ã¯ãå¯éã§å¾®åå¯è½ãªååãé¢æ°ãã ã¨ãã¾ãããããã®é¢æ°ã®éé¢æ°ã®å¾®åã¯ã次ã®å ¬å¼ã§ä¸ãããã¾ãã
ã¯âfã®å¾®åâãä¸ãã2Ã2ã®è¡åå¤é¢æ°ï¼ã¤ã³ãè¡åï¼ã§ãã
ãã®å ¬å¼ãè¦ããã人ãã次ã®ããã«âå¼å¤å½¢âãã¦ããå ¬å¼ã使ããã¨ãã¾ããã
ããã¦ãããã£ï¼ ãã£ãããã£ãã¢ãã¬ã§ã¼ã¼ï¼ï¼ãã¨æ··ä¹±ãã¦ãã¾ããã
ãã¨ã®å ¬å¼ã®æ¸ãæ¹ãï¼ééãã§ã¯ãªããã©ï¼ä¸è¦ªåã¨ããã誤解ãã¾ãã表ç¾ãªãã§ãããå³è©ã« -1 ãè¼ããææ°ã®æ¸ãæ¹ã¯ãå¤ç¾©çã§ããªã¼ãã¼ãã¼ãããã¦ãã¦ãæå³ãåãã«ãã誤解ã»æ··ä¹±ã®åå ã«ãªãã¾ãã
ãã®è¨äºã§ (-1)ä¹è¨å·ã®å¹¾ã¤ãã®ä¾ãåºãã¦æ確åãã¾ãã(-1)ä¹è¨å·ã«éããã誤解ãã¾ããå°ã£ãè¨æ³ã®ä¾ã¯è²ã ããã¾ããè¨ãããã¨ã¯ãããªãã¨ãªããã³ã¤ãªã¨æããã®ã§ã¯ãªãã¦ãæèã«å¿ãã¦ã¡ããã¨è§£éãã¾ããããã§ãã
å 容ï¼
(-1)ä¹è¨å·ã®ç¨æ³
å³è©ã«ææ°ã¨ã㦠-1 ãè¼ããæ¸ãæ¹ã¯ã次ã®ãããªæå³ã§ä½¿ããã¦ãã¾ãã
- éå
- éåå
- éæ°é¢æ°
- éå
ä»ã«ãããããç¥ãã¾ããããã¨ãããããã®4ã¤ã®ç¨æ³ãè¦ã¦ããã¾ãããã
éå
éå ãinverse elementãã¨ããã¨ã群ãé£æ³ãã人ãå¤ãããç¥ãã¾ããããé¨åååãpartial mapãã§ããã®ãªããä»»æã®ã¢ãã¤ãã«ããã¦éå ãä½ã対å¿ãèãããã¨ãã§ãã¾ãã
M = (M, *, e) ï¼è¨å·ã®ä¹±ç¨ï¼ãã¢ãã¤ãã¨ãã¦ãMã®é¨åéå Invtbl(M) ï¼å¯éãinvertibleããªè¦ç´ ã®å ¨ä½ï¼ã次ã®ããã«å®ç¾©ãã¾ãã
- Invtbl(M) := {xâM | x*y = y*x = e ã¨ãªã yâM ãåå¨ãã}
eâInvtbl(M) ãªã®ã§ãInvtbl(M) ã¯ç©ºã§ã¯ããã¾ãããxâInvtbl(M) ã«å¯¾ãã¦ãx*y = y*x = e ã¨ãªã y ã¯ä¸æã§ãããã¨ã証æã§ãã¾ãããªã®ã§ã(x y) ã¨ãã¦ã次ã®ãããã¡ã¤ã«ã®åå invM ãå®ç¾©ã§ãã¾ãã
- invM:Invtbl(M) â M in Set
Par ãéåã¨é¨åååãparitial mapãã®åã¨ãã¦ãinvM ãé¨åååã¨èãããã¨ãã§ãã¾ãã
- invM:M â M in Par
invM(x) ãç°¡ç¥ã«è¡¨ãè¨æ³ã x-1 ã§ãã
éåå
X, Y ãéåã¨ãã¦ãXããYã¸ã®ååã®å ¨ä½ã Map(X, Y) ã¨æ¸ãã¾ããå¯éãªååãinvertible mapãã®å ¨ä½ã InvtblMap(X, Y) ã¨ãã¾ãã
- InvtblMap(X, Y) := {fâMap(X, Y) | f;g = idX ã㤠g;f = idY ã¨ãªã gâMap(Y, X) ãåå¨ãã}
InvtblMap(X, Y) ã¯ç©ºéåã«ãªããã¨ãããã¾ããä¾ãã°ãInvtblMap({1, 2}, {1}) ã¯ç©ºã§ãã
fâInvtblMap(X, Y) ã«å¯¾ãã¦ãf;g = idX ã㤠g;f = idY ã¨ãªã gâMap(Y, X) ï¼gãfã®éååãinverse mapãï¼ã¯ä¸æã§ãããã¨ã証æã§ãã¾ãããªã®ã§ã(f g) ã¨ãã¦ã次ã®ãããã¡ã¤ã«ã®åå invMapX,Y ãå®ç¾©ã§ãã¾ãã
- invMapX,Y:InvtblMap(X, Y) â Map(Y, X) in Set
invMapX,Y ãé¨åååã¨èãããã¨ãã§ãã¾ãã
- invMapX,Y:Map(X, Y) â Map(Y, X) in Par
invMapX,Y(f) ãç°¡ç¥ã«è¡¨ãè¨æ³ã f-1 ã§ãã
éæ°é¢æ°
å ¸åçãªéæ°é¢æ°ãreciprocal functionã㯠ã§ãããå°ãä¸è¬åãã¦ãã¢ãã¤ããä½åã¨ããé¢æ° f:X â M ï¼M = (M *, e) ã¯ã¢ãã¤ãï¼ãããã¨ããâfã®éæ°é¢æ°â g ã次ã®ããã«å®ç¾©ãã¾ãã
- For xâX, g(x) := invM(f(x))
invM ã¯å ã«åºã¦ããéå ã対å¿ãããé¨åååã§ãã
ä»»æã® xâX ã«å¯¾ã㦠g(x) â Invtbl(M) ãªãã°ãg = f;invM :X â M in Set ã¨ããæ®éã®ååãå ¨å決å®æ§ååãã¨ãã¦å®ç¾©ã§ãã¾ããããã§ãªãã¨ãã§ããé¨åååã¨ãã¦çµåãåæãã㦠g = f;invM :X â M in Par ã¯å®ç¾©ã§ãã¾ãã
f:X â M ã«å¯¾ãã f;invM :X â M ï¼Set ã¾ã㯠Par ã®å°ï¼ããfã®éæ°é¢æ°ãthe reciprocal {function}? of fãã¨ããã¾ããä¾ãã°ãhttps://www.storyofmathematics.com/reciprocal-functionï¼ãã®ãã¼ã¸ãåºåå¤ããï¼ãåç §ã
fã®éæ°é¢æ°ã f-1 ã¨æ¸ãããç¥ãã¾ããã
éå
f:X â Y in Set ã¨ãã¦ãfã«ãã BâY ã®éåãinverse imageãã¯æ¬¡ã®ããã«å®ç¾©ãã¾ãã
- f-1(B) := {xâX | f(x)âB}
ããæ¢ã«ä½¿ã£ã¦ã¾ãããéåã«ã(-1)ä¹ã®è¨å·ã使ãã¾ãã(B f-1(B)) ã¨ãã対å¿ã¯ã次ã®ãããã¡ã¤ã«ã®ååã§ãã
- f-1:Pow(Y) â Pow(X) in Set
ããéåæ§æããéååSetããSetã¸ã®åå¤èªå·±é¢æã¨èããã¨ãã®å°é¨åãmorphism partãã (f f-1) ã§ãã
(-1)ä¹ã®è¨å·ã®ã¾ã¾ã ã¨åããã«ããã®ã§ãf-1 ã®ä»£ããã« Pow(f) ã¨æ¸ãã°ï¼
- Pow(f):Pow(Y) â Pow(X) in Set
ãããåå¤èªå·±é¢æã ã¨è¨ã£ãã®ã¯ã次ã®æ§è³ªããã¤ããã§ãã
- For Xâ|Set|, Pow(X)â|Set|
- For f:X â Y in Set, Pow(f):Pow(Y) â Pow(X) in Set
- For f:X â Y, g:Y â Z in Set, Pow(f;g) = Pow(g);Pow(f) :Pow(Z) â Pow(X) in Set
- For Xâ|Set|, Pow(idX) = idPow(X) :Pow(X) â Pow(X) in Set
ãã ããéåã§ã¯ãªãã¦é åãimageããé¢æã«ãªãã®ã§ãããããåºå¥ããããã«æ¬¡ã®ãããªæ¸ãæ¹ããã¾ãã
- f:X â Y in Set ã«å¯¾ãã¦ã
- éåã«ããåå¤ããéåé¢æã®å¤ï¼ Pow*(f):Pow*(Y) â Pow*(X) in Set
- é åã«ããå ±å¤ããéåé¢æã®å¤ï¼ Pow*(f):Pow*(X) â Pow*(Y) in Set
éé¢æ°ã®å¾®åå ¬å¼
åé ã«æããéé¢æ°ã®å¾®åå ¬å¼ ãã¡ããã¨è§£éãã¦ã¿ã¾ãããã
ã®å¾®åã¯ã ã¨ããååã«ãªãã¾ããããã§ã ã¯ãå®æ°æåã®2è¡2åã®è¡åã®éåã§ãã2è¡2åã®è¡åã®å ¨ä½ã¯æãç®ã§ã¢ãã¤ãã¨ãªãã®ã§ãéå ãéè¡åãã対å¿ãããååãããã¾ã*1ã
ã®æå³ã¯ ã®ãã¨ãã¤ã¾ã ã®éæ°é¢æ°ï¼éé¢æ°ã§ã¯ãªãï¼ï¼ã§ããããã«å¯¾ãã¦ã 㯠ã®ãã¨ã§ãã
ã§ããããéé¢æ°ã®å¾®åå ¬å¼ã(-1)ä¹è¨å·ã使ããã«æ¸ãã¨ï¼
ããã¯ç ©ééãã¾ãããã§ããè¨ã£ã¦ããæå³ã解éããã°ãããªãã¨ã«ãªãã¾ãã
(-1)ä¹è¨å·ã®ãããªè¨æ³ã¯ãç°¡æ½ã§è¦èªæ§ãè¯ãã¦ä¾¿å©ã§ããããã¨ãã«äººããã¶ãããã¦éã¡ã®æ²¼ã«èªãã¾ããæ²¼ã«ããããªãããã«ã¯ãè¨å·ã®è¡¨å±¤ã«é¨ãããã«ãè¨ã£ã¦ããæå³ã解éãããå¿ è¦ãããã¾ãã