ãã³ã¸ã¥ã¼ã«æ¥ç¶ã®åãã®ç¶ããæ¸ãã¾ããã¨è¨ã£ã¦ããã¡ãã£ã¨æãã¤ãããã¨ï¼ä¸è¬å°ã¨ããæ¦å¿µï¼ããããã§ãããã®ã¡ã¢ã¿ãããªããã§ãã
å 容ï¼
- ã¯ããã«
- ãªã¼ãã¼ãã¼ãã¨çç¥ã®ã«ã¼ã«
- ã¤ã³ãã©ãã¼ã¹ã¨ã¤ã³ã¿ã¼ãã¼ã¹
- ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®æ £æ§å°
- å¾®åå°
- ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å°
- ãããªãç¥è¨
- ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®EPå°
- ããã¦ãããã
ã¯ããã«
ãã³ã¸ã¥ã¼ã«æ¥ç¶ã®åãã§ã¯ããã¯ãã«ãã³ãã«Eã«å¯¾ãã¦ãEä¸ã®å ±å¤å¾®åã®éå CovDer(E) ããã¨ã«ãã¦ãã°ãã¿ã³ãã£ã¼ã¯æ§æã«ãã£ã¦ã³ã¸ã¥ã¼ã«æ¥ç¶ã®å KoszConnection ãæ§æãã¾ããããã®ã¨ãã次ã®ããã«æ¸ãã¾ããã
ããã²ã¨ã¤å¥ãªæ¹æ³ã§ã KoszConnection ãæ§æãããã§ããã
ãã¡ããããµãã¤ã®å®ç¾©ã®åå¤æ§ãæå¾ ãã¦ãã¾ãï¼ãã¼ç²ããï¼ã
以åã¨ã¯å¥ãªæ¹æ³ã§ã³ã¸ã¥ã¼ã«æ¥ç¶ã®åãæ§æãã¾ãããã ããéå»è¨äºã®æç¹ã§æ³å®ãã¦ããEPå°ï¼embedding 㨠projection ã®ãã¢ï¼ä»¥å¤ã«ãããä¸è¬çãªå°ã使ãã¾ããå¤æ§ä½Mã«å¯¾ããå KoszConn[M] ãä¸æã«æ±ºã¾ãããã§ã¯ãªããå°ã®é¸ã³æ¹ã«å¹¾ã¤ãã®åè£ãããã¾ãã
åã®è¨å· | å°ã®å¼ã³å | ã²ã¨ã㨠|
---|---|---|
KoszConniner[M] | æ £æ§å°ãinertial morphismã | ããã ãã§ã¯ä¸è¶³ |
KoszConngen[M] | ä¸è¬å°ãgeneric morphismã | ä¸è¬çï¼éããããï¼ |
KoszConnEP[M] | EPå°ãEP morphismã | 以åã®è¨äºã§æ³å®ãã¦ããã®ã¯ãã |
ãããã®åãå®ç¾©ã»ç´¹ä»ãã¦ããã¾ãã
ãªã¼ãã¼ãã¼ãã¨çç¥ã®ã«ã¼ã«
åºç¾ããæ§ã ãªæ¦å¿µã»å¯¾è±¡ç©ã«ååãä»ãã¦ããã¨ãæåã»è¨å·ã足ããªããªã£ã¦ãã¾ãã®ã§ãæåã»è¨å·ã®ãªã¼ãã¼ãã¼ããå¤ç¾©ç使ç¨ãã¨çç¥ããã¾ãã
ããããå ã®ï¼ãã®è¨äºã®ï¼èª¬æã§ã ããã足ããã¨æãã¾ãããç¨èªã»è¨æ³ã¯æ¬¡ã®è¨äºã«ã¾ã¨ãã¦ããã¾ã*1ã
- ãã³ãã«ã¨å±¤ã®è¨æ³ ã¾ã¨ã
- å¤æ§ä½ä¸ã®é¢æ°ãå¾®åå½¢å¼ãæ¥ãã¯ãã«å ´ãªã©ã®æ¸ãæ¹
主役ã§ããã³ã¸ã¥ã¼ã«æ¥ç¶ã¯ãX, Y ãªã©ã¢ã«ãã¡ãããã®å¾ãã®æ¹ã®å¤§æåã§è¡¨ãã¾ããã³ã¸ã¥ã¼ã«æ¥ç¶ãæ§æãããã¯ãã«ãã³ãã«ãEãå ±å¤å¾®åãâã¨ããã¨ãX = (E, â) ã§ãã'X'ã¨ã¯å¥ãªæå'E'ãæ¶è²»ããªãããã«ã
- E = X
- â = Xâ
ã¨ãã¾ããä¸ç·ãå¼ããã®ã¯ãunderlying 㨠underline ãããããã¸ã£ã¬ã§ãããã®æ¸ãæ¹ã使ãã¨ï¼
- X = (X, Xâ)
ãã¯ãã«ãã³ãã«Eã®åºç©ºéã¯|E|ã¨æ¸ããE = (E, |E|, EÏ) ã¨ãã¾ããããã§ã¯ããã¯ãã«ãã³ãã«å ¨ä½ã¨ãã®å ¨ç©ºéãåãè¨å·ã§ãªã¼ãã¼ãã¼ãï¼è¨å·ã®ä¹±ç¨ï¼ãã¦ãã¾ããã³ã¸ã¥ã¼ã«æ¥ç¶Xãè¼ãåºç©ºé㯠|X| ã¨æ¸ãã¾ããããä»æ¥ã¯åºç©ºéãåºå®ããã®ã§ã|X| = M ã¨ãã¾ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶Xã«å¯¾ãã¦ããã®ãã¯ãã«ãã³ãã«Xã®ã»ã¯ã·ã§ã³ç©ºéããåãè¨å·Xã§è¡¨ãã¾ããã¤ã¾ããã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ãã®ã»ã¯ã·ã§ã³ç©ºéã«åãè¨å·ããªã¼ãã¼ãã¼ããã¾ãããã®ãªã¼ãã¼ãã¼ãããã£ãã使ããããããã§ãã
- X = Î(X) = ÎM(X)
åºç©ºéMã®ééåUã«å¯¾ãã¦ã¯ã
- X(U) = Î(U, X) = ÎM(U, X) = ÎM(X|U)
çµå±ãMä¸ã®å±¤ ÎM(-, X) ã X = X(-) ã¨æ¸ããã¨ã«ãªãã¾ãã
åºç©ºéMä¸ã®ãå¾®åå½¢å¼ã®å±¤ã Ω(-) = ΩM(-) ã¨æ¸ãã¾ããå ±å¤å¾®åä½ç¨ç´ Xâ ã®ãééåUã«ãããå±æ表ç¾ã¯ã
- XâU:X(U)âX(U)Ω(U)
ã»ã¯ã·ã§ã³ã®è¨å·'Î'ã使ãã°æ¬¡ã®ããã§ãã
- XâU:Î(U, X)âÎ(U, X)Î(U, T*M)
ãã³ã½ã«ç© ã¯ãå¯æç° Î¦(U) = ΦM(U) = CâM(U) ã«é¢ãããã³ã½ã«ç©ã§ãã
ãã®è¨äºå ã§ã¯ãå·¦è©ã¸ã®ä¸ä»ãæ·»åãå¤ç¨ãã¦ãã¾ããããã«éåæãèå³ããã ããæ¹ã¯æ¬¡ã®è¨äºãã©ããã
ã¤ã³ãã©ãã¼ã¹ã¨ã¤ã³ã¿ã¼ãã¼ã¹
ããã¯ãã«ãã³ãã«ã®å°ãæºååååããã¨ã ãè¨ã£ã¦ãæå³ãææ§ã§å°ããã¨ãããã®ã§ã次ã®2ã¤ã®è¨èãå°å ¥ãã¾ãã
- ã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ãintrabase bundle morphismã
- ã¤ã³ã¿ã¼ãã¼ã¹ã»ãã³ãã«å°ãinterbase bundle morphismã
E = (E, |E|, EÏ), F = (F, |F|, FÏ) ããã¯ãã«ãã³ãã«ã¨ãã¦ãf:EâF ãã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ã¨ã¯ã|E| = |F| = M ã§æ¬¡ã®å³å¼ãå¯æã«ãªããã¨ã§ãã
ãã®ãããªæ¡ä»¶ãä»ããªããã³ãã«å°ã¯ã¤ã³ã¿ã¼ãã¼ã¹ã»ãã³ãã«å°ã§ããf:EâF ã®åºååï¼åºç©ºéã®ããã ã®ååï¼ã |f| ã¨ããã¨ãã¤ã³ã¿ã¼ãã¼ã¹ã»ãã³ãã«å°ã§ã¯ |f| = id ã¨ã¯éããªãå¯æå³å¼ã¨ãªãã¾ãã
注æãã¹ããã¨ã¯ã|E| = |F| = M ã§ãã£ã¦ãã|f| = idM ã§ãªããªãã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ã§ã¯ãªããã¨ã§ãã
Mä¸ã®ãã¯ãã«ãã³ãã«ã¨ã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ãããªãå㯠VectBdl[M]ãä»»æã®ã¤ã³ã¿ã¼ãã¼ã¹ã»ãã³ãã«å°ãããªãå㯠VectBundle ã§ããããä¸ã®æ³¨æã¯ãã|E| = |F| = M ã§ãã£ã¦ã VectBundle(E, F) 㨠VectBdl[M](E, F) ã¯å¿ ãããä¸è´ããªããã¨ãããã¨ã§ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®æ £æ§å°
å¤æ§ä½Mãåºå®ãã¦ãå KoszConnâ¡[M] ãå®ç¾©ãã¾ããâ¡ã®å ´æã«ã¯ãiner, gen, EP ã®ãããããå ¥ãã¾ãããããã®åã®å¯¾è±¡ã¯ã|X| = M ã§ãããããªã³ã¸ã¥ã¼ã«æ¥ç¶ X = (X, Xâ) ã§ãã2ã¤ã®ã³ã¸ã¥ã¼ã«æ¥ç¶ X, Y ã«å¯¾ãã¦ããã®ããã ã®å°ãå®ç¾©ããå¿ è¦ãããã¾ããæåã«ç¹æ®ãªå°ããå®ç¾©ãã¾ãã
ãã¯ãã«ãã³ãã«ã®ã¤ã³ãã©ãã¼ã¹å°ãã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ã f:XâY in VectBdl[M] ããã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®æ £æ§å°ãinertial morphismãã ã¨ã¯ãfããèªå°ãããåéã f*:XâY ï¼X = ÎM(-, X), Y = ÎM(-, Y)ï¼ãã次ã®å³å¼ãå¯æã«ãããã¨ã§ãã
ããã§ãΩ = ΩM ã¯ãMä¸ã®å¾®åå½¢å¼ã®å±¤ã§ãããX, Y, Ω ã¯ãããã層ãªã®ã§ãMã®ééåUä¸ã§èããã°ï¼
å¯æå³å¼å ã«åºã¦ããå°ãä½ç¨®é¡ãããã®ã§æ³¨æãã¦ãã ãããå³ã®ç¸¦æ¹åï¼ãã¾ãã¾ç¸¦ãªã ãï¼ã®å°ã¯ãΦ-å 群å°ã§ããæ£ç¢ºã«è¨ãã°ãΦ = ΦM(-) = CâM(-) ã¯å¯æç°ã®å±¤ã§ãããΦä¸ã®å 群層ã®å Φ-Mod-Sh[M] ã®å°ã§ãã横æ¹åï¼ãã¾ãã¾ãï¼ã®å°ã¯(Φ/R)-å¾®åå°ã§ã -- ããã¯ãR-ãã¯ãã«ç©ºéã®å±¤ã®å R-Vect-Sh[M] ã®å°ã§ãã£ã¦ãΦ-ã¹ã«ã©ã¼ï¼Î¦(U)ã®è¦ç´ ï¼ã¨ã®æãç®ã«é¢ãã¦ã¯ã©ã¤ããããæ³åãæºããå°ã§ãã(Φ/R)-å¾®åå°ã¯Î¦-å 群å°ã¨ã¯éãã¾ããã
å¤æ§ä½Mä¸ã®ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ããã®ããã ã®æ £æ§å°ã®å ¨ä½ã¯åããªãã®ã§ããããï¼Mä¸ã®ï¼ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ã¤ã³ãã©ãã¼ã¹æ £æ§å°ã®åãcategory of Koszul connections and intrabase inertial morphismsãã¨å¼ã³ã KoszConniner[M] ã¨æ¸ããã¨ã«ãã¾ãããã®åã¯çããã¦ä¸ååãªã®ã§ãããæ £æ§å°ã¯åç´ã§æ±ããããå°ã ã¨ã¯è¨ãã¾ããæ £æ§å°ã¨åä»ããã®ã¯ãããç¶æ³ä¸ã§ã¯ãç©çã®æ £æ§ç³»ãinertial frame of referenceãã¨é¢ä¿ããããã§ãã
å¾®åå°
åç¯ã§è¨åããå¾®åå°ã{derivative | differential} morphismãã念ã®ããå®ç¾©ãã¦ããã¾ããããå¤æ§ä½Mã¨ãã®ééåUã«å¯¾ãã¦ãæ¨æºçãcanonicalããªå¤å¾®åã¯å®ã¾ã£ã¦ãã¾ã*2ã
- For UâOpen(M),
dU:ΦM(U)âΩM(U)
X = (X, Xâ) ãã³ã¸ã¥ã¼ã«æ¥ç¶ã ã¨ã¯ãXâ:XâXΩ in R-Vect-Sh[M] ããæ¨æºå¤å¾®å d ã«é¢ãã¦ã©ã¤ããããæ³åãæºãããã¨ã§ããã
- For UâOpen(M), For aâΦ(U), xâX(U),
(XâU)(xã»a) = (XâU(x))ã»a + xda
ããã§ã'ã»'ã¯å³ããã®ã¹ã«ã©ã¼åã§ããΦ(U)ã¯å¯æç°ãªã®ã§ãã¹ã«ã©ã¼åã¯å³ãå·¦ã許ããã¨ã«ãã¾ãã
ãã®ã©ã¤ããããæ³åãæºããR-ç·å½¢ååãã(Φ/R)-å¾®åå°ãΦ/R-{derivative | differential} morphismãã§ãã
ä»å®ç¾©ããå¾®åå°ã¯ãXâ:XâXΩ ã¨ããå½¢ã§ããããD:XâYΩ ã¨ããå¾®åå°ãå®ç¾©ãã¾ããããf:XâY in Φ-Mod-Sh[M] ãΦ-å 群å°ã ã¨ãã¦ãDãfã«æ²¿ã£ã(Φ/R)-å¾®åå°ã(Φ/R)-{derivative | differential} morphism along fãã¨ã¯ã次ã®å¤å½¢ããã©ã¤ããããæ³åãæºãããã¨ã§ãã
- D(xã»a) = (Dx)ã»a + f(x)daãon YΩ
ããã¯ã層ã®ããã ã®å°ã«é¢ããçå¼ãªã®ã§ãæ£ç¢ºã«æ¸ãã°ï¼
- For UâOpen(M), For aâΦ(U), xâX(U),
DU(xã»a) = (DUx)ã»a + fU(x)dUaãon Y(U)Ω(U)
é常ã®å¾®åå°ã¯ãæçå°ã«æ²¿ã£ãå¾®åå°ã¨ãããã¨ã«ãªãã¾ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å°
X, Y ã¯å¤æ§ä½Mä¸ã®ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ãã¦ããã¯ãã«ãã³ãã«ã®ããã ã®ã¤ã³ãã©ãã¼ã¹å° f:XâY in VectBdl[M] ãæ £æ§å°ã«ã¯ãªããªãå ´åãèãã¾ããå ç¨ã®å³å¼ãå¯æã¨ã¯éããªãã®ã§ã次ã®çå¼ã¯æå¾ ã§ãã¾ããã
çå¼ã¯æç«ããªãããã©ãçå¼ã®å·¦å³ã®å·®ãΦ-å ç¾¤å° A:XâYΩ in Φ-Mod-Sh[M] ã§ä¸ããããã¨ãã¾ãã
åããã¨ã§ããï¼
å³å¼é è¨æ³ãªãï¼
ãã®ç¶æ³ãã次ã®å³å¼ã§è¡¨ãã¾ãããï¼å¯æå³å¼ã§ã¯ããã¾ããï¼ã
ãã¯ãã«ãã³ãã«ã®ã¤ã³ãã©ãã¼ã¹å° f:XâY in VectBdl[M] ã¨ãΦ-å ç¾¤å° A:XâYΩ in Φ-Mod-Sh[M] ãä¸ã®æ¡ä»¶ãæºããã¦ããã¨ãã(f, A) ããã³ã¸ã¥ã¼ã«æ¥ç¶XããYã¸ã®ä¸è¬å°ãgeneric morphismãã¨å¼ã¶ãã¨ã«ãã¾ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å° (f, A):XâY ãããã¨ãR-ç·å½¢å° ã¯ãΦ-å ç¾¤å° f*:XâY ã«æ²¿ã£ã (Φ/R)-å¾®åå°ã«ãªããã¨ã¯ç´æ¥è¨ç®ã§ç¤ºãã¾ãã
f:XâY, g:YâZ in VectBdl[M] ã§ãA:XâYΩ, B:YâZΩ in Φ-Mod-Sh[M] ã ã¨ãã¦ã(f, A):XâY, (g, B):YâZ ãã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å°ã ã¨ãã¾ããf*idΩ ã f*1 ã¨æ¸ããã¨ã«ãã¾ãï¼g*1 ãåæ§ï¼ããã®ã¨ãã次ã®çå¼ãæç«ãã¦ãã¾ãã
y = f*x ã¨ä»£å ¥ãã¦çå¼å¤å½¢ãããã¨ã次ã®çå¼ãå¾ããã¾ãã
ããããã(f, A) 㨠(g, B) ã®çµåã¯æ¬¡ã®ããã«å®ç¾©ããã°ãããã¨ãåããã¾ãã
ä»å®ç¾©ããçµåã¨ãidX := (idX, 0) ã«ããæçå°ãå®ç¾©ããã¨ãã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ä¸è¬å°ã®å ¨ä½ã¯åããªãã¾ããåã®çµåå¾ãåä½å¾ã¯ç´æ¥è¨ç®ã§ç¤ºãã¾ãããããã¦ã§ããåãï¼Mä¸ã®ï¼ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ã¤ã³ãã©ãã¼ã¹ä¸è¬å°ã®åãcategory of Koszul connections and intrabase generic morphismsãã¨å¼ã³ãKoszConngen[M] ã¨æ¸ãã¾ãã
[追è¨]ä¸è¬å°ãã©ã®ç¨åº¦ã«ä¸è¬çã§ãããã¯ããã³ã¸ã¥ã¼ã«æ¥ç¶ã®ä¸è¬å°ã¯ä¸è¬çã ã£ããã«æ¸ãã¾ããã[/追è¨]
ãããªãç¥è¨
è¨è¿°ãç°¡æ½ã«ããããã«ãããã«ç¥è¨ãå°å ¥ãã¾ãã
åç¯ã§ (f, A) ã¨æ¸ãã¦ããã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å°ãä¸æå f ã§è¡¨ãã¾ããä¸è¬å° f ã®æ§æç´ ã§ããã¤ã³ãã©ãã³ãã«å°ã¯ f ã¨ãã¾ããããããã¨ãf:XâY in KoszConngen[M] ã«å¯¾ã㦠f:XâY in VectBdl[M] ãªã®ã§è¾»è¤ãåãã¾ããf* ã¨æ¸ãã¦ããΦ-å 群å°ã¯ f0 ã«å¤æ´ãã¦ãf*1 㯠f1 ã«å¤æ´ãã¦ãA 㯠fA ã¨ãã¾ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ X ã®ã»ã¯ã·ã§ã³ç©ºé ÎM(-, X) ã X0 ã¨ãæ¸ããX1 = X0Ω ã¨ãã¾ããä¸è¬çã«ã¯ãXk := X0Ωk ã§ãããä»å㯠k = 0, 1 ãã使ãã¾ããã
çµå±ãã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®ä¸è¬å° f ã¯ãf = (f, fA) ã¨æ¸ãã¦ãä¸è¬å°ã§ããããã®æ¡ä»¶ã¯æ¬¡ã®å³å¼ã«ãªãã¾ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ã®ããã ã®EPå°
ã³ã¸ã¥ã¼ã«æ¥ç¶ X, Y ã®ããã ã®EPå°ã{EP | embedding-projection} morphismã f ã¯ã(fe, fp, fA) ã¨ãã¦å®ç¾©ããã¾ããfe, fp ã¯ãã¯ãã«ãã³ãã«ã®ããã ã®ã¤ã³ãã©ãã¼ã¹å°ã§ãfe:XâY, fp:YâX ãã㤠fpfe = idX ãæºããã¨ãã¾ããfA ã¯ãX0âY1 ã¨ããΦ-å 群å°ã§ããf = (fe, fp, fA) ãEPå°ã§ããæ¡ä»¶ã¯ã (fe, fA) ãä¸è¬å°ã«ãªããã¨ã§ãã
ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ãã®ããã ã®EPå°ã®å ¨ä½ã¯åããªããã¨ã¯å®¹æã«ç¢ºèªã§ãã¾ãããã®åãï¼Mä¸ã®ï¼ã³ã¸ã¥ã¼ã«æ¥ç¶ã¨ã¤ã³ãã©ãã¼ã¹EPå°ã®åãcategory of Koszul connections and intrabase EP morphismãã¨å¼ã³ãKoszConnEP[M] ã¨æ¸ãã¾ãã
å®ç¾©ãããKoszConnEP[M] 㯠KoszConngen[M] ã¸ã®å¿å´é¢æãæã¡ã¾ããå¿å´é¢æã¯ãfp ãå¿ãã¦ã(fe, fA) ãæ®ãã¾ãã
EPå°ã®å ´åã¯ãfα := fAfp : Y0âY1 ã¨ç½®ãã¦ãf = (fe, fp, fα) ã¨ãã表示ãå¯è½ã§ãããã® fα ã¯ãEPå° f ã®æ¥ç¶å½¢å¼ãconnection formãã§ããEPå° f ãããã¯ãã«ãã³ãã«ã®èªæåï¼ååå°ï¼ã®ã¨ããfα ã¯é常ã®æ¥ç¶å½¢å¼ãæ¥ç¶ä¿æ°ãã«ãªãã¾ãã
ããã¦ãããã
Mä¸ã®ãã¯ãã«ãã³ãã«ã®åï¼å°ã¯ã¤ã³ãã©ãã¼ã¹ã»ãã³ãã«å°ï¼ VectBdl[M] ã¯ããã³ã½ã«ç©ãã¢ãã¤ãç©ã¨ãã対称ã¢ãã¤ãæ§é ãæã¡ã¾ããããã«ãã³ã³ãã¯ãéæ§é ãæã¡ã¾ããKoszConngen[M] 㨠KoszConnEP[M] ã«ãåæ§ãªå¯¾ç§°ã¢ãã¤ãæ§é ï¼ã³ã³ãã¯ãéæ§é ãå®ç¾©ãããã§ãããã³ã¸ã¥ã¼ã«æ¥ç¶ãããã¯ãã«ãã³ãã«ã¸ã®å¿å´é¢æã¯ã対称ã¢ãã¤ãæ§é ï¼ã³ã³ãã¯ãéæ§é ãä¿ã¤é¢æã«ãªãã¯ãã§ãã
ä»åã¯ãåºç©ºéã¨ãªãå¤æ§ä½Mãåºå®ãã¦ã¾ãããç°ãªãåºç©ºéä¸ã®ã³ã¸ã¥ã¼ã«æ¥ç¶ãã¤ãªãã¤ã³ã¿ã¼ãã¼ã¹ãªå°ãå¿ è¦ã§ããã¤ã³ã¿ã¼ãã¼ã¹ãªå°ãããªãåã®æ§æã¯ã°ãã¿ã³ãã£ã¼ã¯æ§æã§ãããã³ã¸ã¥ã¼ã«æ¥ç¶ã®åãã§æ³å®ãã¦ãããå¥ãªæ§ææ³ãã¯ãCoszConnEP[-] ããã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã§ããããããCovDer[-] ããã®ã°ãã¿ã³ãã£ã¼ã¯æ§æã¨ä¸è´ããã°ã¡ãã¿ã¤ããã§ãã
æ§æã®ç¶ãã¯ã¾ãæ°ãåããã¨ãã
*1:ææ¸ãã®ã¨ãã®æ¸ãæ¹ã¯ããã³ãã«ã¨å±¤ã®è¨æ³ éè¨ç¨ãã
*2:ééåUã«å¯¾ãã dU ã®å ¨ä½ã¯ãR-ãã¯ãã«ç©ºé層ã®ããã ã®å° d:ΦâΩ ãå½¢æãã¾ãã