ã°ãã¿ã³ãã£ã¼ã¯æ§æã¯ãããã«åºã¦ãã¾ãããã°ãã¿ã³ãã£ã¼ã¯æ§æã«é¢ããè¨æ³ãããã§æ±ºãã¦ããããã¨æãã¾ãã
[è¿½è¨ date="2019-05-16"]ãã®è¨äºå ã«åºç¾ããããã¡ã¤ãã¼ä»ãåãfibered categoryããã®ä¸é¨ã¯ãåãã¡ã¤ãã¼ä»ãåãopfibered categoryããï¼ãä½ãã¡ã¤ãã¼ä»ãåãcofibered categoryããã¨ãããï¼ã«ãã¹ãã§ããä½ã¤ã³ããã¯ã¹ä»ãåãcoindexed categoryãããä½ããããã¡ã¤ãã¬ã¼ã·ã§ã³ã¯åãã¡ã¤ãã¼ä»ãåã«ãªãã¾ããããããã¡ã¤ãã¼ä»ãããããã¡ã¤ãã¼ä»ããã¾ãã¯åãã¡ã¤ãã¼ä»ããã¨è§£éãã¦ããããã°ããã®ã§ãä¿®æ£ã¯ãã¾ããã[/追è¨]
å 容ï¼
- ã¤ã³ããã¯ã¹ä»ãåã®ã°ãã¿ã³ãã£ã¼ã¯æ§æ
- å¹³å¦ååã¨ãã¡ã¤ãã¼ä»ãå
- å°ã®ãã¼ãã¨æ¹å
- ä½ã¤ã³ããã¯ã¹ä»ãå
- äºä¾ï¼ å 群ã«è³ããã¡ã¤ãã¼ä»ãåã®ç³»å
- ç¨èªã»è¨æ³ã®è£è¶³ã¨ã¾ã¨ã
ã¤ã³ããã¯ã¹ä»ãåã®ã°ãã¿ã³ãã£ã¼ã¯æ§æ
Bãåã¨ãã¦ãBããåã®åCATã¸ã®åå¤é¢æ F:BopâCAT ãã¤ã³ããã¯ã¹ä»ãåãindexed categoryãã¨å¼ã³ã¾ããCATã¯ãå¿ ãããå°ãããªãåãå«ã¿ã¾ããããµã¤ãºåé¡ãæ°ã«ãªããªãå°ããªåã®åCatã§èãã¦ãã ãããå®éã®ä¾ã§ã¯ã大ããªåãåºã¦ãã¦ãã¾ããã¨ãããã¾ãã
ã¤ã³ããã¯ã¹ä»ãåã¯é¢æãªã®ã§ãããBã®å¯¾è±¡ãã¤ã³ããã¯ã¹ã¨ããåã®ã¤ã³ããã¯ã¹æãindexed family of categoriesãã®ããã«èããã®ã§ãC, D ã®ãããªï¼åä¸ã®åã¨åãï¼è¨å·ã使ããããã¨ãããã¾ããã¾ããC(X) ã§ã¯ãªããC[X] ã¨æ¸ããã¨ã«ãã¾ãããã©ã±ããã¯ãããã°ã©ãã³ã°è¨èªã§ã¤ã³ããã¯ã¹ã表ãæ¨æºçè¨æ³ã§ããã¤ã³ããã¯ã¹ä»ãåã¯ãåè«ã«ãããé åãã¼ã¿ã®ãããªãã®ã§ãã
ã¤ã³ããã¯ã¹ä»ãå C[-]:BopâCAT ãããã¨ãã°ãã¿ã³ãã£ã¼ã¯æ§æãGrothendieck constructionããè¡ããã¨ãã§ãã¾ããããã«é¢ãã¦ã¯ï¼
å¹³å¦ååã¨ãã¡ã¤ãã¼ä»ãå
ã¤ã³ããã¯ã¹ä»ãåC[-]ã«å¯¾ãã¦ãã°ãã¿ã³ãã£ã¼ã¯æ§æãè¡ãã¨ä½ãã§ããã®ã§ãããï¼ ãããã©ããææ§ãªã®ã§ãããã§ããããªããã¾ãã
ã°ãã¿ã³ãã£ã¼ã¯æ§æã§æ¬¡ã®ãããªåãã§ãã¾ãã
- 対象ã¯ãBã®å¯¾è±¡Xã¨C[X]ã®å¯¾è±¡Aã®ã㢠(X, A)
- å°ã¯ãf:XâY in B 㨠Ï:AâC[f](B) in C[X] ã®ã㢠(f, Ï)
ãã®åããã°ãã¿ã³ãã£ã¼ã¯æ§æã«ããä½ãããå¹³å¦ååãflattened categoryãã¨å¼ã³ã¾ãã(X, A) A, (f, Ï) f ã¨ããååãçµã¿åãããã¨ãå¹³å¦ååããBã¸ã®å°å½±é¢æã«ãªãããã¡ã¤ãã¼ä»ãåãfibered categoryããå®ç¾©ãã¾ãã
ã¤ã¾ããã°ãã¿ã³ãã£ã¼ã¯æ§æã®ææç©ã2種é¡èãããã¾ãã
- ã¤ã³ããã¯ã¹ä»ãåããä½ãããå¹³å¦åå
- ã¤ã³ããã¯ã¹ä»ãåããä½ããããã¡ã¤ãã¼ä»ãå
å¹³å¦ååã®ã»ãããç©åè¨å·ã使ã£ã¦æ¬¡ã®ããã«è¡¨ããã¨ã«ãã¾ãã
ãã¡ã¤ãã¼ä»ãåã¯æ¬¡ã®ããã«æ¸ãã¾ãã
ããã§ãç¢å°ã¯ãã¡ã¤ãã¼ä»ãåã®å°å½±é¢æã表ãã¾ããå°å½±é¢æã«ãã¡ãã¡ååãã©ãã«ããä»ããå¿ è¦ã¯ãªãã§ãããã
å¹³å¦åã表ãããã«ç©åè¨å·ã¯ä½¿ãåä¾ã¯ããã®ã§ãããã¨ã³ãï¼ã³ã¨ã³ããend/coendãã«ç©åè¨å·ã使ãã®ã§ãåã¯ä½¿ç¨ãèºèºãã¦ãã¾ãããããããä»ã«ããè¨æ³ããªãã®ã§ç©åè¨å·ã使ããã¨ã«ãã¾ãã
ã¡ãªã¿ã«ãã°ãã¿ã³ãã£ã¼ã¯æ§æããã¨ã³ãï¼ã³ã¨ã³ãã¨ç©åè¨å·ããåµå§è ã¯ç±³ç°ä¿¡å¤«ã§ãã以ä¸ã®è¨äºåç §ã
å°ã®ãã¼ãã¨æ¹å
å¹³å¦åå ã®å°ã¯ãf:XâY in B 㨠Ï:AâC[f](B) in C[X] ã®ãã¢ã§ãããfããã¼ã¹ãã¼ããbase partããÏããã¡ã¤ãã¼ãã¼ããfiber partãã¨å¼ã¶ãã¨ã«ãã¾ãããã¼ã¹ãã¼ãã¯ãã¼ã¹å°ãbase morphism | åºå°ãã¨ãå¼ã³ã¾ãã代æ°å¹¾ä½ã§ã¯ããã¡ã¤ãã¼ãã¼ããä½å°ãcomorphismãã¨å¼ã¶ããã§ã*1ã
å¹³å¦ååã®å°ã®ä½ãæ¹ã¨ãã¦ããã¡ã¤ãã¼ãã¼ãã Ï:C[f](B)âA in C[X] ã¨å®ç¾©ãããã¨ãã§ãã¾ããæåã®å®ç¾©ã¨ã¯ãã¡ã¤ãã¼ãã¼ããéåãã§ããããããæ´åçãªå®ç¾©ã«ãªãã¾ãã
æåã«åºããå¹³å¦ååã®å®ç¾©ãæ¨æºã ã¨ã¿ãªãã¨ãäºçªç®ã®ããæ¹ã§ä½ã£ãå¹³å¦ååã¯ï¼ãã¡ã¤ãã¼ãã¼ããï¼éæ¹åã«ãªãã®ã§ãéæ¹åå¹³å¦ååãbackwordly flattened categoryãã¨å¼ã¶ãã¨ã«ãã¾ããå¿ è¦ãããã°ãæåã®å®ç¾©ã®å¹³å¦ååãé æ¹åå¹³å¦ååãforwardly flattened categoryãã¨ããã¾ãã
éæ¹åå¹³å¦ååã¨ãã®ãã¡ã¤ãã¼ä»ãåã¯ã次ã®è¨å·ã§è¡¨ããã¨ã«ãã¾ãã
ã¾ããé æ¹åå¹³å¦ååã§ãããã¨ãæ示çã«å¼·èª¿ããããªãï¼
éæ¹åå¹³å¦ååï¼ãã¡ã¤ãã¼ä»ãåã¯ãããªãªã¹ã®æ½è±¡å¤æ§ä½ã®åã®å®ç¾©ã®ã¨ãã«ä½¿ã£ã¦ãã¾ãã
ä¸è¨ã®è¨äºã§ã¯ããéæ¹åãããåãã§è¡¨ãã¦ãã¾ãããå対åãopposite categoryãã¨ç´ããããã®ã§ãéæ¹åãã«ãã¾ããã
ä½ã¤ã³ããã¯ã¹ä»ãå
ã¤ã³ããã¯ã¹ä»ãåã¯ãé¢æã¨ãã¦åå¤é¢æã§ãããå ±å¤é¢æ C[-]:BâCAT ãèãããã¨ãã§ãã¾ããå ±å¤é¢æã®å ´åã¯ä½ã¤ã³ããã¯ã¹ä»ãåãcoindexed categoryãã¨å¼ã³ã¾ãã
C[-] ãBä¸ã®ä½ã¤ã³ããã¯ã¹ä»ãåã®ã¨ãããåæ§ã«ã°ãã¿ã³ãã£ã¼ã¯æ§æãã§ãã¾ããä½ã¤ã³ããã¯ã¹ä»ãåã¸ã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã§å¾ãããå¹³å¦ååãä½å¹³å¦ååãcoflattened categoryãã¨å¼ã¶ãã¨ã«ãã¾ãã
ä½å¹³å¦ååã«ãããå° (X, A)â(Y, B) ã¯ã次ã®ããã«å®ç¾©ãã¾ãã
- F = (f, Ï): (X, A)â(Y, B)
- f:XâY in B
- Ï:C[f](A)âB in C[Y]
ä½å¹³å¦ååã¨ãã®ãã¡ã¤ãã¼ä»ãåã¯æ¬¡ã®ããã«æ¸ãã¾ãã
ç©åè¨å·ã«ä¸ä»ãã使ãã®ã¯ãã¨ã³ãï¼ã³ã¨ã³ãã®æ¸ãæ¹ã¨åãã§ãã
éæ¹åä½å¹³å¦ååãbackwardly coflattened categoryãã¨ãã®ãã¡ã¤ãã¼ä»ãåãåæ§ã«å®ç¾©ã§ãã¦ã次ã®ããã«æ¸ãã¾ãã
é æ¹åå¹³ä½å¦ååãforwardly coflattened categoryãã§ãããã¨ã強調ããããªãï¼
äºä¾ï¼ å 群ã«è³ããã¡ã¤ãã¼ä»ãåã®ç³»å
ã°ãã¿ã³ãã£ã¼ã¯æ§æãä½æ®µéã«ã渡ã£ã¦è¡ãã¨ããã¡ã¤ãã¼ä»ãåã®ç³»åãã§ãã¾ãããã®ãããªç³»åã®å®ä¾ã¨ãã¦ã次ã®ç³»åãç´¹ä»ãã¾ãããã
å³ã®ã»ãããé ã«èª¬æãã¾ãã
ä½ã®å
ä½ãfieldãã対象ã¨ãã¦ãä½ã®ããã ã®æºååååãå°ã¨ããåFieldãèãã¾ããä½ã®ããã ã®æºååååã¯åãè¾¼ã¿ãã¤ã¾ãä½ã®æ¡å¤§ã«ãªãã¾ããä½ã«ã¯ãã®æ¨æ°ãcharacteristicãã決ã¾ãã¾ããæ¨æ°ã¯0ãç´ æ°ã§ãã
ä½ã®å ¨ä½ã¯ãæ¨æ°ã§åé¡ã§ãã¾ããField[p] ãæ¨æ°pã®ä½ã®åã ã¨ããã¨ã
- Field = Field[p]
ã¨æ¸ãã¾ããããã§ãPrimeã¯ç´ æ°ã®éåã§ãã
éå Primeâª{0} ãé¢æ£åã¨ã¿ãªãã¨ãp Field[p] ã¯ãé¢æ£åã§ã¤ã³ããã¯ã¹ãããã¤ã³ããã¯ã¹ä»ãåã«ãªãã¾ããã¤ã³ããã¯ã¹ä»ãå Field[-] ã®ãã¡ã¤ãã¼ä»ãåã¯æ¬¡ã®ããã«æ¸ãã¾ãã
ç©åè¨å·å³ä¸ã® pâPrimeâª{0} ã p ã ãã§ç¥è¨ãã¦ãã¾ãã
å¯æç°ã®å
ä½Kä¸ã®ãã¯ãã«ç©ºéã§ãã£ã¦ãçµåçã»åä½çã»å¯æãªæãç®ãæã¤å¤å ç°ãalgebra | 代æ°ããK-å¯æç°ã¨å¼ã³ã¾ããK-å¯æç°ã¯ãç°ã¨ãã¦ã®æãç®ä»¥å¤ã«ä½Kã«ããã¹ã«ã©ã¼ä¹æ³ï¼ä½ç¨ï¼ãæã¡ã¾ãã
f:KâL ãä½ã®å°ï¼ä½ã®æ¡å¤§ï¼ã¨ãã¾ããL-å¯æç°Bã¯ãfãçµç±ãã¦Kã«ããã¹ã«ã©ã¼ä¹æ³ãæã¤ãã¨ã«ãªãã®ã§ãK-å¯æç°ã¨ã¿ãªãã¾ããL-å¯æç°B (K-å¯æç°ã¨ã¿ãªããB) ã¨ãã対å¿ã«ãããã¤ã³ããã¯ã¹ä»ãå CRng[-]:FieldâCAT ãã§ãã¾ãã
ãã®ã¤ã³ããã¯ã¹ä»ãåã«å¯¾ãããã¡ã¤ãã¼ä»ãåã®ç³»åã¯æ¬¡ã®ããã«æ¸ãã¾ãã
å 群ã®å
ä½Kä¸ã®å¯æç°Aãããã¨ããã®ä¸ã®å 群Mãèãããã¨ãã§ãã¾ããå¯æç°ã®ããã ã®å° (f, Ï):(K, A)â(L, B) ãããã¨ã(L, B) ä¸ã®å 群Nã¯ãå° (f, Ï) ãçµç±ã㦠(K, A) ä¸ã®å 群ã¨ã¿ãªãã¾ããããã«ããã次ã®ãããªã¤ã³ããã¯ã¹ä»ãåãå®ç¾©ããã¾ãã
ã¤ã³ããã¯ã¹ä»ãå Mod[-] ã«å¯¾ãããã¡ã¤ãã¼ä»ãåã®ç³»åã¯æ¬¡ã®ããã«ãªãã¾ãã
ç¨èªã»è¨æ³ã®è£è¶³ã¨ã¾ã¨ã
ãã¡ã¤ãã¼ä»ãåããã¡ã¤ãã¼ãã³ãã«ããã©ã¡ãããã¡ã¤ãã¬ã¼ã·ã§ã³ãªã®ã§ãé¡ä¼¼ã®ç¨èªã使ããã¨ã«ãã¾ãã
ãã¡ã¤ãã¼ä»ãå | ãã¡ã¤ãã¼ãã³ãã« |
---|---|
å ¨å | å ¨ç©ºé |
ãã¼ã¹å, åºå | ãã¼ã¹ç©ºé, åºç©ºé |
å°å½±é¢æ | å°å½±åå |
ãã¡ã¤ãã¼ | ãã¡ã¤ãã¼ |
ï¼åºåã®å°ã®ï¼æã¡ä¸ã | ï¼åºç©ºéã®ãã¹ã®ï¼æã¡ä¸ã |
ééããå°ãªãããããã«ã次ã®è¨æ³ã使ãã¾ãã
- C[-] ãã¤ã³ããã¯ã¹ä»ãåã®ã¨ããC[f] ã C*[f] ã¨ãæ¸ãã¾ãã誤解ã®æãããªããªããC*[f] ã f* ã¨ç¥è¨ãã¾ãã
- C[-] ãä½ã¤ã³ããã¯ã¹ä»ãåã®ã¨ããC[f] ã C*[f] ã¨ãæ¸ãã¾ãã誤解ã®æãããªããªããC*[f] ã f* ã¨ç¥è¨ãã¾ãã
ã°ãã¿ã³ãã£ã¼ã¯æ§æã¯ãä¸ããããã¤ã³ããã¯ã¹ä»ãåããããã¡ã¤ãã¼ä»ãåãä½ãåºãæ段ã¨ã¿ãªãã¾ããããã§ãããã¡ã¤ãã¼ä»ãåã®å ¨åãå¹³å¦ååã¨ãªãã¾ãã
ä½ã¤ã³ããã¯ã¹ä»ãåã®å ´åãèãã¦ãå¹³å¦ååï¼ä½å¹³å¦ååã®å°ã®æ¹åã¾ã§èããã¨ã4種é¡ã®å¹³å¦åæ¼ç®åãããã¾ãããããã¯ï¼
- ï¼ é æ¹åå¹³å¦åæ¼ç®å
- ï¼ éæ¹åå¹³å¦åæ¼ç®å
- ï¼ é æ¹åä½å¹³å¦åæ¼ç®å
- ï¼ éæ¹åä½å¹³å¦åæ¼ç®å
ãããã¯å¥ç©ã§ãããã©ãã使ãã¾ã
ãããããã®ç´æããã¦ããã°ãæ··ä¹±ãææ§ãã¯ã ãã¶é¿ããããã§ãããã
*1:ãã¼ã¹ãã¼ãã¨åããéã§ãããã¡ã¤ãã¼ãã¼ããä½å°ã¨å¼ãã§ããå¾åãããã¾ããéæ¹åä½å¹³å¦ååã®å ´åãããã¡ã¤ãã¼ãã¼ãããä½å°ããããç¶æ³ã§ãã