯ã»ãªãªã¼ã®çæç³»ã§ããææ¨ï¼ã«å¯¾ããã¢ãããæ§æå¯è½ã§ããã®ã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢åã¨ãã»ãªãªã¼ã®è¡¨ç¾ã®åï¼ææ¨ã®ã¢ãã«ã®åï¼ãååå¤ã¨ãªãã
ååãâã¢ãã-ã»ãªãªã¼å¯¾å¿âã§ãå¾åãâ代æ°-ã¢ãã«å¯¾å¿âã§ããâ代æ°-ã¢ãã«å¯¾å¿âãæç«ãããããªã¢ããï¼ãªã³ãã³ï¼ãã¼ã´ã§ã¢ã»ã¢ããï¼ãèããã®ã§ãâã¢ãã-ã»ãªãªã¼å¯¾å¿âã確ç«ããã°èªåçã«â代æ°-ã¢ãã«å¯¾å¿âã¯æç«ããã¨ãè¨ãã¾ãã
ãããã«ãã¦ããã¢ããã¨ã»ãªãªã¼ãèããªãã¨ãªã³ãã³ã®å®çã®ã¹ãã¼ãã¡ã³ããæ¸ããªãã®ã§ãå°ã£ãç¨èªã§ããã»ãªãªã¼ããé¿ãããã¨ã¯åºæ¥ãªãããã§ãã