ã«ã³æ¡å¼µã®å·¦å³ã«ã¤ãã¦ä½åº¦ãæ¸ãã¦ãã¾ãã
- ã«ã³æ¡å¼µã«ãããä¸ä¸å·¦å³ï¼ å ¥éã®åã«æ´çãã¹ããã¨
- ã¬ã¼ã! ã¾ãå·¦ã¨å³ããã«ã³æ¡å¼µ
- ã«ã³æ¡å¼µã®å·¦å³ã®æ¶ãæ¹ãããã²ã¨ã¤
- ããã§ãã«ã³æ¡å¼µã®å·¦å³ãå¿ãã¦ãã¾ã
- å³ã«ã³æ¡å¼µã® eval 㯠run
ããã ãå·¦å³ã話é¡ã«ãã¦ããªãããä»ã§ãåã¯ã«ã³æ¡å¼µã®å·¦å³ã§æ··ä¹±ãã¾ããããã¯ãã£ããä½ãªãã ããï¼ ã¨ãããä¸åº¦èãã¦ã¿ã¾ããã
ããã£ãï¼ æ··ä¹±ã®åå ã¯ã©ã ãè¨ç®ã¨ã®ã¢ããã¸ã¼ã ãåã«ã¨ã£ã¦ãã©ã ãè¨ç®ã¯é¦´æã¿æ·±ããã®ã§ãããªã®ã§ãã«ã³æ¡å¼µãèããå ´åãï¼ç¡æèã«ï¼ã©ã ãè¨ç®ã¨ã®ã¢ããã¸ã¼ã使ã£ã¦ãã¾ãã¾ããããã©ã ãè¨ç®ã®å·¦å³ã¨ã«ã³æ¡å¼µã®å·¦å³ã§ã¯ãç¨æ³ãå ¨ç¶éãã®ã§ãããå·¦å³ãéããªãã¾ã è£æ£ãå¹ãã®ã§ããããå·¦å³ãéã£ãç®çã§ä½¿ããããã®ã§æ¸æã£ã¦ãã¾ãã®ã§ãã
ããã¯ãè¨èé£ãã®åé¡ã«éãã¾ãããããè¨èã§å¼ã£ãããã¨ç解ãæèãé»å®³ããããã¨ãããã¾ãããããªã¨ãåã¯ããæªããããè¨éã®ããã ãã¨è¨ã£ããæ¸ããããã¦ãã¾ãããè¨éæãããã
- ãã®ããã°å ã® è¨é ã®æ¤ç´¢çµæ
ãã®è¨äºã§ãã«ã³æ¡å¼µã¨ã©ã ãè¨ç®ã®ã¢ããã¸ã¼ã¨ã形容è©ãå·¦-å³ããã©ã使ããã¦ãããã説æãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\In}{\text{ in }}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\hyp}{\text{ï¼} }
\newcommand{\id}{\mathrm{id} }
\newcommand{\twoto}{\Rightarrow }
`$
å 容ï¼
- äºåæ³ã¨å½¢å®¹è©
- ã¢ãã¤ãåã«ãããã©ã ãè¨ç®
- ã©ã ãè¨ç®ã®çµµå³
- å対çãªã©ã ãè¨ç®
- å³ã®å ´å
- é¢æåã«ãããå³ã«ã³æ¡å¼µ
- ãã®ä»ã®å ´å
äºåæ³ã¨å½¢å®¹è©
ãªã«ããäºç¨®é¡ã«åé¡ãããã¨ããåé¡ã®åºæºã»ææ³ãäºåæ³ãdichotomyãã¨ããã¾ããäºã¤ã«åããããã¢ãéã®ã¯ã©ã¹ããªãããã®å½¢å®¹è©ãä»ãã¦å¼ã³ãã¨ãå¤ãã§ããããäºã¤ã®ã¯ã©ã¹ããå·¦ãã³ãã«ããå³ãã³ãã«ãã¨å¼ã³åãããªãã使ç¨ãã形容è©ãå«ãã¦å·¦-å³ã»äºåæ³ã¨ãããã¨ã«ãã¾ããå·¦-å³ã»äºåæ³ä»¥å¤ã«ãä¸-ä¸ã»äºåæ³ãæ±-西ã»äºåæ³ãæ£-è² ã»äºææ³ãªãããããã¾ãã
ãäºåæ³ããæ¡å¼µè§£éãã¦ãã¢ãã2ã¤ãããªãã¨ãã§ããããããåºå¥ããã¨ãã¯äºåæ³ã¨ãããã¨ã«ãã¾ããéä¼´é¢æãã¢ããå·¦ãã¨ãå³ãã§å¼ã³åããã®ã¯å·¦-å³ã»äºåæ³ã§ããã¨ãã«ãçä¸æ¹ã形容è©ãªãã®ãã¨ãããã¾ãããã«ãªã¼åã¨åã«ãªã¼åãã¨ãã極éã¨ä½æ¥µéãã¨ãã¯ãçä¸æ¹ã形容è©ãªãã§ãããããªã¨ãã¯ã形容è©ãªãã®ã»ãããæ£ãã ã¨ãã¦ãæ£-åã»äºåæ³ã¨ãæ£-ä½ã»äºåæ³ã¨ãããã¨ã«ãã¾ãã
ã©ã ãè¨ç®ãå対çã±ã¼ã¹ã¾ã§æ¡å¼µããã¨ã4ã¤ã«åé¡ã§ãã¾ãããã®ã¨ããå·¦-å³ã»äºåæ³ã¨æ£-ä½ã»äºåæ³ã使ããã¾ããä¾ãã°ãææ°å¯¾è±¡ãexponential objectãã¯æ¬¡ã®ããã«å¼ã³åãã¾ãã
å·¦ | å³ | |
---|---|---|
æ£ | 1. å·¦ææ°å¯¾è±¡ | 2. å³ææ°å¯¾è±¡ |
ä½ | 3. å·¦ä½ææ°å¯¾è±¡ | 4. å³ä½ææ°å¯¾è±¡ |
ã«ã³æ¡å¼µãå対çã±ã¼ã¹ã¾ã§å«ããã¨ããã¯ã4ã¤ã«åé¡ã§ãã¾ãããã®ã¨ããæ¡å¼µ-æã¡ä¸ãã»äºåæ³ã¨å·¦-å³ã»äºåæ³ã使ããã¾ãã
æ¡å¼µ | æã¡ä¸ã | |
---|---|---|
å³ | 1. å³ã«ã³æ¡å¼µ | 2. å³ã«ã³æã¡ä¸ã |
å·¦ | 3. å·¦ã«ã³æ¡å¼µ | 4. å·¦ã«ã³æã¡ä¸ã |
ã©ã ãè¨ç®ã¨ã«ã³æ¡å¼µã®ã¢ããã¸ã¼ã§ã¯ãåãçªå·ãä»ããæ¦å¿µã対å¿ãã¾ãã
- å·¦ææ°å¯¾è±¡ ââ å³ã«ã³æ¡å¼µ
- å³ææ°å¯¾è±¡ ââ å³ã«ã³æã¡ä¸ã
- å·¦ä½ææ°å¯¾è±¡ ââ å·¦ã«ã³æ¡å¼µ
- å³ä½ææ°å¯¾è±¡ ââ å·¦ã«ã³æã¡ä¸ã
ã©ã¡ããä¸æ¹ã ããªãé å¼µã£ã¦ãã¼ããã°æ¸ã¿ã¾ããã両æ¹ãæ±ãã¨ãäºåæ³ã®åºæºãéãã®ã§ãããããã£ã¦ãã¾ãã®ã§ãã
è¨èã»å¼ã³åããã¼ããã®ã¯ããã¦ãã§ããã ãçµµå³ã¨è±¡å½¢æåã§ç解ãããã¨ã«ãã¾ãããã®è¨äºã®æå¾ã«ãçµµå³ã»è±¡å½¢æåã¨è¨èã»å¼ã³åã®å¯¾å¿è¡¨ã示ãã¾ããè´ãæ¹ãªããã対å¿è¡¨ã¯æè¨ãããã¨ã«ãã¦ãç解ãæèã®æ段ã«è¨èã»å¼ã³åã¯ä½¿ããªããã¨ã«ãã¾ããè¨éãæªãããã®ã§ã
ããã¯è¨ã£ã¦ããã³ãã¥ãã±ã¼ã·ã§ã³æ段ã¨ãã¦è¨èã»å¼ã³åã使ããããå¾ãªãã®ã§ããã®è¨äºã¯è¨èã»å¼ã³åã使ã£ã¦æ¸ãã¦ãã¾ããæ¸ãã¦ããåã¯ãã«ã³æ¡å¼µã«é¢ããæ¡å¼µ-æã¡ä¸ãã»äºåæ³ã¨å·¦-å³ã»äºåæ³ã¯ãå®å ¨ã«ç¬¦ä¸ãèå¥ã©ãã«ãã ã¨ãã¦æ±ã£ã¦ãã¾ãã
ã¢ãã¤ãåã«ãããã©ã ãè¨ç®
$`\cat{C} = (\cat{C}, \otimes, I)`$ ï¼è¨å·ã®ä¹±ç¨ï¼ãã対称ã¨ã¯éããªãã¢ãã¤ãåã¨ãã¾ãã$`\cat{C}`$ ã®ç¹å®ã®å¯¾è±¡ $`T`$ ã«å¯¾ãã¦ã$`T`$ ãå·¦ããï¼ã¢ãã¤ãç©ã®æå³ã§ï¼æãç®ããé¢æã次ã®ããã«æ¸ãã¾ãã
$`\quad (T\otimes \hyp) = T^\otimes(\hyp) : \cat{C} \to \cat{C} \In {\bf CAT}`$
ãã®é¢æã次ã®ããã«å¼ã³ã¾ãã
- $`T`$ ã«ããå·¦æãç®é¢æãleft multiplication functorã
- $`T`$ ã«ããå·¦ãã³ã½ãªã³ã°é¢æãleft tensoring functorã
- $`T`$ ã«ããå·¦{ã¢ãã¤ã}?ã¹ã¿ã³ãã³ã°é¢æãleft {monoidal}? stamping functorã
$`T`$ ã«ããå·¦æãç®é¢æã®å³éä¼´é¢æãã$`T`$ ã«ããå·¦ææ°é¢æãleft exponential functorãã¨å¼ã³ã¾ããå·¦ææ°é¢æã®å¤ã§ãã対象ãå·¦ææ°å¯¾è±¡ãleft exponential objectãã¨å¼ã³ã¾ãããææ°ãã¨ãå é¨ãã ãinternal homããã¯å®å ¨ã«å義èªã¨ãã¦ä½¿ãã¾ãããããã£ã¦ï¼
- å·¦ææ°é¢æ ï¼ å·¦å é¨ãã é¢æãleft internal hom functorã
- å·¦ææ°å¯¾è±¡ ï¼ å·¦å é¨ãã 対象ãleft internal hom objectã
å·¦ææ°å¯¾è±¡ï¼å·¦å é¨ãã 対象ã次ã®ããã«æ¸ãã¾ãã
$`\quad {^T A} = \mrm{lhom}(T, A) \;\in |\cat{C}|`$
åçè«ãããã°ã©ãã³ã°è¨èªã§ã¯ãå·¦ï¼ã¾ãã¯å³ï¼ææ°å¯¾è±¡ãç¢å° $`\to`$ ã使ã£ã¦è¡¨ãã¾ãããåè«ã®æèã§ç¢å°ã使ãã¨æ··ä¹±ã®ãã¨ãªã®ã§ãæãç¢å°ã«ãã¾ãã
$`\quad T\searrow A = {^T A} = \mrm{lhom}(T, A) \;\in |\cat{C}|`$
$`T`$ ã«ããå·¦ææ°é¢æã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad (T\searrow \hyp) = {^T \hyp} = \mrm{lhom}(T, \hyp) : \cat{C}\to\cat{C}\In {\bf CAT}`$
以ä¸ã®å®ç¾©ããã次ã®ãããªãéä¼´ãã¢ã«ä¼´ããã ã»ããååãæç«ãã¾ãã
$`\quad \cat{C}(T^\otimes(B), A) \cong \cat{C}(B, \mrm{lhom}(T, A)) \;\In {\bf Set}`$
å¥ãªè¨æ³ã使ã£ã¦ããå 容ã¯ä½ãå¤ããã¾ããã
$`\quad \cat{C}(T \otimes B, A) \cong \cat{C}(B, {^T A}) \;\In {\bf Set}\\
\quad \cat{C}(T \otimes B, A) \cong \cat{C}(B, T\searrow A) \;\In {\bf Set}
`$
ãã®ãã ã»ããååãä¸ããååï¼å·¦ã«ãªã¼åã³ã³ããã¼ã¿ãleft currying combinatorãï¼ã $`{^\cap \hyp}`$ ã¨æ¸ãã¾ãããã®è¨æ³ã¯ãçµµå³ã模ãã象形æåã§ãã対å¿ããçµµå³ã¯æ¬¡ç¯ã§èª¬æãã¾ãã
$`\quad {^\cap \hyp} : \cat{C}(T \otimes B, A) \to \cat{C}(B, {^T A}) \;\In {\bf Set}
`$
å·¦ã«ãªã¼åã³ã³ããã¼ã¿ãååã§æ¸ããªãã次ã®ããã«ãªãã¾ãã
$`\quad \mrm{LCurry}_{T, B, A} : \cat{C}(T \otimes B, A) \to \cat{C}(B, {^T A}) \;\In {\bf Set}
`$
å·¦ã«ãªã¼åã³ã³ããã¼ã¿ã®éååã¯å·¦åã«ãªã¼åã³ã³ããã¼ã¿ãleft uncurrying combinatorãã§ã象形æåã§æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad {_\sqcup \hyp} : \cat{C}(B, {^T A}) \to \cat{C}(T \otimes B, A) \;\In {\bf Set}
`$
å·¦åã«ãªã¼åã¯ä»ã¾ã§ $`{_\cup \hyp}`$ ã¨æ¸ãã¦ã¾ãããã8種é¡ã®ã«ãªã¼åï¼å¾è¿°ï¼ãèããã¨ãã¯å ·åãæªãã®ã§ãåã«ãªã¼åã¯è§ã°ã£ãè¨å·ã使ãã¾ãã
å·¦ã«ãªã¼åã¨å·¦åã«ãªã¼åã¯äºãã«éãªã®ã§æ¬¡ãæç«ãã¾ãã
$`\text{For } f \in \cat{C}(T\otimes B, A)\\
\quad {_\sqcup {^\cap f}} = f \\
\text{For } g \in \cat{C}(B, {^T A} )\\
\quad {^\cap {_\sqcup g}} = g
`$
ããã¯ã©ã ãè¨ç®ã®åºæ¬å ¬å¼ã§ãããã¼ã¿çå¼ã¨ã¤ã¼ã¿çå¼ãã¨ã¼ã¿çå¼ãã§ãã
å·¦åã«ãªã¼å $`{_\sqcup \hyp}`$ ã¯ãå·¦è©ä¾¡å°ãleft evaluation morphismã $`\mrm{lev}`$ ã«ããã次ã®ããã«æ¸ãã¾ãã
$`\mrm{lev}_{T, A} : T\otimes {^T A} \to A \In \cat{C}\\
\text{For } g \in \cat{C}(B, {^T A} )\\
\quad {_\sqcup g} = \mrm{LUncurry}_{T, B, A}(g) := (\id_T \otimes g) ; \mrm{lev}_{T, A}
\; : T\otimes B \to A \In \cat{C}
`$
ã©ã ãè¨ç®ã®çµµå³
ãå³ã«ã³æ¡å¼µã® eval 㯠runãããã«ã³æ¡å¼µã«ãããä¸ä¸å·¦å³ï¼ å ¥éã®åã«æ´çãã¹ããã¨ãã«ãã©ã ãè¨ç®ã¨ã«ã³æ¡å¼µã対å¿ãããçµµå³ï¼ã¹ããªã³ã°å³ï¼ãè¼ã£ã¦ãã¾ããããã§ã¯ãæ°ããå°å ¥ãã $`{_\sqcup \hyp}`$ ã象形æåã¨ãªãããã«ãè©ä¾¡å°ãåè§ã§æãæç»æ³ãç´¹ä»ãã¾ãããã®æç»æ³ã§ãã¼ã¿çå¼ã¨ã¤ã¼ã¿çå¼ãæãã¦ã¿ã¾ãã
ä¸å³ã¯ãã¼ã¿çå¼ã§ãã丸ããã£ãã $`\cap`$ ãã©ã ãæ½è±¡ãã«ãªã¼åãã表ãã¾ããè§ã°ã£ãã«ãã $`\sqcup`$ ã¯è©ä¾¡å°ããã¹ãçµåãããã¨ã表ãã¾ãããªã®ã§ãä¸ã®çµµå³çå¼ã¯ $`{_\sqcup{^\cap f}} = f`$ ã表ãã¾ãã
ä¸å³ã¯ã¤ã¼ã¿çå¼ã§ããè§ã°ã£ãã«ããã¨ä¸¸ããã£ããã®æå³ã¯åãã§ããä¸ã®çµµå³çå¼ã¯ $`{^\cap {_\sqcup g }} = g`$ ã表ãã¾ãã
å対çãªã©ã ãè¨ç®
åã ç¯ã¨åãè¨å®ã§è©±ãç¶ãã¾ãã
$`T`$ ã«ããå·¦æãç®é¢æã®å·¦éä¼´é¢æãã$`T`$ ã«ããå·¦ä½ææ°é¢æãleft coexponential functorãã¨å¼ã³ã¾ããå·¦ä½ææ°é¢æã®å¤ã§ãã対象ãå·¦ä½ææ°å¯¾è±¡ãleft coexponential objectãã¨å¼ã³ã¾ãããä½ææ°ãã¨ãå é¨ã³ãã ãinternal cohomããã¯å®å ¨ã«å義èªã¨ãã¦ä½¿ãã¾ãããããã£ã¦ï¼
- å·¦ä½ææ°é¢æ ï¼ å·¦å é¨ã³ãã é¢æãleft internal cohom functorã
- å·¦ä½ææ°å¯¾è±¡ ï¼ å·¦å é¨ã³ãã 対象ãleft internal cohom objectã
å·¦ä½ææ°å¯¾è±¡ï¼å·¦å é¨ã³ãã 対象ã次ã®ããã«æ¸ãã¾ãã
$`\quad {_T A} = \mrm{lcohom}(T, A) \;\in |\cat{C}|`$
次ã®æãç¢å°ã使ãã¾ããæãç¢å°ã®åãã«ä½ãæå³ãããããã§ã¯ãªãã¦ã4種é¡ã®ææ°ãexponentialããåºå¥ããããã«éãç¢å°ã使ã£ã¦ããã ãã§ãã
$`\quad T\nearrow A = {_T A} = \mrm{lcohom}(T, A) \;\in |\cat{C}|`$
$`T`$ ã«ããå·¦ä½ææ°é¢æã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad (T \nearrow \hyp ) = {_T \hyp} = \mrm{lcohom}(T, \hyp) : \cat{C}\to\cat{C}\In {\bf CAT}`$
以ä¸ã®å®ç¾©ããã次ã®ãããªãéä¼´ãã¢ã«ä¼´ããã ã»ããååãæç«ãã¾ãã
$`\quad \cat{C}(\mrm{lcohom}(T, A), B) \cong \cat{C}(A, T\otimes B) \;\In {\bf Set}`$
å¥ãªè¨æ³ã使ã£ã¦ããå 容ã¯ä½ãå¤ããã¾ããã
$`\quad \cat{C}( {_T A}, B) \cong \cat{C}(A, T\otimes B) \;\In {\bf Set}\\
\quad \cat{C}(T \nearrow A, B) \cong \cat{C}(A, T\otimes A) \;\In {\bf Set}
`$
ãã®ãã ã»ããååãä¸ããååï¼å·¦ä½ã«ãªã¼åã³ã³ããã¼ã¿ãleft cocurrying combinatorãï¼ã $`{_\cup \hyp}`$ ã¨æ¸ãã¾ãããã®è¨æ³ã象形æåã§ãã
$`\quad {_\cup \hyp} : \cat{C}(A, T \otimes B) \to \cat{C}({_T, A}, B) \;\In {\bf Set}
`$
å·¦ä½ã«ãªã¼åã³ã³ããã¼ã¿ãååã§æ¸ããªãã次ã®ããã«ãªãã¾ãã
$`\quad \mrm{LCocurry}_{A, T, B} : \cat{C}(A, T \otimes B) \to \cat{C}({_T A}, B) \;\In {\bf Set}
`$
å·¦ä½ã«ãªã¼åã³ã³ããã¼ã¿ã®éååã¯å·¦åä½ã«ãªã¼åã³ã³ããã¼ã¿ãleft uncocurrying combinatorãã§ã象形æåã§æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad {^\sqcap \hyp} : \cat{C}({_T A}, B) \to \cat{C}(A , T \otimes B) \;\In {\bf Set}
`$
å·¦ä½ã«ãªã¼åã¨å·¦åä½ã«ãªã¼åã¯äºãã«éãªã®ã§æ¬¡ãæç«ãã¾ãã
$`\text{For } f \in \cat{C}(A, T\otimes B)\\
\quad {^\sqcap {_\cup f}} = f \\
\text{For } g \in \cat{C}({_T A}, B )\\
\quad {_\cup {^\sqcap g}} = g
`$
ããã¯ä½ãã¼ã¿çå¼ã¨ä½ã¤ã¼ã¿çå¼ãä½ã¨ã¼ã¿çå¼ãã¨å¼ãã§ããã§ãããã
å·¦åä½ã«ãªã¼å $`{^\sqcap \hyp}`$ ã¯ãå·¦ä½è©ä¾¡å°ãleft coevaluation morphismã $`\mrm{lcoev}`$ ã«ããã次ã®ããã«æ¸ãã¾ãã
$`\mrm{lcoev}_{A,T} : A \to T \otimes {_T A} \In \cat{C}\\
\text{For } g \in \cat{C}({_T A}, B )\\
\quad {^\sqcap g} = \mrm{LUncocurry}_{A, T, B}(g) := \mrm{lcoev}_{A, T} ; (\id_T \otimes g)
\; : A \to T\otimes B \In \cat{C}
`$
å³ã®å ´å
å·¦æãç®é¢æã®å·¦ãå³ã«ãã $`(\hyp \otimes T) = T_\otimes(\hyp)`$ ã¯ã次ã®ããã«å¼ã³ã¾ãã
- $`T`$ ã«ããå³æãç®é¢æãright multiplication functorã
- $`T`$ ã«ããå³ãã³ã½ãªã³ã°é¢æãright tensoring functorã
- $`T`$ ã«ããå³{ã¢ãã¤ã}?ã¹ã¿ã³ãã³ã°é¢æãright {monoidal}? stamping functorã
ããã«åºã¥ãã¦ã次ã®æ¦å¿µã»ç¨èªã»è¨æ³ãå®ç¾©ã§ãã¾ãã
- å³ææ°é¢æãright exponential functorã
- å³ææ°å¯¾è±¡ãright exponential objectã
- å³å é¨ãã é¢æãright internal hom functorã
- å³å é¨ãã 対象ãright internal hom objectã
- $`A^T = \mrm{rhom}(A, T)`$
- $`A \swarrow T = \mrm{rhom}(A, T)`$
- å³ã«ãªã¼åã³ã³ããã¼ã¿ãright currying combinatorã
- $`\hyp^\cap`$
- $`\mrm{RCurry}_{B, T, A} : \cat{C}(B\otimes T, A) \to \cat{C}(B, A^T)\In {\bf Set}`$
- å³åã«ãªã¼åã³ã³ããã¼ã¿ãright uncurrying combinatorã
- $`{\hyp_\sqcup}`$
- $`{f^\cap}_\sqcup = f`$ ï¼å³ãã¼ã¿çå¼ï¼
- $`{g_\sqcup}^\cap = g`$ ï¼å³ã¤ã¼ã¿çå¼ãå³ã¨ã¼ã¿çå¼ãï¼
- å³è©ä¾¡å°ãright evaluation morphismã
- $`\mrm{rev}_{A, T} : A^T \otimes T \to A \In \cat{C}`$
å³æãç®é¢æã®å·¦éä¼´é¢æã§ããå³ä½ææ°é¢æãèããã¨ã次ã®æ¦å¿µã»ç¨èªã»è¨æ³ãå®ç¾©ã§ãã¾ãã
- å³ä½ææ°é¢æãright coexponential functorã
- å³ä½ææ°å¯¾è±¡ãright coexponential objectã
- å³å é¨ã³ãã é¢æãright internal cohom functorã
- å³å é¨ã³ãã 対象ãright internal cohom objectã
- $`A_T = \mrm{rcohom}(A, T)`$
- $`A \nwarrow T = \mrm{rcohom}(A, T)`$
- å³ä½ã«ãªã¼åã³ã³ããã¼ã¿ãright cocurrying combinatorã
- $`\hyp_\cap`$
- $`\mrm{RCocurry}_{A, B, T} : \cat{C}(A, B\otimes T) \to \cat{C}(A_T, B)\In {\bf Set}`$
- å³åä½ã«ãªã¼åã³ã³ããã¼ã¿ãright uncocurrying combinatorã
- $`{\hyp^\sqcup}`$
- $`{f_\cup}^\sqcap = f`$ ï¼å³ä½ãã¼ã¿çå¼ï¼
- $`{g^\sqcap}_\cup = g`$ ï¼å³ä½ã¤ã¼ã¿çå¼ãå³ä½ã¨ã¼ã¿çå¼ãï¼
- å³ä½è©ä¾¡å°ãright coevaluation morphismã
- $`\mrm{rcoev}_{A, T} : A \to A_T \otimes T \In \cat{C}`$
ã©ã ãè¨ç®ã®ä¸å¿çæ¦å¿µã§ããã«ãªã¼åã«ã¯ãå·¦-å³ã»äºåæ³ãæ£-åã»äºåæ³ãæ£-ä½ã»äºåæ³ãé©ç¨ãããã®ã§ã$`2^3 = 8`$ 種é¡ã®ã«ãªã¼åãããã¾ãããããããæ·»åã®ä½ç½®ã¨ãã¦ãå·¦ä¸ãå³ä¸ãå·¦ä¸ãå³ä¸ãè¨å·ã®å½¢ã¨ãã¦ä¸¸ã£ããã»è§ã°ã£ãè¨å·ã§åºå¥ãã¦ãã¾ãã
- å·¦-æ£-æ£ ã«ãªã¼åï¼ $`{^\cap \hyp}`$
- å·¦-å-æ£ ã«ãªã¼åï¼ $`{_\sqcup \hyp}`$
- å·¦-æ£-ä½ ã«ãªã¼åï¼ $`{_\cup \hyp}`$
- å·¦-å-ä½ ã«ãªã¼åï¼ $`{^\sqcap \hyp}`$
- å³-æ£-æ£ ã«ãªã¼åï¼ $`{\hyp^\cap}`$
- å³-å-æ£ ã«ãªã¼åï¼ $`{\hyp_\sqcup}`$
- å³-æ£-ä½ ã«ãªã¼åï¼ $`{\hyp_\cup}`$
- å³-å-ä½ ã«ãªã¼åï¼ $`{\hyp^\sqcap}`$
é¢æåã«ãããå³ã«ã³æ¡å¼µ
ã¢ãã¤ãåã®ä»£ããã«åéã®2-åããã åãé¢æåãã§èãã¾ããé¢æåã¯åã«ãªãã¾ããããã®ãã ã»ããã¯èªç¶å¤æã®éåã§ããèªç¶å¤æã®éåã $`\mrm{Nat}(\hyp, \hyp)`$ ã¨æ¸ãã¾ãããã ãã$`\mrm{Nat}`$ ã¯åä¸ç¹å®ã®é¢æåãã ã»ããã表ãã®ã§ã¯ãªãã¦ãåºç¾ããå¹¾ã¤ãã®é¢æåã®ãã ã»ããã®ããã«ãªã¼ãã¼ãã¼ããããååã§ããé¢æã¨èªç¶å¤æã®æ¨ªçµåã®å³å¼é æ¼ç®åè¨å·ã« $`*`$ ã使ãã¾ããæ¼ç®åè¨å· $`*`$ ã®å·¦å´ãããã¬çµåããå³å´ãããã¹ãçµåãããã¨ã«ãªãã¾ãã
å ã®ã¢ãã¤ãåã®ã»ããã£ã³ã°ã¨ãåéã®2-åï¼é¢æåã§ã®ã»ããã£ã³ã°ã§ã次ã®ãããªå¯¾å¿ãããã¾ãã
$`{\bf ã¢ãã¤ãå}`$ | $`{\bf åéã®}\text{2-}{\bf åï¼é¢æå}`$ |
---|---|
$`対象\: T`$ | $`é¢æ\: K:\cat{C} \to \cat{D}`$ |
$`対象\: A`$ | $`é¢æ\: F:\cat{C} \to \cat{E}`$ |
$`対象\: B`$ | $`é¢æ\: G:\cat{D} \to \cat{E}`$ |
$`å°\: f:T\otimes B \to A`$ | $`èªç¶å¤æ\: \alpha :: K * G \twoto F`$ |
$`å°\: g: B\to \mrm{lhom}(T, A)`$ | $`èªç¶å¤æ\: \beta :: G \twoto \mrm{Ran}_K F`$ |
ããä¸åº¦æ³¨æãã¦ããã¨ãã©ã ãè¨ç®ã®å·¦-å³ã»äºåæ³ããã«ã³æ¡å¼µã®æ¡å¼µ-æã¡ä¸ãã»äºåæ³ã«ãªããã©ã ãè¨ç®ã®æ£-ä½ã»äºåæ³ããã«ã³æ¡å¼µã®å³-å·¦ã»äºåæ³ã«ãªãã¾ãããããã£ã¦ãã©ã ãè¨ç®ã®å·¦ææ°å¯¾è±¡ã®è©±ãå³ã«ã³æ¡å¼µã®è©±ã«å¯¾å¿ãã¾ãã
$`{\bf ã©ã ãè¨ç®}`$ | $`{\bf ã«ã³æ¡å¼µ}`$ |
---|---|
$`\mrm{lhom}(T, A)`$ | $`\mrm{Ran}_K F`$ |
$`\mrm{rhom}(A, T)`$ | $`\mrm{Rift}_K F`$ |
$`\mrm{lcohom}(T, A)`$ | $`\mrm{Lan}_K F`$ |
$`\mrm{rcohom}(A, T)`$ | $`\mrm{Lift}_K F`$ |
é¢æåã®ç¹å®ã®å¯¾è±¡ï¼ã¤ã¾ãé¢æï¼ $`K`$ ã«å¯¾ãã¦ã$`K`$ ãå·¦ããçµåããã¬çµåãããé¢æã次ã®ããã«æ¸ãã¾ãã
$`\quad (K * \hyp) = K^*(\hyp) : \cat{C} \to \cat{C} \In {\bf CAT}`$
ãã®é¢æã次ã®ããã«å¼ã³ã¾ãã形容è©ãå·¦ãã¯è¨æ³ãå³æ³ã«å½±é¿ããã¾ãã
- $`K`$ ã«ããå·¦çµåã¡ã¿é¢æãleft composition metafunctorã
- $`K`$ ã«ãããã¬çµåã¡ã¿é¢æãpre-composition metafunctorã
- $`K`$ ã«ããå¼ãæ»ãã¡ã¿é¢æãpullback metafunctorã
ä¸æçãªè¨ãæ¹ã§ãããé¢æåã®ããã ã®é¢æãâã¡ã¿é¢æâã¨å¼ã¶ãã¨ã«ãã¾ããé¢æãå¼æ°ã«åãåã£ã¦é¢æãè¿ãé¢æãã¡ã¿é¢æã§ãã
$`K`$ ã«ãããã¬çµåã¡ã¿é¢æã®å³éä¼´é¢æãã$`K`$ ã«æ²¿ã£ãå³ã«ã³æ¡å¼µã¡ã¿é¢æãright Kan extension metafunctorãã¨å¼ã³ã¾ããå³ã«ã³æ¡å¼µã¡ã¿é¢æã®å¤ã§ããé¢æãå³ã«ã³æ¡å¼µãright Kan extensionãã¨å¼ã³ã¾ãã
å³ã«ã³æ¡å¼µã次ã®ããã«æ¸ãã¾ãã
$`\quad {^K F} = \mrm{Ran}_K F \;\in | [\cat{C}, \cat{E}] |`$
$`K`$ ã«æ²¿ã£ãå³ã«ã³æ¡å¼µã¡ã¿é¢æã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad {^K \hyp} = \mrm{Ran}_K \hyp : [\cat{C}, \cat{E}] \to [\cat{D}, \cat{E}] \In {\bf CAT}`$
以ä¸ã®å®ç¾©ããã次ã®ãããªãéä¼´ãã¢ã«ä¼´ããã ã»ããååãæç«ãã¾ãã
$`\quad \mrm{Nat}(K^*(G), F) \cong \mrm{Nat}(G, \mrm{Ran}_K F) \;\In {\bf Set}`$
å¥ãªè¨æ³ã使ã£ã¦ããå 容ã¯ä½ãå¤ããã¾ããã
$`\quad \mrm{Nat}(K * G, F) \cong \mrm{Nat}(G, {^K F}) \;\In {\bf Set}\\
\quad [\cat{C},\cat{E} ](K * G, F) \cong [\cat{D}, \cat{E}](G, \mrm{Ran}_K F) \;\In {\bf Set}
`$
ãã®ãã ã»ããååãä¸ããååã«åºãåæãããååã¯ãªãããã§ãã $`{^\cap \hyp}`$ ã¨æ¸ãã¾ãããã®è¨æ³ã¯ãã©ã ãè¨ç®ã®å ´åã¨åæ§ã«çµµå³ãã¹ããªã³ã°å³ãã模ãããã®ã§ãã
$`\quad {^\cap \hyp} : \mrm{Nat}(K * G, F) \to \mrm{Nat}(G, {^K F}) \;\In {\bf Set}
`$
$`{^\cap \hyp}`$ ã®éååã¯ã象形æåã§æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad {_\sqcup \hyp} : \mrm{Nat}(G, {^K F}) \to \mrm{Nat}(K * G, F) \;\In {\bf Set}
`$
$`{^\cap \hyp}`$ 㨠$`{_\sqcup \hyp}`$ ã¯äºãã«éãªã®ã§æ¬¡ãæç«ãã¾ãã
$`\text{For } \alpha \in \mrm{Nat}(K * G, F)\\
\quad {_\sqcup {^\cap \alpha}} = \alpha \\
\text{For } \beta \in \mrm{Nat}(G, {^K F} )\\
\quad {^\cap {_\sqcup \beta}} = \beta
`$
ããã¯å³ã«ã³æ¡å¼µã®ãã¼ã¿çå¼ã¨ã¤ã¼ã¿çå¼ãã¨ã¼ã¿çå¼ãã¨å¼ãã§ãããã§ãããã
åå $`{_\sqcup \hyp}`$ ã¯ãå³å®è¡èªç¶å¤æãright execution natural transformationã $`\mrm{run}`$ ã«ããã次ã®ããã«æ¸ãã¾ãï¼ãå³ã«ã³æ¡å¼µã® eval 㯠runãåç §ï¼ã
$`\mrm{run}_{K, F} : K * {^K F} \twoto F \In {\bf CAT}\\
\text{For } \beta \in \mrm{Nat}(G, {^K F} )\\
\quad {_\sqcup \beta} := (\mrm{ID}_K * \beta) ; \mrm{run}_{K, F}
\; :: K * G \twoto F \In {\bf CAT}
`$
ãã®ä»ã®å ´å
å³ã¨å ±ã«ãã©ã ãè¨ç®ã®å·¦-å³ã»äºåæ³ã¨æ£ã»ä½ã»äºåæ³ãéã§æ¸ããã«ã³æ¡å¼µã®æ¡å¼µ-æã¡ä¸ãã»äºåæ³ã¨å³ã»å·¦ã»äºåæ³ã赤ã§æ¸ãã¾ããã©ã ãè¨ç®ã® Left-, Right- ã¨ãã«ã³æ¡å¼µã® Right-, Left- ã¯ãã®ãããªå¯¾å¿é¢ä¿ã«ãªãã¾ãããªãã»ã©ãããããã
ç®ã¼ããè¨å·ã®å¯¾å¿ã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
$`{\bf ã©ã ãè¨ç®}`$ | $`{\bf ã«ã³æ¡å¼µ}`$ | $`{\bf å¥è¨æ³}`$ |
---|---|---|
$`T^\otimes`$ | $`K^*`$ | |
$`\mrm{lhom}(T, A)`$ | $`\mrm{Ran}_K F`$ | $`{^T A},\; T\searrow A`$ |
$`{^\cap \hyp}`$ | $`{^\cap \hyp}`$ | |
$`\mrm{lev}_{T, A}`$ | $`\mrm{run}_{K, F}`$ | |
$`T_\otimes`$ | $`K_*`$ | |
$`\mrm{lcohom}(T, A)`$ | $`\mrm{Lan}_K F`$ | $`{_T A},\; T\nearrow A`$ |
$`{^\cup \hyp}`$ | $`{^\cup \hyp}`$ | |
$`\mrm{lcoev}_{T, A}`$ | $`\mrm{lun}_{K, F}`$ | |
$`\mrm{rhom}(A, T)`$ | $`\mrm{Rift}_K F`$ | $`{A^T},\; A \swarrow T`$ |
$`{\hyp^\cap}`$ | $`{\hyp^\cap}`$ | |
$`\mrm{rev}_{A, T}`$ | $`æªå®`$ | |
$`\mrm{rcohom}(A, T)`$ | $`\mrm{Lift}_K F`$ | $`{A_T},\; A\nwarrow T`$ |
$`{\hyp_\cup}`$ | $`{\hyp_\cup}`$ | |
$`\mrm{rcoev}_{A, T}`$ | $`æªå®`$ |