ããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã®ã¢ãã«ã®åã¨ããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã«å¯¾å¿ããã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢åãååå¤ã§ãããã¨ããçµæã¯ããªã³ãã³ãFred Lintonãã示ããã®ã ã¨åã¯æã£ã¦ãã¾ããããããããªã³ãã³ã®ãªãªã¸ãã«ã®è«æ "Some aspects of equational categories" (1966) ãèªãã ããã§ã¯ãªãã®ã§ãéæ¥ä¼èã§ç¥ã£ããã¨ãããã¨ã§ãã
ã§ã¯ããã®éæ¥ä¼èã®ã½ã¼ã¹ã¯ä½ã ã£ãã®ã§ãããï¼ æãåºããªãã®ã§æ¤ç´¢ã§æ¢ãã¦ã¿ããããã¤ã©ã³ãï¼ãã¯ã¼ã®æ¬¡ã®è«æã®ããã§ãã
- [HP07]
- Title: The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
- Authors: Martin Hyland, John Power
- Date: April 2007
- Pages: 22p
- URL: https://www.sciencedirect.com/science/article/pii/S1571066107000874
ãã®è«æå ã«æ¬¡ã®è¨è¿°ãããã¾ãã[29] ã¯ãªã³ãã³ã®1966å¹´è«æã®ãã¨ã§ãã
Linton [29] made the general connection between monads and Lawvere theories (universal algebra): every Lawvere theory gives rise to a monad on Set whose category of algebras is equivalent to the category of models of the Lawvere theory, and, subject to a generalisation in the definition of Lawvere theory, every monad arises thus, uniquely up to coherent isomorphism.
ãªã³ãã³ [29] ã¯ãã¢ããã¨ãã¼ã´ã§ã¢ã»ã»ãªãªã¼ï¼æ®é代æ°ï¼ã¨ã®ããã ã®ä¸è¬çãªé¢ä¿ã確ç«ããï¼ ãã¹ã¦ã®ãã¼ã´ã§ã¢ã»ã»ãªãªã¼ã¯ãéååä¸ã®ã¢ãããçæããããã®ã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ã®åã¯ããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã®ã¢ãã«ã®åã¨ååå¤ã¨ãªãããã¼ã´ã§ã¢ã»ã»ãªãªã¼ã®å®ç¾©ãä¸è¬åããã°ããã¹ã¦ã®ã¢ããã¯ãã®æ¹æ³ã§çæã§ãã¦ãä¸è²«æ§ååãé¤ãã¦ä¸æçã§ããã
ãªã³ãã³ãå³å¯ãªè¨¼æããããã©ããã¯å®ãã§ã¯ããã¾ãããããã¤ã©ã³ãï¼ãã¯ã¼ã®æè¨ã«ããã°ããªã³ãã³ã¯ãã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢åã¨ã¢ãã«ã®åã¯ååå¤ã§ããããã¨ãèªèãã¦ããããã§ãããªã®ã§ãå½è©²ã®å®çã¯ããªã³ãã³ã®å®çãLinton's theoremããã¨å¼ãã§ãããããã§ãããã ããããªã³ãã³ã®å®çãã¨ãã¦ã"Lintonâs monadicity theorem" ã¨ããã®ãããããã*1ããã£ã¡ã®ã»ããæåãªã®ããç¥ãã¾ãããäºæ ãæ確ã«ãããã®ãªããä»è©±é¡ã«ãã¦ããå®çã¯ããªã³ãã³ã®ä»£æ°-ã¢ãã«å¯¾å¿å®çãLinton's algebra-model correspondence theoremããã¨å¼ã¹ã°ç´ããããã¾ããã
ãã¼ã´ã§ã¢ã»ã»ãªãªã¼ã«é¢ãã¦ããã¢ãã-ã»ãªãªã¼å¯¾å¿ãmonad-theory correspondenceããã¨ããè¨èã¯ãã使ããã¾ãããªã³ãã³ã®å®çãã¢ãã-ã»ãªãªã¼å¯¾å¿ã§ããã代æ°ãã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢ä»£æ°ãã¨ã¢ãã«ã®å¯¾å¿ã®ã»ãã«æ³¨ç®ãããã¨æãã¾ãã
ãã¦ã¨ããã§ãããªã³ãã³ã®ä»£æ°-ã¢ãã«å¯¾å¿å®çãã¯ã¹ã±ããã£ãã¯ï¼ãã¹ã±ããã£ãã¯ãåç §ï¼ãªç¶æ³ã§ãæç«ããã ããã¨åã¯ä¿¡ãã¦ãã¾ããããã¯ã©ããããã¨ãã¨è¨ãã¨ããã¹ããªã³ã°å³ãã¹ããªã³ã°å³åç»ãâ使ããâã¨ã¯ï¼ãã§è¿°ã¹ããã¼ã«ããã°ï¼ææ¨ã¨äºå®ä¸åãï¼ã«ã¢ãã«ã®æ¦å¿µãå®ç¾©ãããã¼ã«ããã°ããã¢ãããä½ãæé ã確ç«ããã°ããã¢ããã®ã¢ã¤ã¬ã³ãã«ã¯ï¼ã ã¼ã¢åã¨ã¢ãã«ã®åã¯ååå¤ãã ãããã¨ãããã¨ã§ãã
ãã¼ã«ããã°ããã¢ãããä½ãæé ã§ã¯ãã¹ããªã³ã°å³ãããã¼ã«ä½¿ãã¨ããæå³ã§ã極ãã¦ã¹ã±ããã£ãã¯ã§ããå ·ä½ä¾ãç¶æ³è¨¼æ ããããã®ã¹ã±ããã£ãã¯ãªã¢ãããåå¨ãããã¨ã¯ã¾ãééããªãã®ã§ãããå ·ä½çãã¤è©³ç´°ã«ã¢ãããæ§æãããã¨ããã¨ãã ãã¼ã¶å¤§å¤ãããã©ãããã
ã¹ã±ããã£ãã¯ãªãªã³ãã³ã®ä»£æ°-ã¢ãã«å¯¾å¿å®çãå®å ¨ã«è¨è¿°ãããã¨ã以åããæã£ã¦ã¯ããã®ã§ããããã®ããã©ãããã«æ°åãèãã¦ãã¾ãã®ã§ããããããã¾ã¼ãã¡ãã³ã¡ãã³ã¨æºåãéãã¦ããã¤ãå®å ¨ãªè¨è¿°ãå®æããããã§ããã
以ä¸ã¯ãé¢é£ããè¨äºã¸ã®ãªã³ã¯éã¨ãªãã¾ãã
é¢é£è¨äºï¼ãã®è¨äºã®å¾ï¼
ãã®è¨äºããåã®éå»è¨äº
*1:ãããã1966å¹´è«æã«è¨è¿°ããã¦ããããã§ãã