FC2ブログ
わんこら日記
甘くて切ない日記。わんこら式数学の勉強法、解説記事

東京大学2013年度理第1問、複素数平面(行列)の問題の解説
今から東京大学2013年度理第1問、複素数平面(行列)の問題の解説をしたいと思います。
よろしくお願いします。

[問題]
20170527011611792.jpg
実数a,bに対し平面上の点P_n(x_n,y_n)を
(x_0,y_0)=(1,0),(x_(n+1),y_(n+1))=(ax_n-by_n,bx_n+ay_n)(n=0,1,2,…)
によって定める。このとき、次の条件(i),(ii)がともに成り立つような(a,b)をすべて求めよ。
(i)P_0=P_6
(ii)P_0,P_1,P_2,P_3,P_4,P_5は相異なる


[解答と解説]
この問題はもともと、行列の問題で
(x_(n+1),y_(n+1))=(ax_n-by_n,bx_n+ay_n)
となる(x_n,y_n)→(x_(n+1),y_(n+1))の変換は行列を習わなくなったからわかりにくいねんけど回転拡大縮小をあらわしているねん。

だから複素数平面であらわせるねん。

実際にx_(n+1)+iy_(n+1)=(a+ib)(x_n+iy_n)
やな。


そしたらa+ib=r(cosα+isinα)とおくとα回転してr倍と言うことになるやろ。


20170527011612905.jpg
これでP_0=P_6になるってことはr=1でnを整数として6α=360°nつまりα=60°n

P_0,P_1,P_2,P_3,P_4,P_5は異なることより
k≠jのときkαとjαは360°で割った余りが異なる

kα≢jα(mod 360°)

nk≢nj(mod 6)

nと6は互いに素よりn=1,5とやると

確かにそういうことやねんけど


2017052701161562b.jpg
別の人生を歩み出すことになります。

何が言いたいのかと言うと、そこに重みがあるわけ違うねん。

最初からそう言えや!



何故互いに素なのかは後から書くことにして、この問題ではそこまで一般的にやらなくても
20170527011614eea.jpg
P_0=P_6から6α=360°n(0≦α<360°)
でα=0°,60°,120°,180°,240°,300
であることが必要やから

もう全部調べて、シラミ潰しでええねん。

それが整数問題では自然やねん。


更に言うと、テクニシャンは-180°≦α<180°として
α=0°,±60°,±120°,-180°
ってやると場合分けを減らしたりもします。


と言うことで解答は
20170527011635e57.jpg

(ii)より(a,b)≠(0,0)で
x_(n+1)+iy_(n+1)=(a+ib)(x_n+iy_n)
と表せる。
cosα=a/√(a^2+b^2),sinα=b/√(a^2+b^2)とすれば(-π≦α<π)

a+ib=√(a^2+b^2)(cosα+isinα)となり
x_n+iy_n=(a+ib)^n(x_0+iy_0)
=(√(a^2+b^2))(cos(nα)+isin(nα))

(i)より(√(a^2+b^2))^6(cos(6α)+isin(6α))=1(cos0+isin0)
よって(√(a^2+b^2))^6=1⇔a^2+b^2=1
また-π≦α<πから-6π≦6α<6πより
6α=-6π,±4π,±2π,0

α=-π,±2/3π,±1/3π,0

これでシラミツブシしていくねん。

20170527011634067.jpg
α=-πのとき
2α=-2πでP_0=P_2となり不適

α=±2/3πのとき
3α=±2πでP_0=P_3となり不適

α=±1/3πのとき
2α=±2/3π,3α=±π,4α=±4/3π,5α=±5/3πより(ii)を満たす

α=0のとき
P_0=P_1より不適

これから
(a,b)=(1/2,±(√3)/2)
とわかりました。


そしたら…さっきの互いに素の話に戻ろか。
これは複素数平面でも使ったりするしな。

20170527011617b18.jpg
pとqが互いに素な時
1p,2p,3p,…,(q-1)p
をqで割った余りはすべて異なり
1,2,3,…,q-1
が1つずつ表れる

これやがな。

なんでこうなるかは有名な証明があって

1≦i<j≦q-1として
ipとjpをqで割った余りが等しいと仮定すると
jp-ip=(qの倍数)

(j-i)p=(qの倍数)

pとqは互いに素より、j-i=(qの倍数)になるやろ。

でも-(q-1)<j-i<q-1と言うようにj-iの範囲は狭くてこのうちqの倍数になるのは

j-i=0だけやねん。

それで矛盾するわけですね。


pとqが互いに素でないときは、そもそも余りが最大公約数の倍数になるから全部あらわれないしな。

だから、0,1n,2n,3n,4n,5nを6で割った余りが0,1,2,3,4,5になるには6と互いに素なn=1,5ってわかるにはわかってこれが背景にあるっていうところやな。

東京大学の入試の数学の過去問の解説


関連記事

テーマ:大学受験 - ジャンル:学校・教育

▲ページトップへ
この記事に対するトラックバック
トラックバックURL
→https://wankora.jp/tb.php/4875-5bf5d026
この記事にトラックバックする(FC2ブログユーザー)
▲ページトップへ
プロフィール

わんこら

Author:わんこら
京都大学理学部を数学専攻で卒業した数学と物理講師

現在、東京で働いています。

わんこらチャンネル
チャンネル登録お願いします

かずスクール
で数学を教えてます。

わんこら式数学の勉強法
数学の勉強方法や仕方を説明

わんこらメルマガ←毎週、わんこら式についての記事をメルマガで書いています。
まずは→わんこらメルマガ サンプル号を読んでください
noteでの購読は→こちら

詳しいプロフィール


メッセージはこちらへ
メール
迷惑メールにされる危険性があるので出来るだけ
kazuyuki_ht○guitar.ocn.ne.jp
(○を@にしてください)に送ってください


リンクはばりばりのフリー
一言メールくれれば相互リンクします。


カテゴリーと名作集
読者に受けが良かった記事を集めてたり、今までの記事をカテゴリー別にまとめてます。



水と空気と街並とからだ
中学時代からの親友てつろうのブログ。
今年、滋賀医科に合格した医学生です。

リンク集
リンク集はこっちです。

このブログは携帯でも見られます。

カテゴリー

メール

リンク

ブロとも申請フォーム

この人とブロともになる

FC2カウンター

月別アーカイブ

ブログ内検索

RSSフィード