ãå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åãã·ãªã¼ãºãããã1,2åã¯ç¶ãããããªãã¨æã£ã¦ã¾ããå±æ座æ¨ã使ã£ãè¨ç®ã§ä¸çªå¤ãã®ã¯å¾®åè¨ç®ã§ããããå¾®åè¨ç®ã¾ã§ã¯ãã©ãçããããªã¼ãã¨ã
ã§ãå ã«é²ãåã«ããå¤å¼ãªè¨æ³ã«é¢ãã注éãè£è¶³èª¬æãå¿ è¦ã ãªãã¨æãã¾ãããã®è¨äºã§ãããè¡ãã¾ãã
å 容ï¼
- ã¯ããã«
- å¤æ°ã¨é¢æ°ã®æ··å
- ååã¨é¨åååã®æªèå¥
- é¨åååã®å¶éã»ãã¼ãã»ã¸ã§ã¤ã³
- é¢æ°ã®é©ç¨ã¨çµåãåæãã®æ··å
- ã¦ã¼ã¯ãªãã空éã®ééåã¨å¤æ§ä½ã®ééåã®æ··å
- ã¢ãã¿ã¼ã«ã¼ã ã®ç·ã¨ãã°ããªãªã³ç
- é¢æ°ç°ã¨ãã®ä¸ã®å 群ãå°å ¥ããªã
- ãããã«
ã¯ããã«
ãå¤å¼ãã¨ããè¨èã®ä½¿ãæ¹ã«é¢ãã¦ã¯ãååã®ãããã¸ããåç §ãã¦ãã ããã
å¤å¼ãªå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã«ã¯ãææ§ããæ··ä¹±ãããã¤ãè¦ããã¾ããä¸é£ã®è¨äºã§åãè¨ããããã¨ã¯ããããã¯ãã¡ã ãã§ã¯ãªãã¦ããåé¡ç¹ãã¡ããã¨èªèããä¸ã§ã使ãããã®ã¯ä½¿ãç¶ããããã§ããå¤å¼ã¹ã¿ã¤ã«ãé·å¹´ä½¿ããç¶ãã¦ããçç±ã¯ããã¯ã便å©ã ããã§ããã®ä¾¿å©ãã¯æ¨ã¦ãããªããªãã¨æãã®ã§ãã
å¤å¼ã¹ã¿ã¤ã«ã®ææ§ãï¼æ··ä¹±ã®ç®ã¼ãããã®ãæãã¾ãã以ä¸ã§ããæ··åãã¨ã¯ãç°ãªãæ¦å¿µã§ãããã¨ã¯ç¥ã£ã¦ãã¦ãã´ããã£ã«ãããã¨ã§ããä¸æ³¨æã¨ããããã¯æå³çã§ãããã¨ãã»ã¨ãã©ã§ãããæªèå¥ãã¨ã¯ãç°ãªãæ¦å¿µã§ããã¨èªèã§ãã¦ãªãããããã¯ããã¦åºå¥ããææããªããã¨ã§ãã
å¤å¼ã¹ã¿ã¤ã«ã®ææ§ãï¼æ··ä¹±ï¼
- å¤æ°ã¨é¢æ°ã®æ··å
- ååã¨é¨åååã®æªèå¥
- é¢æ°ã®é©ç¨ã¨çµåãåæãã®æ··å
- ã¦ã¼ã¯ãªãã空éã®ééåã¨å¤æ§ä½ã®ééåã®æ··å
- é¢æ°ç°ã¨ãã®ä¸ã®å 群ãå°å ¥ããªã
ãããã®åé¡ç¹ãææãã¦ã対å¦æ³ãè¿°ã¹ã¾ãããã®å¯¾å¦æ³ï¼æ°ãã解éãè¨æ³ï¼ã¯ãä»å¾ã®è¨äºã§ä½¿ãäºå®ã§ãã以åã®è¨äº(â)ã¨ããã¶ãéè¤ããè¨è¿°ãããã¾ãã
- å¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ ã©ã ãè¨æ³ã®å©ç¨
- å¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ å±æ座æ¨ã£ã¦ä½ã ï¼
å¤æ°ã¨é¢æ°ã®æ··å
åå f:XâY ãèãã¾ããå ·ä½ä¾ã¨ãã¦ã¯ãX = Y = R, f(x) = x2 + 1 ããã®ååfãã
- y = f(x)
ã¨æ¸ãã®ã¯æ®éã ããç¹ã«åé¡ã¯ãªãã§ããããxã¯å ¥åå¤æ°ã§ãyã¯åºåå¤æ°ã§ãããªãããç¬ç«å¤æ°ããå¾å±å¤æ°ãã¨ããè¨èã¯ä½¿ãã¾ããããã®çç±ã¯ãå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ ã©ã ãè¨æ³ã®å©ç¨ // éç¬ç«å ¥åå¤æ°ã¨å¤åºåå¤æ°ããã¿ã¦ãã ããã
次ã®è¨æ³ã許ãã¾ãã
- y = y(x)
å ·ä½ä¾ã¯ã
- y = y(x) = x2 + 1
ãã®è¨æ³ã¯ã次ã®ã©ã ãè¨æ³ã«ããé¢æ°å®ç¾©ã«ããåçåã§ãã¾ãã
mapping y := λxâR.(y := x2 + 1 : yâR)
詳細ã¯ãå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ ã©ã ãè¨æ³ã®å©ç¨ãã«æ¸ãã¦ããã¾ãã
å¤å¼ã¹ã¿ã¤ã«ã§ã¯ãåãååãå¤æ°åã¨é¢æ°åã«ä½¿ããããã¨ãããã¾ãããã®ãããåãªãå¤æ°ããé¢æ°ã表ãå¤æ°ãã¯ãæèï¼ååã®ã¹ã³ã¼ãï¼ãªãã§ã¯å¤æã§ãã¾ãããä¸è¨ã®ã©ã ãè¨æ³ã§ã¯ãå ¥åå¤æ°ã»åºåå¤æ°ã¯ã©ã ãé ã®ã¹ã³ã¼ãã«éãè¾¼ãããã¦ãã¦ãé¢æ°åã®ã¹ã³ã¼ãã¯ãã®å¤ã«ããã¾ãã
次ã®è¨æ³ã¯ã©ãã§ãããã
- x = x(x)
ã©ã ãè¨æ³ã使ãã°ããããåçåã§ãã¾ãã
mapping x := λxâR.(x := x2 + 1 : xâR)
åºåå¤æ°åãé¢æ°åãå ¥åå¤æ°åã®ä¸è ãã©ãã'x'ã¨ããååãªã®ã§ããããã¾ã§ã²ã©ãæ¸ãæ¹ã¯ç¨ã§ããããããªãã¨ã¯è¨ãã¾ããããªããx(x) ã§èªå·±é©ç¨ãæãåºã人ãããã§ãããããèªå·±é©ç¨ã¨ã¯é¢ä¿ããã¾ãããåã«ãã²ã©ãæ¸ãæ¹ã§ãã
ååã¨é¨åååã®æªèå¥
å¾®åå¹¾ä½ã»ãã¯ãã«è§£æã¯ãå¹¾ä½çå®ä½ãåãæ±ãã¾ãããªã®ã§ãåå f:XâY ã¨è¨ãå ´åãX, Y ã¯ä½ç¸ç©ºéï¼å¤æ§ä½ã§ãããfã¯é£ç¶ååï¼ãªããããªååã®ã¨ããå¤ãã§ããæé»ã«ï¼ç¹ã«æ示ããã«ï¼ãä½ç¸ç©ºéï¼å¤æ§ä½ãé£ç¶ååï¼ãªããããªååãåæããã®ã¯ãã¾ã¼ããã§ãããã
ããã«ãå¤å¼ã¹ã¿ã¤ã«ã®åå f:XâY ã¯ãå®éã«ã¯é¨åååãpartial mapãã§ããå ´åãé常ã«å¤ãã§ãããå¤å¼ã¹ã¿ã¤ã«ã®ååï¼é¢æ°ã¯ãããã©ã«ãã§é¨åååï¼é¨åé¢æ°ã ã¨è§£éããã»ããããã¨æãã¾ãã
æã ã¯ãååï¼å ¨åååï¼ã f:XâY ã¨æ¸ããé¨åååã f:XââY ã¨æ¸ãåãã¾ãããå¤å¼ã¹ã¿ã¤ã«ã§ã¯æ¸ãåãï¼èå¥ã¯ããã¾ããããã£ã¦ãé¨åååãå ¨åã§ãããï¼ å ¨åã§ãªããªãå®ç¾©åãdomain of definitionãã¯ã©ããï¼ã¯ãèªåã§æèããå¤æããå¿ è¦ãããã¾ããæèæ å ±ãä¸ååã ã¨ãå¤æã§ãã¾ããã
ãååï¼å ¨åååï¼ããããããé¨åååãåºæ¬ã¨ãã¦æ¡ç¨ãããã¨ããæ¹éèªä½ã¯é©åã ã¨æãã¾ããããºã¤ã®ã¯ããããæ示ããªããã¨ãé¨åååã«é¢ããæ¦å¿µãã¡ããã¨å°å ¥ããªããã¨ã§ãã
æã ã®ã©ã ãè¨æ³ã«ããã¦ãé¨åååã§ãããã¨ãæ示ããããã«ã次ã®æ¸ãæ¹ãå°å ¥ãã¾ãã
- λxâAâX.(ååã®å¼ : Y)
ãã®ã©ã ãé ã表ãé¨åååã®ãããã¡ã¤ã«ã¯ãf:XâAâY ã§ããé¨åååã表ãã©ã ãé ã®å ·ä½ä¾ã¯ã
- λxâ(R| x ⧠0)âR.(x2 + 1 : R)
é¨åååã®çµåãåæãã¯ãåºæ¥ãã¨ããã ãè¨ç®ãããæ¹å¼ã§ããçµåãåºæ¥ã¦ããå®ç¾©åã空ã«ãªããã¨ãããã¾ããä¾ãã°ï¼
// éè² å®æ°ã«å¯¾ãã¦å®ç¾©ããã1次é¢æ° mapping f := λxâ(R| x ⧠0)âR.(-x - 1 : R) // éè² å®æ°ã«å¯¾ãã¦å®ç¾©ããã2次é¢æ° mapping g := λxâ(R| x ⧠0)âR.(x2 + 1 : R)
ã¨ããã¨ãcod(f) = R, dom(g) = R ãªã®ã§çµåå¯è½ãcomposableãã§ãããf;g = gf ã¯ï¼
- λxâ(R| x â x)âR.( : R)
ã¨ãªãã¾ããx â x ã¯ç©ºéåãä½ãããã®æ¡ä»¶ï¼å¸¸ã«å½ãªããªãã ã£ã¦ããï¼ã§ããgf ã®ãããã¡ã¤ã«ã¯ãgf:Râ∅âR ã§ãã空éå∅ããä»»æã®éåã¸ã®ååã¯ã²ã¨ã¤ã ãããã¾ãã
é¨åååã®å¶éã»ãã¼ãã»ã¸ã§ã¤ã³
ããã§ãé¨åååã«å¯¾ããæä½ãããã¤ãç´¹ä»ãã¦ããã¾ããç©æ¥µçã«é¨åååãæ±ããªãç¥ã£ã¦ããããåºç¤ç¥èã§ãããã¡ãã£ã¨éå±ããï¼ ãã®ç¯é£ã°ãã¦ãå¿ è¦ãªã¨ãã«è¦è¿ãã§ãããã§ãã
f:XâY ãæ®éã®ååãå ¨åååãã¨ãã¦ãAâX ã¨ãã¾ãããã®ã¨ããfã®åãAã«å¶éãrestrict | constrainãã§ãã¾ãã
- f|A := (inclA,X);f = f(inclA,X)
inclA,X ã¯å å«ååãinclusion mapãã§ãã©ã ãè¨æ³ã使ããªã次ã®ããã«å®ç¾©ã§ãã¾ãã
mapping inclA,X := λxâA.(x : X)
æçåå㯠XâX ã«å¯¾ããå å«ååã¨ãªããidX = inclX,X ã§ããæçååãå å«ååã®ãããªããã«ã¿ããã«ç°¡åããªãã®ããé常ã«éè¦ãªãã¨ã¯ã¾ã¾ããã¾ãã
ä»åº¦ã¯ f:XââY ãé¨åååã¨ãã¾ããé¨åååã®å ´åããfãAã«å¶éãããã®æå³ã¯äºéãããã¾ããæ®éã®ååã¨åãããåãdomainããå¶éããå ´åã¨ãå®ç¾©åãdomain of definitionããå¶éããå ´åã§ãããã®ãµãã¤ãåºå¥ããæ¨æºçè¨æ³ããªãã®ã§ãåã®å¶éãdomain restrictionã㯠f|A ãå®ç¾©åã®å¶éãdomain-of-definition restrictionãã¯ä»®ã« f‖A ã¨ãã¦ããã¾ããå¶éå¾ã®åã»å®ç¾©åã»ä½åã¯æ¬¡ã®ããã«ãªãã¾ãã
ä½åã®å¶éãcodomain restrictionã f|B ï¼BâYï¼ã¯æ®éã®ååã§ãé¨åååã§ãåãããã«å®ç¾©ããã¾ãããå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ ã©ã ãè¨æ³ã®å©ç¨ // åºåå¶ç´ããåç §ãã¦ãã ããã
- dom(f|B) = X
- ddef(f|B) = ddef(f)
- cod(f|B) = B
ãã使ãããä½åå¶éã¯ãf|im(f) ã§ããfãå¤æ§ä½ã®ãã£ã¼ã f:MââRn ã®ã¨ããf|im(f) ã¯ãå¯éãªï¼æ®éã®ï¼ååã«ãªãã¾ãã
fã®åãimageã im(f) ã¯ãæ®éã®ååã§ãé¨åååã§ãåãå®ç¾©ã§ãã
- im(f) := {yâY | f(x) = y ã¨ãªã xâX ãåå¨ãã}
fã®ä½å cod(f) ã¨ãfã®å im(f) ãæ··åãã¦ãã人ããã¾ãããããã¯åºå¥ãã¾ãããã
ä¸è¬ã«ãéåA, Bã«å¯¾ãã¦ãã¼ããå ±éé¨åãAâ©Bã¨ã¸ã§ã¤ã³ãåä½µãAâªBãå®ç¾©ã§ãã¾ãããé¨åååã«å¯¾ãã¦ããã¼ããmeetããã¸ã§ã¤ã³ãjoinããå®ç¾©ã§ãã¾ãããã ããfã¨gã®ãã¼ã fâ©gãã¸ã§ã¤ã³ fâªg ãå®ç¾©ã§ããããã«ã¯ã次ã®æ¡ä»¶ãããã¾ãã
2çªç®ã®æ¡ä»¶ã¯æ¬¡ã®ããã«è¨ãæãããã¾ãã
- xâ(ddef(f)â©ddef(g)) ã«å¯¾ãã¦ãf(x) = g(x)
ãã®æ¡ä»¶ãæºããããã¨ããfã¨gã¯äºæãcompatibleãã§ãããã¨ãä¸è²«æ§ãããã¨è¨ãã¾ãã
fã¨gãäºæã®ã¨ãï¼
- fâ©g := f‖ddef(g) ï¼g‖ddef(f) ã§ãããï¼
- fâªg := λxâ(ddef(f)âªddef(g))âX.(if (xâddef(f)) f(x) elseif (xâddef(g)) g(x))
念ã®ãããfâ©g, fâªg ã®ãããã¡ã¤ã«ãæ¸ãã¦ããã¨ï¼
- fâ©g:Xâ(ddef(f)â©ddef(g))âY
- fâªg:Xâ(ddef(f)âªddef(g))âY
å®ç¾©åããéåã®ãã¼ãã»ã¸ã§ã¤ã³ã«ãªã£ã¦ãã¾ãã
以ä¸ã«è¿°ã¹ããé¨åååã®å®ç¾©åã®å¶éããã¼ããã¸ã§ã¤ã³ã¯ãé¨åååã«å¯¾ããã«ããã¢ã³ããã¼ã¹ãæä½ã§ããåä¸ã®ããããã¯å¹¾ã¤ãã®é¨åååãå å·¥ï¼ç´°å·¥ãcraftworkãããã¨ãã«ä½¿ãã¾ãã
é¢æ°ã®é©ç¨ã¨çµåãåæãã®æ··å
å¤å¼ã¹ã¿ã¤ã«ã§ã¯ãf(x) ããã㯠f(x1, ..., xn) ã®ãããªè¡¨ç¾ãä½ãæå³ãããå¤ç¶ã¨ããªããã¨ãããã¾ãã解éã®åè£ã¨ãã¦ã¯ï¼
- f(x) 㯠f(x) ã®ãã¨ã§ããã
- f(x) 㯠f ã®ãã¨ã§ããã
- f(x) 㯠fx ã®ãã¨ã§ããã
f:XâY, xâX ã¨ã㦠f(x) ãç´ ç´ã«è§£éããã°ãf(x)âY ã§ããé¢æ°å¤ã§ããé¢æ°fã«å ¥åå¤xã渡ãã¦é¢æ°å¤ãåºåå¤ããæ±ãããã¨ããxã«fãé©ç¨ãapplyããããã¨ãããã¾ããé¢æ°å¤ã¨ãã¦ã® f(x) ã¯ãfãé©ç¨ããçµæã§ãã
f(x) ãå®é㯠λxâX.(f(x) : Y) ã®æå³ã§ä½¿ããããã¨ãããã¾ããxã¯å ¥åå¤æ°ã§ãããf(x)ã¯ã©ã ãé ã®ä¸é¨ãªã®ã§ãããå¤å´ã®ã©ã ãæç¸ãçç¥ããã¦ããã¨è§£éãã¾ããf = λxâX.(f(x) : Y) ãªã®ã§ãf(x) ã¯fã®æå³ã§ããXããYã¸ã®ååãé¢æ°ãã®å ¨ä½ï¼ãããªãéåï¼ã Map(X, Y) ã¨ããã¨ãä»ã®è§£éã§ã¯ âf(x)ââMap(X, Y) ã§ãã
å¤å¼ã¹ã¿ã¤ã«ã§ã¯ãå¤æ°ã¨é¢æ°ãæ··åããããã¨ãæãåºãã¦ãã ãããå¤æ°xã¯é¢æ°ããç¥ãã¾ãããx = x(t) ãã¤ã¾ã x:TâX ã§ããã±ã¼ã¹ãããã¾ãããã®ã¨ããf(x) ã¯çµåãåæã fx ã¨è§£éãã¾ããf(x) = fx ã¯ãTããYã¸ã®é¢æ°ãååãã¨ãªãã®ã§ãâf(x)ââMap(T, Y) ã§ãã
ããããã®è§£éã«ããã¦ï¼
- [é©ç¨ã¨ãã¦è§£é] f:XâY, xâX ã¨ãã¦ãf(x)âY
- [é¢æ°ã¨ãã¦è§£é] f(x) = λxâX.(f(x) :Y) = f :XâY ã¨ãã¦ãâf(x)ââMap(X, Y)
- [çµåã¨ãã¦è§£é] f:XâY, x:TâX, f(x) = fx ã¨ãã¦ãâf(x)ââMap(T, Y)
ã©ã®è§£éãé©åãã¯æèã«ããã¾ããæå¤ã¨ f(x) = fx ãå¤ãã£ãããã¾ããz = z(y) = z(y(x)) ã®ãããªçå¼ãã
- ãåºåå¤æ°zã := ãé¢æ°zããé¢æ°yã = λx.(ãé¢æ°zã(ãé¢æ°yã(ãå ¥åå¤æ°xã)))
ã¨è§£éã§ãã¾ãããã ããz = z(y) = z(y(x)) = z(x) ã¨ããããã¨ãzy = z ãªã®ã§ãããã«è¾»è¤ãåãããã®ãè¾ããªãã¾ããã§ããzy = z ãã左辺ãæ¹ãã¦zã¨ç½®ããã®æå³ã§ä½¿ããã¦ãããã§ãã
// yã¨zã¯äºåã«å®ç¾©ãããé¢æ° // zãä¸æ¸ãåå®ç¾© mapping z := λxâX.(z := z(y(x)) : zâZ) // æ°z = (æ§z)y = (æ§z)(y)
xãã¿ãã«ã®ã¨ãã¯ãããã«è§£éãåä»ã«ãªãã¾ããx = (x1, ..., xn) ã¨ãã¾ããä¸ä»ãæ·»åãã¤ã³ããã¯ã¹ãã使ã£ãã®ã¯ãå¾®åå¹¾ä½ã§ã¯ä¸ä»ãæ·»åãå¤ãããã§ããx = (x1, ..., xn) ã§ã話ã¯åãã§ããAã¯ã¦ã¼ã¯ãªãã空éRnã®ééåãUã¯å¤æ§ä½Mã®ééåã¨ãã¾ãããã®ç¶æ³ã§ãxiï¼i = 1, ..., nï¼ã®è§£éã®åè£ã¯ï¼
- xi ã¯ãAãå¤åã¨ããå¤æ°xã®ç¬¬iæåã§ãåãªãã¹ã«ã©ã¼å¤æ°
- xi ã¯ãAããRã¸ã®å°å½±Ïiã®ãã¨
- xi ã¯ãAä¸ã®åº§æ¨ã©ãã«ã®ã²ã¨ã¤
- xi ã¯ãUä¸ã®ãã£ã¼ãxã¨å°å½±Ïiã®çµåã§ãã座æ¨é¢æ°
- xi ã¯ãUä¸ã®åº§æ¨ã©ãã«ã®ã²ã¨ã¤
1çªç®ã¯ç´ ç´ãªè§£éã ããããã¨ãã¾ãã2çªç®ã¨3çªç®ã®ä¾ã¨ãã¦ã次ã®å ¬å¼ãèãã¦ã¿ã¾ãããã
ãã®å ¬å¼ã®æå³ã¯ã第i座æ¨æ¹åã¸ã®åå¾®åãæ¹åå¾®åãä½ç¨ç´ ãDiã¨ãã¦ã第jå°å½±ã Ïj:AâR ã¨ããã¨ãã«ã
ã®æå³ã§ããconstã¯ãRâCâ(A) ã¨ããååã§ãå®æ°ãå®æ°é¢æ°ã«ãã¾ããã©ã ãè¨æ³ã§å®ç¾©ãããªãï¼
mapping const = λcâR.(λxâA.(c : R) : Câ(A))
ãã¨ã®å ¬å¼ã®åå¾®åã®ååã§ããxjã¯å°å½±Ïjã®æå³ãªã®ã§ã2çªç®ã®è§£éãæ¡ç¨ãã¾ããåå¾®åä½ç¨ç´ ã®åæ¯ ã®xiã¯ãæ¨æºçãªåå¾®åä½ç¨ç´ ãã©ãã«ããï¼èå¥ããï¼ããã®åº§æ¨ã©ãã«è¨å·ã§ãã座æ¨ã©ãã«ã«é¢ãã¦ã¯ããå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ ã©ã ãè¨æ³ã®å©ç¨ // 座æ¨ã©ãã«ããåç §ãã¦ãã ããã
ãã¦ã4çªç®ã¨5çªç®ã®è§£éãçããã®ã¯ãå¤å¼ã¹ã¿ã¤ã«ã§ã¯å¤æ°ã¨é¢æ°ãåºå¥ããªãããã§ããã¦ã¼ã¯ãªãã空éRnã®ééåAãã¾ãã¯Rnå ¨ä½ãèµ°ãå¤æ°xã¯ããªããã®é¢æ°ããããã¾ãããããããã®ã¯ãxãå¤æ§ä½Mã®ééåUä¸ã§å®ç¾©ããããã£ã¼ãã座æ¨ååã x:UâRn, im(x) = A ã¨ããã±ã¼ã¹ã§ãããã®ã¨ããxi㯠Ïix ã®æå³ãã¤ã¾ã4çªç®ã®è§£éã§ããã¾ããxiã¯ãUä¸ã§ã®åå¾®åä½ç¨ç´ ãã©ãã«ããããã«ã使ããã¾ãã5çªç®ã®è§£éã§ãããä»ã®å ´åã¯ã:Câ(U)âCâ(U) ã§ããç¹ã«æ°ãä»ãã¦ãã ãã -- å¾®åè¨ç®ã¯ãããã詳ãã話ãã¤ããã§ããã
æå³ã¯éã£ã¦ã使ãè¨å·ã¯åããªã®ã§ãå¿ã®ãªãã§è§£éãåãæ¿ããªãã¦ã¯ãªãã¾ãããå¿ã®ä¸ã§ã®åãæ¿ãã®ãã¬ã¼ãã³ã°ã¯ã"Don't think. FEEL."æ¹å¼ã«ãªã£ã¦ãã¾ããã¡ã§ããå°ã£ããã¨ã ãã©ãå¦ä½ã¨ããé£ãããã ã解éã®åè£ãç¥ã£ã¦ããã°å©ãã«ã¯ãªãã§ãããã
ã¦ã¼ã¯ãªãã空éã®ééåã¨å¤æ§ä½ã®ééåã®æ··å
å¤å¼ã¹ã¿ã¤ã«ã§ã¯ãå¤æ§ä½Mä¸ã®ãã£ã¼ãã®å®ç¾©åã§ããééåï¼åº§æ¨è¿åï¼Uã¨ããã£ã¼ãã®åã§ããã¦ã¼ã¯ãªãã空éRnã®ééåAãæå³çã«æ··åãã¾ããããã¯ãå¤å¼ã¹ã¿ã¤ã«ã®æ¬ ç¹ã¨ãããããã¡ãªããï¼ã¢ããã³ãã¼ã¸ã¨è¨ãã¹ãããç¥ãã¾ãããäºæ ãç¥ã£ã¦æ £ããã°ä¾¿å©ã§ããããããªãããäºæ ãç¥ããã«æ £ãã¦ãªããªãæå³ä¸æãªé¢¨ç¿ã§ãã
Ïã¯Mã®ãã£ã¼ãã¨ãã¾ããï¼ãã£ã¼ãã«é¢ãã詳細ã¯ãå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ å±æ座æ¨ã£ã¦ä½ã ï¼ããåç §ãï¼ãã£ã¼ãã®å®ç¾©ãã次ã¯æç«ãã¾ãã
- Ï|A:UâA ï¼A = im(Ï)ï¼ã¯ä½ç¸ååã
- Ï|A:UâA ã¯ãCâ(A)ã¨Câ(U)ã®ããã ã®å¯æç°ã¨ãã¦ã®ååãå°ãã
2çªç®ã®æ§è³ªã¯ããã£ã¼ãã®å®ç¾©ã«ãã£ã¦ã¯è¨¼æãã¹ãå®çã«ãªãã¾ããããããã«ãã¦ãæç«ãã¾ãããããããã次ãè¨ãã¾ãã
- Uã¨ç¹ã¨Aã®ç¹ã¯ã1ï¼1ã«å¯¾å¿ããããããã対å¿ã¯é£ç¶çã§ããã
- Uä¸ã®é¢æ°ã¨Aä¸ã®é¢æ°ã¯ã1ï¼1ã«å¯¾å¿ããããããã対å¿ã¯è¶³ãç®ã»æãç®ãä¿åããã
ã¤ã¾ããç¹ãé¢æ°ãæ±ãä¸ã§ãUã¨Aã¯ï¼Ïãåæã¨ãã¦ï¼åä¸è¦å¯è½ã§ããå¤å¼ã¹ã¿ã¤ã«ã§ã¯ãå®éã«åä¸è¦ããã¾ãã
Uã¨Aã®åä¸è¦ãè¡ãä¸ã§å¤§æ´»èº(?)ããã®ããå¤æ°ã¨é¢æ°ã®æ··åã§ããåç¯ã® x = (x1, ..., xn) ã®5ã¤ã®è§£éãåã ç¯ã®f(x)ã®3ã¤ã®ç¨æ³ãæãåºãã¦ãã ããã
ã¾ããfãAï¼ã¦ã¼ã¯ãªãã空éã®ééåï¼ä¸ã®å®æ°å¤é¢æ°ã¨ãã¦ãx = (x1, ..., xn) ãAä¸ãèµ°ãåãªãå¤æ°ã¨ãã¾ãããã®ã¨ããf(x) = f ã¨è§£éãã¦ãâf(x)â :RnâAâR ã§ãã
次ã«ããã£ã¼ã Ï:MâUâRn ããx:MâUâR ã¨æ¸ãï¼å¼ã¶ï¼ãã¨ã«ãã¾ããããã¦ãf(x) ã®è§£éããå¿ã®ãªãã§ã½ã㨠fx ã«åãæ¿ãã¾ããããã¨ãâf(x)â:MâUâR ã¨ãªãã¾ããå¤æ°åãé¢æ°åãè¨æ³ãä¸åå¤ããã«ï¼
- âf(x)â = f :RnâAâR
- âf(x)â = fx = fÏ : MâUâR
ã®ã©ã¡ãã§ã表ããã¨ãã§ããã®ã§ããããã«ã¯ãå¾®åã®è¨ç®ããåãè¨å·ã»è¨å·ã§åºæ¥ã¡ãããã§ããããªãã¦ä¾¿å©ãªãã§ããããå°çã®ãããªæ··ä¹±ãä¼´ããã©ã
ã¢ãã¿ã¼ã«ã¼ã ã®ç·ã¨ãã°ããªãªã³ç
å¤å¼ã¹ã¿ã¤ã«ã¯ãâå¤æ§ä½Mã®ééåUâã¨âã¦ã¼ã¯ãªãã空éRnã®ééåAâãåä¸è¦ãããã¨ãç®æ¨ã«è¨æ³ãè¨è¨ããã¦ããããã«æãã¾ããç®æ¨ãéæããã¦ããã¨ããæå³ã§ã¯æåãã¦ãã¾ãããããããã«ãããâå¤æ§ä½Mã®ééåUâã¨âã¦ã¼ã¯ãªãã空éRnã®ééåAâãåºå¥ã§ããªãï¼åºå¥ãããã¨ããªã人ãçã¿åºãã¦ããããã«æãã¾ãã
ãå¤å ¸çå¾®åå¹¾ä½ã»ãã¯ãã«è§£æã®ã¢ãã³åï¼ å±æ座æ¨ã£ã¦ä½ã ï¼ // ã¢ãã¿ã¼ã«ã¼ã ã®å¤ç¬ãªç·ãã§è¿°ã¹ãã¢ãã¿ã¼ã«ã¼ã ã®ç·ããâå¤æ§ä½Mã®ééåUâã¨âã¦ã¼ã¯ãªãã空éRnã®ééåAâãåºå¥ã§ããªãï¼åºå¥ãããã¨ããªã人ã®æ¯ç»åã§ãã
ãç¸å¯¾æ§çè«ã®èãæ¹ã*1ã®ãªãã§ãèè Jï½¥Lï½¥ã·ã³ã¸ããããã°ããªãªã³çãã¨ããè¨èã使ã£ã¦ãã¾ãããããã¥ããã¹çã»ãã°ããªãªã³ããèªã彫ãä¸ãã象çã®äººå½¢ã溺æãããã¨ããã®ãªã·ã£ç¥è©±ã«åºã¥ãè¨èãããããæ¬ç©ã«ä¼¼ãã¦ä½ã£ã模åãæ¬ç©ããæãã¦ãã¾ããã¨ããæ¬ç©ã®åå¨ãå¿ãã¦æ¨¡åã ãããè¦ãããªããã¨ãã£ãâç ç¶âãæå³ãã¦ãã¾ãã
ã¢ãã¿ã¼ã«ã¼ã ã®ç·ã®ããã«ãå±æ座æ¨ãåãåºãæ åã®éã¾ãã ãã§ååã ãã¨ããç«å ´ããè¨ç®ç®çãªãé ·ãããªãããã¾ããããããç©çç¾è±¡ãããã§èµ·ãã空éãªã©ãæ³å®ããå ´åããåãåºãããæ åãä¸çãã®ãã®ã ãã¯ãã¯ãéãã§ããããã¢ãã³ãªå®å¼åã§ã¯ã模åã¯ããã¾ã§æ¨¡åã§ããã模åã«ãã表示ãããå®ä½ï¼å®ç¶ããããã ãã¨ããç«å ´ã強調ãã¾ãã
é¢æ°ç°ã¨ãã®ä¸ã®å 群ãå°å ¥ããªã
XããYã¸ã®ãªããããªååãsmooth mapãã®å ¨ä½ï¼ãããªãéåï¼ã Câ(X, Y) ã¨æ¸ããã¨ã«ãã¾ãããªããããªååãå®ç¾©ããã«ã¯ãäºåã«Xã¨Yã«ããªããããããå®ç¾©å¯è½ã¨ããæ§é ï¼ãªãããæ§é ï¼ãè¼ã£ã¦ãªãã¦ã¯ãªãã¾ãããããä»ã¯è¿½æ±ããªãã§ããã¾ãã
SâX ã¨ãã¦ããªããããªé¨ååå f:XâSâY ã®å ¨ä½ã¯ãCâX(S, Y) ã¨æ¸ããããã
- fâCâX(S, Y) â (f:XâSâY, fã¯ãªããã)
Uãå¤æ§ä½Mã®ééåã¨ãã¦ãCâM(U, R) ãåã« CâM(U) ã¨æ¸ãã¾ããåæ§ã«*2ãã¦ã¼ã¯ãªãã空éRnã®ééåAã«å¯¾ãã¦ããCâRn(A) := CâRn(A, R) ããã ããCâM(U), CâRn(A) ã¨ããè¨æ³ã使ãã¨ãã¯ãåã«é¢æ°ã®éåã§ã¯ãªãã¦ã足ãç®ã»æãç®ãåããå¯æç°ã¨ã¿ãªãã¨ç´æãã¾ãã
å¯æç°ã¨ãã¦ã® CâM(U) ã CâRn(A) ã¯ãå¾®ç©åã§ãã®åããã使ãã¾ããä¾ãã°ãååï¼ãªããããªãã®ããèããªãï¼ g:AâRm ã®ã¤ã³ãè¡å J[g] ã¯ã
- J[g]:AâMat(n, m;R)
ã¨ãã¦å®ç¾©ã§ãã¾ããããã§ãMat(n, m;R) ã¯å®æ°ä¿æ°ã®mè¡nåè¡åã®éåã§ãã次ã®ååãããã¾ãã
- CâRn(A, Mat(n, m;R)) Mat(n, m;CâRn(A))
ãã®ååã«ããã
- J[g]âMat(n, m;CâRn(A))
ã¨ã¿ãªãã¾ããã¤ã³ãè¡åã¯ãé¢æ°å¯æç° CâRn(A) ãä¿æ°åã¨ããè¡åãªã®ã§ãããã®æç¹ã§ãå¯æç°ä¿æ°ã®è¡åãæ±ã£ã¦ãããã¤ã¾ãã¯ãå¯æç°ä¿æ°ã®ç·å½¢ä»£æ°ã«æãæãã¦ãã¾ãã
æãæãã¦ãããªããããããªæµ¸ãã£ã¦ãã¾ãã°ããã®ã«ãã¨æãã®ã§ãããå¤å¼ã¹ã¿ã¤ã«ã§ã¯å¯æç°ä¿æ°ç·å½¢ä»£æ°ã«æ¶æ¥µçã§ããæå³çæ··åã«ããå¤å¼è¨æ³ããåç¯ã§è¿°ã¹ãåä¸è¦ã¨ç¸æ§ãæªãã®ããç¥ãã¾ããã
å¤æ§ä½ã®è°è«ã«ã¨ã£ã¦ãç·å½¢ä»£æ°ã¯ã¨ã¦ãéè¦ã§ãã空éã®æ¡ãããåºããªãã¨ãããã ãâ大è¦æ¨¡ãªâç·å½¢ä»£æ°ãå¿ è¦ã«ãªãã¾ãã
å¹¾ä½ç対象 | ä¸ç¹ | 座æ¨è¿å | å¤æ§ä½ |
---|---|---|---|
ç·å½¢ä»£æ° | ãã¯ãã«ç©ºéã®ç·å½¢ä»£æ° | èªç±å 群ã®ç·å½¢ä»£æ° | å 群層ã®ç·å½¢ä»£æ° |
ãã¯ãã«ç©ºéã®ç·å½¢ä»£æ°ã«å¹¾ä½ç風å³ãä»ããã¢ãããããã¯å¹¾ä½ã«ãã¯ãã«ç©ºéã®ç·å½¢ä»£æ°ãæã¡è¾¼ãã ã¢ãã¨ãã¦ãã¯ãã«ãã³ãã«ãããã¾ãã
åºç©ºé | ä¸ç¹ | 座æ¨è¿å | å¤æ§ä½ |
---|---|---|---|
ãã³ãã« | ãã¯ãã«ç©ºé | èªæãã¯ãã«ãã³ãã« | ãã¯ãã«ãã³ãã« |
åå°ã¨ãã¦ã®ä½ç¸ç©ºéã«ããã³ãã«ã¨ç·å½¢ä»£æ°ãçµã¿åãããæ§é ãè¼ããã°ãã¢ãã³ãªå¤æ§ä½ã®å®å¼åã«ãªãã¾ããå¤æ§ä½éå ¨ä½ã¨ãã¦ãå¹¾ä½ã¨ä»£æ°ãå¯æ¥ã«é£æºãã巨大ãªè¤åä½ãåºæ¥ä¸ããã¾ãã
åç¯ã§è¿°ã¹ããã¢ãã¿ã¼ã«ã¼ã ã®ç·ã®ãããªãã°ããªãªã³çãã¾ããç¹ã®ã²ã¨ã¤ã«ãå¤æ§ä½éãç¸äºã«é£æºãã壮大ãªä¸çãè¦ããªããªã£ã¦ãã¾ããã¨ãããã¾ããã¢ãã¿ã¼ç»é¢ï¼ãã£ã¼ãã®åï¼ããè¦ã¦ãªãã®ã§ã建ç©ã®å¤ã®åºå¤§ãªä¸çã¯è¦ãã¾ããã
ãããã«
ä»åã®è¨äºã§ãå¤å¼ã¹ã¿ã¤ã«ããæå³çãªæ··åã¨åä¸è¦ããã¼ã¹ã«ãã¦ãããã¨ããåããããã ããã§ããããããããããã便å©ãªã®ã¯ä½æ ã§ããããï¼
å¤å¼ã¹ã¿ã¤ã«ã§ä½¿ããã¦ããæ··åã¨åä¸è¦ãä¸å¯§ã«ã»ããã¦ã¿ãã¨åããã®ã§ãããæ¦å¿µã®å·®ç°ãåºå¥ããããã«ãè¨å·ã»è¨æ³ãã¤ã³ãã¬ã¼ã·ã§ã³ãèµ·ããã¦ãã¾ãã®ã§ããè±åãã©ãã³æåãã ãã§ã¯è¶³ããªãã¦ãã®ãªã·ã£æåãã¹ã¯ãªããä½ãããã§ã足ããªãã¦è±æåãããã«ã¯ä½éã«ããã¹ãããæ·»åãªã©ã使ããªãã¨åºå¥ãã§ãã¾ãããç ©éã§è² æ ã«ãªãã¾ãã
ãªãã§ãã´ããã£ã«ããã®ã¯ã¾ããã§ãããããç¨åº¦ã¯æ··åã¨åä¸è¦ãããªãã¨å¤§å¤éãã¦ãã£ã¦ãããªãã®ã§ããå¤å¼ã¹ã¿ã¤ã«ã¯ãæ··åã¨åä¸è¦ã«é¢ãã¦ãé·å¹´å¹ãããã¬ã¤ãã©ã¤ã³ãæä¾ãã¾ãã注ææ·±ã使ããªãããã®ã¬ã¤ãã©ã¤ã³ã¯å½¹ã«ç«ã¤ã¨æãã¾ãã
*1:è¬è«ç¤¾ãã«ã¼ããã¯ã¹ããã¶ãä»ã¯çµ¶çã
*2:Rnãå¤æ§ä½ãªã®ã§ãããã¦è¨ãå¿ è¦ã¯ãªãã®ã§ããã