FC2ブログ
わんこら日記
甘くて切ない日記。わんこら式数学の勉強法、解説記事

東京大学2013年度理系第3問の確率、数列の問題の解説
グミの新作を買い続けて人の信用を失ったところで東京大学2013年度理系第3問の解説をしたいと思います。

[問題]
20170731170640bdd.jpg
A,Bの2人がいる。投げたとき表裏の出る確率がそれぞれ1/2のコインが1枚あり、最初はAがそのコインを持っている。次の操作を繰り返す。
(i)Aがコインを持っているときは、コインを投げ表が出ればAに1点を与え、コインはAがそのまま持つ。裏が出れば両者に点を与えじ、AはコインをBに渡す。
(ii)Bがコインを持っているときは、コインを投げ、表が出ればBに1点を与え、コインはBがそのまま持つ。裏が出れば、両者に点を与えず、BはコインをAに渡す。
そしてA,Bのいずれかが2点を獲得した時点で、2点を獲得した方の勝利とする。たとえば、コインが表、裏、表、表と出た場合、この時点でAは1点、Bは2点を獲得しているのでBの勝利となる。
(1)A,Bあわせてちょうどn回コインを投げ終えたときにAの勝利となる確率p(n)を求めよ。
(2)Σ(k=1~∞)p(n)を求めよ。


[解答と解説]
(1)
この問題はな
2017073117283122d.jpg
こうやってシンプルに描くと0.7秒かかるやろ


20170731172833e7c.jpg
こうやってリアルに描くと11分32秒かかるやろ。


これで大きな差が生まれるねん。

そういうことや。



だからそれだけじゃわからんやろ!


20170731170643c39.jpg

どういうことかと言うと、確率は絵で説明すると早く見やすくて

この問題でも
表裏表裏裏裏…
と描くよりも
○×○××
って描いた方が早いし、見やすくてこういう処理で差が結構出てきてしまったりするねん。


それでこの問題では2点で勝利やから、基本的に×ばっかで
○が2回か、3回やろな。
最後のn回目は○じゃないとあかんしな。

そしたら○が2回のときはAで○を1回、AとBで×をn-2回だして交換しあって最後にAが○やな。
と言うことはn-2回でAに戻ってこないといけないからnが偶数の時と言うことになるな。

20170731170645018.jpg
nが偶数のとき
×××××××…×××○
で図の矢印の偶数番目の直前のところに○を入れたらAで○を出したことになるな

これは(n-2)÷2+1=n/2通りですね。

と言うことで
p(n)=n/2・(1/2)^n

今度は○が2回のときはAで○を1回、Bで○を1回、AとBで×をn-3回だして交換しあって最後にAが○ですね。
と言うことではn-3回でAに戻ってこないといけないから、nは奇数と言うことになるな。

2017073117064696b.jpg
nが奇数のとき
×××××××…××××○
図の短い矢印の偶数番目の直前のところに○を入れることでAで○を出したことになって
(n-3)/2+1=(n-1)/2
図の長い矢印の奇数番目の直前のところに○を入れることでBで○を出したことになり
(n-3)/2
よって
p(n)=(n-1)/2・(n-3)/2・(1/2)^n
と言うことになりました。


(2)これな、やることはわかると思うねん。
奇数で終わるか偶数で終わるかで式の表し方がかわるから、それぞれで立式して無限に飛ばす感じやな

201707311708381d9.jpg
n=2mまでくわえるとき
Σ(k=1~m)p(2k)+Σ(n=1~m)p(2k-1)
=Σ(k=1~m)k(1/2)^(2k)+Σ(k=1~m)(k-1)(k-2)(1/2)^(2k-1)

とか計算がやたら大変やねん。


20170731170840808.jpg
そこでS_n=Σ(k=1~n)r^k、T_n=Σ(k=1~n)kr^k、U_n=Σ(k=1~n)k^2r^kを計算して、それぞれのn→∞の極限をS,T,Uとしてこれ組み合わせて計算すると言う処理の仕方があるねん。

式を整理してから極限とるんじゃなくて、極限とってから整理やな。

20170731170841107.jpg
r=1/4として

S_n=r(1-r^n)/(1-r)→r/(1-r)=1/3

T_nはrT_nとの差を考えて
(1-r)T_n=S_n-r^(n+1)
T_n=1/(1-r)・S_n - nr^(n+1)/(1-r)→1/(1-r)・S=4/9

U_nもrU_nとの差を考えて
(1-r)U_n=2T_n-S_n-n^2・r^(n+1)
U_n=1/(1-r)・T_n-1/(1-r)・S_n-n^2・r^(n+1)/(1-r)
→2r/(1-r)・T-1/(1-r)・S=32/27-4/9=20/27

201707311708422e1.jpg
これで

Σ(n=1~2m)p(n)
=Σ(k=1~m)p(2k)+Σ(n=1~m)p(2k-1)
=Σ(k=1~m)k(1/2)^(2k)+Σ(k=1~m)(k-1)(k-2)(1/2)^(2k-1)
=Σ(k=1~m)k(1/4)^k+Σ(k=1~m)2(k-1)(k-2)(1/4)^k0
=Σ(k=1~m)(2k^2-5k+4)(1/4)^k
=2U_m-5T_m+4S_m
→2・20/27-5・4/9+4・1/3=16/27
(m→∞)

Σ(n=1~2m+1)p(n)
=Σ(n=1~2m)p(n)+p(2m+1)
→16/27+0=16/27
(m→∞)
よって
Σ(n=1~∞)p(n)=16/27

東京大学の入試の数学の過去問の解説

関連記事

テーマ:大学受験 - ジャンル:学校・教育

▲ページトップへ
この記事に対するトラックバック
トラックバックURL
→https://wankora.jp/tb.php/4943-97967cd0
この記事にトラックバックする(FC2ブログユーザー)
▲ページトップへ
プロフィール

わんこら

Author:わんこら
京都大学理学部を数学専攻で卒業した数学と物理講師

現在、東京で働いています。

わんこらチャンネル
チャンネル登録お願いします

かずスクール
で数学を教えてます。

わんこら式数学の勉強法
数学の勉強方法や仕方を説明

わんこらメルマガ←毎週、わんこら式についての記事をメルマガで書いています。
まずは→わんこらメルマガ サンプル号を読んでください
noteでの購読は→こちら

詳しいプロフィール


メッセージはこちらへ
メール
迷惑メールにされる危険性があるので出来るだけ
kazuyuki_ht○guitar.ocn.ne.jp
(○を@にしてください)に送ってください


リンクはばりばりのフリー
一言メールくれれば相互リンクします。


カテゴリーと名作集
読者に受けが良かった記事を集めてたり、今までの記事をカテゴリー別にまとめてます。



水と空気と街並とからだ
中学時代からの親友てつろうのブログ。
今年、滋賀医科に合格した医学生です。

リンク集
リンク集はこっちです。

このブログは携帯でも見られます。

カテゴリー

メール

リンク

ブロとも申請フォーム

この人とブロともになる

FC2カウンター

月別アーカイブ

ブログ内検索

RSSフィード