はてなキーワード: ローレンツ変換とは
地球は宇宙空間を動いているのだから、地球の進行方向と垂直方向では光の速さが変わるだろう。そう考えて実験してみたところ、どちらの速さも変わらなかった。つまり、どんな系でも光の速さは一定であるらしい。
これを式にするとこうなる。
光の速さをc, 時刻 t の間に光の進む距離を x として
x/t = c
式変形すると
ここで一旦休憩。座標系を回転させても'棒の長さは一定'という式を考えてみよう
x^2 + y^2 = const
かんたんのため z 方向は考えない
この時座系を回転させる式を行列で書くと
こうなる。(心の目で読んで欲しい)
という式を思い出すと
x'^2 + y'^2 = x^2 + y^2 = const
上の'棒の式'とは符号が逆だね。こんなときはsin cos ではなく sinh cosh を使う。
cosθ = ((exp iθ) + (exp -iθ))/2
sinθ = ((exp iθ) - (exp -iθ))/2
coshθ = ((exp θ) + (exp -θ))/2
sinhθ = ((exp θ) - (exp -θ))/2
計算すると
cosh^2 - sinh^2 = 1 になるのがわかると思う。
cos^2 + sin^2 = 1 とは符号が逆になってるね
光の速さが系を変換しても変わらないという式を行列で書くと
こうなる。 これがローレンツ変換。
棒の長さが一定、つまり空間回転は空間方向 (x,y,z)しか混ぜないけれど、
光のはやさが一定、つまりローレンツ変換は 時間と空間 (t, x ) を混ぜているでしょ?
速さ v で進むロケットを考えてみよう。
v=x/t
だ。
一方、ロケットには美加子さんが乗っていてその携帯電話の表示では地球を発ってから T時間後である。
Tを計算してみよう。
先程のローレンツ変換の式に代入すると
ここで x = ct を使ったよ。最後に cosh で全体を纏めると
になる。
ここまで誤魔化していたけど、cosh はロケットの速さ v で決まるパラメータで
1/cosh = \sqrt{1-(v/c)^2}
なんだ。天下りで申し訳ないけど、増田では式も図も書けないので導出は勘弁して欲しい
とにかくまとめると
T = t \sqrt{1-(v/c)^2}
だね。ロケットの速度 v は光速度以下なので T < t になる。
地上で待つ昇くんが大学生になっても美加子さんが中学生のままなのはこんなワケだね
v が大きくなるほど時間の遅れは大きくなるよ
まず「特殊相対性理論」からやけど、これは光の速さがどんな状況でも変わらんってことが基本やねん。
たとえば、電車が走っとる中で懐中電灯を前に向けて光らしても、外でじっとしてる人が見た光の速さも同じやねん。
でも光の速さだけは、どんなに速く動いても変わらんのや。
ほんで、この理論やと「時間」や「空間」も相対的に変わるっちゅうことになる。
速く動くほど時間が遅くなるんや。これを「時間の遅れ」っていうねん。
例えて言うたら、宇宙船でめっちゃ速く移動してる人は、地球におる人に比べてゆっくり年を取る、みたいな感じや。
次に「一般相対性理論」やけど、こっちは重力が関わってくるねん。
簡単に言うたら、重いもんが空間をぐにゃっと曲げるっちゅうことや。
たとえば、地球みたいなでっかいもんがあると、その周りの空間が曲がって、そこに他のもんが引っ張られるから「重力」が生まれるんや。
まあ、ざっくり言うたらこんな感じやけど、ほんまはもっと複雑なんやで。
(もう少し詳しく教えてください)
ほな、もうちょっと深くいこか。
まず、「特殊相対性理論」についてやけど、これを理解するには「光の速さが一定」っちゅうのがどんだけすごいことか、ちゃんとわかっとかなあかん。
普通の物体は、速く動けば動くほど、その速さは他のもんに足されるやろ?
例えば、車が時速50キロで走っとって、その車の上からボールを前に時速20キロで投げたら、ボールは時速70キロで進むことになる。
せやけど、光は違うんや。どんな状況でも、どんなに速く動いとっても、光の速さは毎回秒速約30万キロメートルで一定やねん。
ほんなら、何が変わるんや?って話やけど、答えは「時間」と「空間」や。
速く動けば動くほど、時間は遅く流れるし、移動してる方向の長さは縮んでしまう。
具体的な例を出すと、もし君が光の速さにめっちゃ近いスピードで宇宙船に乗って1年旅したとしようや。
地球におる人らからしたら、その1年が例えば10年にも20年にも感じられるかもしれん。
つまり、君は歳をとらんけど、地球では時間がめっちゃ進んどるわけや。これが「時間の遅れ」や。
ほんで、次は「一般相対性理論」やけど、これはもうちょっと難しい話やねん。
特殊相対性理論は光とかスピードに注目してたけど、こっちは「重力」に焦点を当てとるんや。
重力っちゅうのは、普通に考えたら物体が引っ張り合う力やと思うやろ?でもアインシュタインはそれを「空間と時間が曲がるせい」やって言うたんや。
地球みたいな大きな質量を持っとるもんは、その周りの空間をぐにゃっと曲げるんや。これを「時空の歪み」っちゅうねん。
で、その歪んだ空間に沿って、他の物体が動くことで、まるで引っ張られてるように見えるっちゅうわけや。これが「重力」の正体や。
ゴムシートの上に重いボールを置いたら、シートがへこんで周りにくぼみができるやろ?そのくぼみに他の小さいボールを置くと、転がって重いボールに引き寄せられる。これが重力のイメージや。
太陽とか地球みたいなでっかいもんが周りの時空をへこませて、そこに他の天体が引っ張られるわけやな。
重力が強い場所ほど時間はゆっくり流れる、これを「重力による時間の遅れ」っちゅうねん。
例えば、地球の表面におる人と宇宙の遠くにおる人では、地球の表面のほうが重力が強いから、時間がわずかに遅く流れるんや。
これらの理論がなんで重要かっちゅうと、GPSとか人工衛星みたいなもんは、めっちゃ速いスピードで地球の周りを回っとるやろ?
そのために時間が遅くなってるし、地球の重力も影響を与えとるんや。
せやから、相対性理論を使ってそのズレを計算して補正せんと、正確な位置情報は得られへんねん。
ほんなわけで、相対性理論っちゅうのは、宇宙全体の「時間」や「空間」、そして「重力」がどう動くかを説明するめっちゃすごい理論なんや。
(では最後に、相対性理論と超ひも理論の関係を教えてください)
まず、相対性理論っていうのは、さっきも話した通り、重力を扱う理論やね。
特に「一般相対性理論」やと、重いもんが時空を曲げることで重力が発生する、っちゅうふうに説明しとるわけやな。
これは大きなスケール、例えば星とか銀河、宇宙全体を説明するのにめっちゃ強力な理論や。
けどな、宇宙には重力だけやなくて、他にも4つの基本的な力があんねん。
重力に加えて、電磁気力、強い核力、弱い核力っちゅうもんがあるんや。
相対性理論は重力には強いんやけど、他の力、特に小さいスケールの話になってくると話がちゃうねん。
原子とか素粒子みたいなめっちゃ小さいもんを扱うのは量子力学っちゅう別の理論が必要になる。
ここが問題なんや。相対性理論と量子力学っちゅうのは、どっちもめっちゃ成功してる理論やけど、整合性が取れへんねん。
大きいスケールやと相対性理論、小さいスケールやと量子力学、って分かれとるわけや。
でも宇宙全体を一つの理論で説明したいなら、両方をつなげる必要がある。
これを統一理論とか万物の理論っちゅうんやけど、これがまだうまくいってへんねん。
そこで出てくるんが超ひも理論や。
超ひも理論っていうのは、宇宙にある全ての物質や力が、ひも状のものからできてるっちゅう考え方やねん。
普通、素粒子は点みたいなもんやと思われとるやろ?でも超ひも理論では、実はそれがめっちゃ小さい「ひも」やっていうんや。
このひもが振動することで、違う性質の粒子になったり、力を生み出したりするっちゅう考え方や。
なんでこれがすごいんかっていうと、この理論は重力と量子力学を一緒に扱えるんや!
つまり、相対性理論で扱ってた重力も、量子力学で扱ってる小さいスケールの現象も、ひもの振動っていう一つの仕組みで説明できるようになるかもしれんって話や。
相対性理論と量子力学の一番の問題は、重力を量子化できひんってことや。
量子力学は確率的な世界やけど、相対性理論は連続した空間を扱う理論やから、この2つが衝突してしまうんや。
特に問題になるんが、ブラックホールとかビッグバンみたいなめっちゃ極端な状況や。
そこでは重力もめっちゃ強くなるし、量子効果も無視できへん。せやけど、これらを同時に説明できる理論がまだないんや。
そこで超ひも理論が登場するんやけど、ひもがめっちゃ小さいスケールでは、重力の量子化も可能になるっちゅうわけや。
つまり、相対性理論が扱ってる「大きなスケールでの重力」と、量子力学が扱う「めっちゃ小さいスケールの力」を同時に説明できるっちゅうことや。
ただしやな、超ひも理論はまだ理論段階で、実験で直接確認されたわけやないんや。
それに、超ひも理論が正しいと仮定すると、宇宙には我々が感じ取れん11次元も存在するっちゅう話になる。
今のところ、わしらが日常的に感じるのは3次元の空間と1次元の時間だけやけど、残りの次元はめっちゃ小さく「巻き込まれて」るから見えへんらしい。これが正しいかどうかもまだわからんのや。
まとめると
•相対性理論は重力を説明する強力な理論やけど、量子の世界では問題がある。
•超ひも理論は、相対性理論と量子力学を一つの理論でまとめようとするもんで、ひもの振動で全てを説明できるかもしれん。
•ただ、超ひも理論はまだ理論の段階で、実験的には確かめられてへんし、11次元の宇宙とか、ちょっと奇抜な要素も含まれとる。
超ひも理論がほんまに正しいんかどうか、まだまだ謎が多いねんけど、もし解けたら宇宙の全てが一つの理論で説明できるようになるかもしれんって、めっちゃ壮大な話やな!
でもお前ローレンツ変換できないじゃん
でもお前ローレンツ変換できないじゃん
でもお前ローレンツ変換もできないじゃん
以下、ネタバレ+不満
ただ、不思議な理論すぎて納得はできない、というのが面白いところなんだけど
大学生工学部レベルの事前知識を前提とした上で講義が展開されるので
大半の人は最初の30分も待たずに脱落したと思われる
相対性理論が生まれた背景を丁寧に説明しているあたりは人によっては分かりやすいのだろうけれど
大半の人は
「アインシュタインはいきなり光速度不変っていうのを思い付きました」
という小学生レベルの知識で光速度不変にすれば特殊相対性理論は導けるのに
わざわざ難解な式やローレンツ変換とかの話を持ち出して難解にしてる
ただ、番組の構成を見た限りだと講師の教授は番組側からそれを指示されてやっているように感じた
1時間目で大学生レベル、2時間目で一般教養レベルという感じで2時間目の方に簡単な内容を持ってきて分かりやすく説明していた
ただ、そもそもの「距離=速さ×時間」だ、というところから導出していないので
結局は良く分からない宇宙語の世界、みたいな感じになってしまっていて
相対性理論に対してサンシャイン池崎だけではなく視聴者にも難解なイメージを持たせてしまっている
E=mc^2の導出過程はさておき、その式のもつ意味をサンシャイン池崎は最後まで理解できていなかったように見える
としつこく言っていたが、その意味を理解できていないし、あの説明だと理解はできない
「質量を減らそうと何かを燃やしたところで灰や煙になって質量はほとんど変わっていない」
みたいな説明を加えておいて、質量をそのままエネルギーにする方法として核分裂とか核融合っていうのが編み出された、みたいな話にした方が良かった
そうすると対消滅みたいな話もできるし、仮にサンシャイン池崎の体を対消滅させたらどうなるか、みたいな話もできて面白かったと思う
最後にアイドルの女性にサンシャイン池崎が3分で説明する、というのが番組の趣旨だったのだが
サンシャイン池崎も言っていたように
「そんなのアインシュタインでも無理」
である(かなり頑張っていたけど)
とはいえサンシャイン池崎も準備を整えていざ説明、となったのだが
肝心のアイドル女性は登場せず、パネルが持ち込まれてそこに向かって3分間喋り続けることになった
さんざん引っ張っておいて最後コレかよ!という怒りというか呆れというか、かなり時間の無駄を感じてしまった
アイドル女性のスケジュールの都合、などと番組側は説明していたが
番組の冒頭ではアイドル女性が登場していたので、だったらそれより2時間前にサンシャイン池崎を呼び出して講義をすれば良かっただけなのだ
つまり番組側はアイドル女性に相対性理論を教えよう、などとは微塵も思っていないし
そもそも相対性理論を教えることなど無理、と考えていたのだろう(なので3分しかない)
「最後にサンシャインに『無理!難しい!』って言わせて終わり」
こういう構成というか演出の前提があったにも関わらず、登壇した教授は非常に分かりやすく献身的に講義をしてくれたと思うのだが
やはり全体の構成を覆せるほどではなかった
「細かいところはさておき、特殊相対性理論なら小学生でも数式レベルで理解できる」
ということを分かっていると思う
そして理解した上で時間が伸び縮みしたり距離が伸び縮みしたり同時の相対性が起きたりなどいろんな現象が起きる不思議なことを伝えて
それを踏まえてSFを楽しもう、という話にも出来るのだ
それを「相対性理論なんて難しすぎてどうせ無理」という前提を置いて番組を構成するとこうなってしまう
NHKはもっと簡単に相対性理論を教えている番組があるのに非常にもったいないと感じた
いや、酷かった マジで
「通常の時間の流れに支配されているとき時間は実数である」の対偶は当然ながら「時間が実数以外の複素数のとき通常の時間の流れに支配されない」であるが、その通常ではない時間の流れとはどんなものかを考えようにも、垂直抗力の例と違って体験することができないから、これ以上の具体化をするのに行き詰ってるんだろう。
に対する
虚時間で考えればミンコフスキー時空を4次元のユークリッド空間のように扱え、
というレス
「どこにも行き詰まる点など無い」と、わざわざ相手の表現をなぞってしかも「など」という言い方をしてるところに棘がある。
こういうぶっきらぼうないちいち癇に障る言い方してくるのはわざとなのか天然なのか。
これは正しいけど、なんで、このことから
まず、地球と月が静止している座標系で考えると、
(2) (1)の0.1秒後に、光が地球を出発。
(3) (1)の1/0.99秒後 ≒ 1.01秒後に、宇宙船が月に到着。
(このあと宇宙船はそのままの速度で飛び続けるとする)
(4) (1)の1.1秒後に、光が月に到着(して通過していく)。
(5) (1)の10秒後に、地球から9.9光秒の位置で、光が宇宙船を追い抜く。
となり、宇宙船が先に月に着くので「青」
(地球(および宇宙船から)月までの距離は、約0.141光秒 (1.0×√(1-0.99^2)光秒)
(1)宇宙船が地球を出発。(ただし宇宙船基準なので、宇宙船の方が止まっていて、月(と地球)が光速の99%で動いている)
(2) (1)の約0.142秒後 (1/0.99×√(1-0.99^2)) に宇宙船が月に到着(して通過)。
(3) (1)の約0.71秒後 (0.1 / √(1-0.99^2)) に光が地球を出発。
(4) (1)の約0.78秒後 ( (1.1-0.99)/√(1-0.99^2)) に光が月を通過。
(5) (1)の約71秒後 (10 / √(1-0.99^2) に光が宇宙船を追い抜く。(もちろんこのとき宇宙船座標での光の速度は「光速度」)
となって、やはり宇宙船が先に月に着くので「青」
(ローレンツ変換の計算のミスで具体的な数値が間違っているかもしれないけど、そこは大目に見てほしい)
相対論の解説でよく「時計が遅れる」とか「長さが短くなる」ことが強調されやすいけど、
ことが重要。
「同時性」をきちんと考えずに、「動いていると時間は遅れて、長さは短くなる」「光の速さは一定」みたいな文言だけから相対論の帰結を導こうとすると、だいたいどこかで破綻する。
増田がそう思うのは、僕らがこの世界を3次元ユークリッド空間と認識しているからだろうね。
実は両目に映っているのは2次元の画像なのだけれども、その視差を利用して3次元であると認識しているらしい。
僕らの脳はずいぶん高度なことをやっているのだ。
ところで、どうやらこの世界は少なくとも特殊相対論においては 空間3次元+時間1次元 の4次元空間(ミンコフスキー空間)だということがわかっている。(量子化された一般相対論によるともっと高次元のようだけれどもここでは置いておく)
それなのに僕らはガリレイ変換を自然だと考え、ローレンツ変換を不思議に思う。(電車から外を見て、木が動いていると感じる人はいないだろう。一方でローレンツ収縮を僕らは不思議に感じる)
これはどういうことだろうか?
産まれてから爆発的に増えたニューロンはあるときから急激に減りはじめ、5歳くらいで落ち着くそうだ。
幼児期に聞き分けられた r の音が、日本人はある年齢になると聞き取れなくなることで有名だね。
動物を使った実験で、産まれてすぐの赤ちゃんに目隠しをしていると永遠に視力が失われることが知られている。
人間を使った実験はないが、幼児に眼帯をしているとやはり視力が失われることが知られている(ただし、その後のトレーニングで回復可能)
(3Dテレビは5歳以下の幼児には見せないでというのはこの辺りに起因する)
もしかしたら、僕らがこの世界を4次元ミンコフスキー空間と知覚出来ないのは
重力の最も重要な性質の1つは、重力は光と同じ速さですすむ波でありながら物資をすり抜けてすすむことができることです。
重力なので、なんでもすり抜けるのは当たり前と思うかもしれないですが、
光も波でありますが電磁波の一種なので、なんでもすり抜けるわけではありません。
でも、例えば地球の重力はどこにいても一緒。どこに隠れたって必ずそのままうける。
「重力は波でありそれは光と同じ速さで伝わる(重力波)」というのは同じくアインシュタインが発見した「光が誰がどのような状況でみても必ず一定の速さになる(光速不変の原理)」ということと同じくらいの超重要な宇宙全体の法則で、
それまではニュートンが「重力は瞬時に伝わる」と言ってて、それを誰も疑ってなかった。当時の誰もが疑うことすら思いつかないくらいそれは当然だと思ってたと思う。
重力波も光速不変の原理のどちらもアインシュタイン以前は誰ひとりとしてそんな主張すらしてなかったし、理論のカケラすらなかった。
敢えて言うならローレンツ変換くらいだけど、ローレンツは「光の速さに近づくと物質が縮む」って言ってたわけだからね。
でも、アインシュタインは「ローレンツは物質が縮むとか言ってるけど、それ空間そのものが縮んでるんだよ(特殊相対性理論)」って言いはじめて、既存の理論を駆使して理論的に完璧に証明してしまった。そのついでに重力波まで発見し(一般相対性理論)、ニュートンが「重力は瞬時に伝わる」って言ってたのを撃殺。超絶すぎる。天才と言われる所以はそこにある。
さらに、今回の実験装置が萌える。何が萌えかって、重力波を観測したその実験装置が、アインシュタインが「光は誰からもみても必ず一定の速さになる」っていう着想を得たマイケルソンの干渉計とほぼ一緒の仕組み。
もちろん今回の場合は、まさに天文学的な精度の担保が必要なんだけど、それはお金の問題。
マイケルソンの干渉計の仕組みそのものはもの凄い単純で、高校で物理やってたら必ず習う。
それでめっちゃ完璧な装置じゃんって感心するんだけど、さらにおもしろいことに、もともとは光を伝える物質(エーテル)の存在を証明しようとした装置なのに、
むしろそんなものがないことがわかって、当時の科学者たちが「結果何も起こらなかった」ってションボリするんだけど、
その実験結果をアインシュタインが「それ光は誰からもみても必ず一定の速さになるからだろ」って、当時で言うとコペルニクス的転回をおこなって、
そんなもんだから、もう今回の件はあらゆるところにアインシュタインが出てきて堪んないわけですよ。神ってこういうのをいうんじゃないの?
映画インターステラーで主人公は若いままなのに、地球の人たちどんどん年を取って行ったでしょ。
こういうとき、同時刻の基準を決めとかないと何がなんだかよくわからないのね。
同時刻の基準が変えるというのは どこからが過去で、どこからが未来なのかが変わるということなので
そう言う意味で「過去・現在・未来という考え方は幻想にすぎない」といったのかもね
これは何の事やろ?相対論に関して言うと「時間と空間は混じり合って変換するのでわけられない」かな
電場動かすと磁場になったり、磁場を動かすと電場になったり、電場と磁場って表裏一体なのね。
増田が走ったり止まったりすると電場が磁場に見えたり磁場が電場になったりするわけね
ローレンツ変換っていうんだけど
増田が走ったり止まったりすると時間が空間になったり、空間が時間になったりするのね。
もう一個追記
物理分野では正しく物理が記述できればなんでも OK! OK! なので
時間を虚数にしたり、新しい時間もいっこ入れたり、次元一個落としたりとか結構やるので
増田はなんかむつかしいの読んだのかもしれんね わかんないけど
物理屋さんにとっては宗教用語って中二かっこ良かったりするんよ
みたいな。急に思いつかないけどけっこうあるよ
みんなたぶん、本来の宗教用語の意味をよくわかってないでノリで付けてると思うわ
なんかごめんね