id:hiroki_fããï¼a.k.a. ã¸ã§ãã¼ï¼ãçµ±è¨åå¦ã¨ç±åå¦ã«ã¤ãã¦ãæ¬è³ªçãã¤é£ãããã¨ãèªããã¨ãã¦ã¾ãããã¤ãã¦è¡ãããã«ãªãã®ã§ãéæ¬è³ªçãã¤ããããè°è«ããã¾ãã
ç©ççãªèæ¯ããã¡ã«ããºã ãç解ããã®ã¯æåãããããããç°¡åãªä¾ã«ã¤ãã¦ããªãããã®éãè¨ç®ã§ããã°ããã§ãããã¨ããæ¹éãã¸ã§ãã¼ï¼ å± é å±ã»å¤©çã«æãã£ããã¨ã®ï¼ããããã¯æ²è§£ãã¦ã®ï¼å¾©ç¿ã§ããã
å 容ï¼
- 模åï¼ã¢ãã«ï¼ã®æ§æ
- ç¶æ ã¨ã¨ãã«ã®ã¼
- ç¶æ ã®å®ç¾ç¢ºç
- ã¤ã¸ã³ã°æ¨¡åã¨ããã模å
- åé é¢æ°ã¨çµã³ç®
模åï¼ã¢ãã«ï¼ã®æ§æ
ç£ç³ï¼ã¾ãã¯é¡ä¼¼ã®ç¾è±¡ï¼ã®è©±ã«éããã¨ã«ãã¦ã模åãä½ãã«ã¯æ¬¡ã®æ§æè¦ç´ ã決å®ãã¾ãã
- ç©ä½ãåå¨ãã空é
- ç©ä½ã®å½¢ç¶
- ç©ä½ä¸ã«åå¸ããé
- ç©ä½ã®ç¶æ ã¨ããæ¦å¿µ
- ã¨ãã«ã®ã¼ã®æ±ãæ¹
- ã¨ãã«ã®ã¼ã確çå¤æ°ã¨ã¿ãªãã¦ã®ç¢ºçåå¸
ã¾ããç©ä½ãåå¨ãã空éã¯1次å ã ã¨ãã¾ããç©ä½ã¯ç´ç·å ã«ããããã«ã§ããã1次å 空éï¼ç´ç·ã¯æ®éã®å®æ°ç´ç·ã§ã¢ãã«åãã¾ã*1ã
ç©ä½ã®å½¢ç¶ã¯ãé¢æ£çãªã¢ãã«ãæ¡ç¨ãã¦ãç´ç·å ã«éãè¾¼ããããåç´ç¡åã°ã©ã*2ã ã¨ãã¾ããæ´æ°ã®ç¹ãã°ã©ãã®é ç¹ã¨ã¿ãªãããé£ã©ããã®ç¹ï¼ä¾ãã°ã2ã¨3ï¼ã辺ã§ã¤ãªãã£ã¦ãããã©ãããæå®ããã°ãã°ã©ããå®ç¾©ã§ãã¾ãã
ã¨ã«ããåç´åãããã®ã§ãã°ã©ãã®é ç¹ã¯ {1, 2, ..., N} ã ã¨ãã¦ã次ã®ãããªé¢æ°Jã§ã¤ãªããå ·åã表ç¾ãã¾ãã
- J(i) = (iã¨i+1ãã¤ãªãã£ã¦ããã°1, ããã§ãªããã°0)
N = 6 ã®å ´åãJ(1) = 1, J(2) = 1, J(3) = 0, J(4) = 0, J(5) = 1 ã ã¨ããã¨ãâç©ä½âã¯æ¬¡ã®å³ã®ããã«ãªãã¾ãã
ç©ä½ï¼1次å ã«éãè¾¼ããããåç´ç¡åã°ã©ãï¼ã®åé ç¹ã«ã¹ãã³ãå²ãå½ã¦ããã¾ãããã¹ãã³ã¨ã¯ãªããããã¯æ£ä¸ããã¦ãã¨ãããã2å¤ã®éã ã¨ãã¾ããã¹ãã³ã®è¡¨ç¾ã¯ã0ã¨1ã§ããé»ã¨ç½ã§ãä½ã§ãããã®ã§ããã+1ã¨-1ãæ¡ç¨ãã¾ããåã«ã+, -ã¨ç¬¦å·ã ããæ¸ããã¨ãããã¾ãã
ç©ä½ä¸ã®ã¹ãã³ã®åå¸ã¯ã{0, 1, ..., N}â{+1, -1}ã¨ããé¢æ°ã§è¡¨ç¾ããã¾ãããã®é¢æ°ãç¶æ ï¼é ä½ã¨ãããï¼ã¨åä¸è¦ãã¾ããä¾ãã°ãs(1) = +1, s(2) = +1, s(3) = -1, s(4) = -1, s(5) = +1, s(6) = -1 ã¯1ã¤ã®ç¶æ ã§ããé ç¹ãNåããç©ä½ã«ããã¦ãç¶æ ã®ç·æ°ã¯2Nåã«ãªãã¾ãã6é ç¹ã®ç©ä½ãªã26 = 64åã®ç¶æ ãæã¡ã¾ãã確çã®è¨èã§ã¯ãåç¶æ ãæ¨æ¬ç¹ã¨ãããã¨ã§ãã
ç¶æ ã¨ã¨ãã«ã®ã¼
N = 6ã®ä¾ã§ããç¶æ ã¯64åããã®ã§åæããã®ãé¢åã§ããN = 3ã®ã±ã¼ã¹ã§ãJ(1) = 1, J(2) = 0 ã§ããç©ä½ãèãã¾ããç¶æ sãã(s(1), s(2), s(3))ã¨ããé·ã3ã®ã¿ãã«ã§è¡¨ç¾ãã¾ããä¾ãã°ã(+, -, +) ã¯1ã¤ã®ç¶æ ã§ãããã¹ã¦ã®ç¶æ ãåæãã¦ã8åãªã®ã§ãããããã¨ã¯ããã¾ããã
ç¶æ ã®ã¨ãã«ã®ã¼ã¯ãåç¶æ ã«å¯¾ãã¦å®ç¾©ãããå®æ°å¤ã§ããã®ç¶æ ã®èµ·ãããããã®ç®å®ãä¸ãã¾ãã
- ã¨ãã«ã®ã¼ãé«ãç¶æ ã¯èµ·ããã«ããã
- ã¨ãã«ã®ã¼ãä½ãç¶æ ã¯èµ·ãããããã
ç¶æ sã®ã¨ãã«ã®ã¼ãE(s)ã¨ãã¦ãé©å½ãªé¢æ°fã«ã¨ãã«ã®ã¼ãä»£å ¥ããé f(E(s)) ãsã®èµ·ãããããã«æ¯ä¾ããéã¨ãªãã¾ããåã¯ãEãfã®å ·ä½çãªå½¢ãã©ããã£ã¦æ±ºãããï¼æ±ºã¾ã£ãã®ãï¼ãµãããªãããã¾ããã§ããããä»ã§ããããã¾ãããããã¸ã§ãã¼ï¼ å± é å±ã»å¤©çæ°ãããEãfã®å ·ä½çãªè¡¨å¼ã¯ã©ãã§ãããã¦ãæçµçã«ç£ç³ã«ãªããããããªãã«ããã説æã§ããã°ãããã¨ã
ãããã次第ã§ãEãfã®å ·ä½çãªå½¢ã«ã¯ãã ãããªããã¨ã«ãã¦ãE(s), f(E(s))ã®ç®åºæ³ãè¿°ã¹ã¾ããç©ä½ã®ã¢ãã«ã§ããã°ã©ãã®è¾ºãããã³ãã¨ãå¼ã³ã¾ãããã³ãã¨å¼ãã ã»ããæããåºãï¼ãªãã®æãï¼ï¼ã®ã§ãããã¾ã*3ãã¨ãã«ã®ã¼ã¯ãã³ããã¨ã«è¨ç®ããã¨ãã¦ã
- ãã³ãã®ä¸¡ç«¯ãåãã¹ãã³ãªãããã®ãã³ãã®å±æã¨ãã«ã®ã¼ã¯-1
- ãã³ãã®ä¸¡ç«¯ãéãã¹ãã³ãªãããã®ãã³ãã®å±æã¨ãã«ã®ã¼ã¯1
ã¨ãã¾ããç¶æ sã®ã¨ãã«ã®ã¼ãæ±ããã«ã¯ããã³ãã®å±æã¨ãã«ã®ã¼ã足ãåããã¾ããä¸è¬çãªè¡¨å¼ã¯ï¼
- Σ(i=1ããi=N-1ã¾ã§ : (-1)ÃJ(i)Ãs(i)Ãs(i+1) )
ã¨ãªãã¾ããä¸ã§åºããä¾ã§ã¯ããã³ãã1æ¬ï¼é ç¹1ã¨é ç¹2ãã¤ãªããã³ãï¼ãããªãã®ã§ãç·åã®å¿ è¦ã¯ããã¾ããã以ä¸ã«ã8ã¤ã®ç¶æ ã®ã¨ãã«ã®ã¼ãåæãã¾ãã
ç¶æ s | ã¨ãã«ã®ã¼E(s) |
---|---|
+, +, + | -1 |
+, +, - | -1 |
+, -, + | 1 |
+, -, - | 1 |
-, +, + | 1 |
-, +, - | 1 |
-, -, + | -1 |
-, -, - | -1 |
ç¶æ ã®å®ç¾ç¢ºç
ã¨ãã«ã®ã¼ãä½ãç¶æ ã®ã»ããèµ·ãããããã®ã§ã(+, -, +)ãã(+, +, +)ã®ã»ããèµ·ããããããã¨ã¯åããã¾ãããããã£ã¨è¨éçã«âèµ·ããããâããè©ä¾¡ããããã®ã§ããç©ççèæ¯ã¨ã¡ã«ããºã ã¯ãã¦ããï¼ããããæ¹éï¼ã天ä¸ãã« 0ï¼cï¼1 ã§ããå®æ°cãå°å ¥ãã¦ãcE(s) ãç¶æ sã®åºç¾ç¢ºçãä¸ããã¨ãã¾ãï¼ã¨ãã«ã®ã¼ã確çå¤æ°ã¨ã¿ãªãã¦ãææ°åå¸ã¨ãããããï¼ããã ãããã¹ã¦ã®ç¶æ ã®åºç¾ç¢ºçã足ãã¦1ã«ãªãããã«å®æ°Zã§å²ãç®ãã¦ããå¿ è¦ã¯ããã¾ãã
- sã®åºç¾ç¢ºç = 1/ZÃcE(s)
å®æ°cã«ã¯æ¸©åº¦ãå«ã¾ããã®ã§ããã温度ã¯ä¸å®ã¨ãã¦ãã»ãã¨ã®å®æ°ã¨æã£ã¦ããã§ããããããã§ã¯ãc = 1/2 = 0.5 ã«æ±ºãã¦ãã¾ãã¾ããé¢æ°f(x) ã (1/2)xã¨ãã¦ãf(E(s)) = (1/2)E(s) ãåºç¾ç¢ºçã®è¨ç®ã«ä½¿ãã¾ããä¾ã«å¯¾ãã¦(1/2)E(s)ãç®åºãã¦ããã¾ãã
ç¶æ s | ã¨ãã«ã®ã¼E(s) | (1/2)E(s) |
---|---|---|
+, +, + | -1 | 2 |
+, +, - | -1 | 2 |
+, -, + | 1 | 1/2 |
+, -, - | 1 | 1/2 |
-, +, + | 1 | 1/2 |
-, +, - | 1 | 1/2 |
-, -, + | -1 | 2 |
-, -, - | -1 | 2 |
確çã®åæ¯ã¨ãªãå®æ°Zã¯ï¼
- Z = Σ(ãã¹ã¦ã®ç¶æ sã«æ¸¡ã£ã¦ : (1/2)E(s))
ä¸ã®ä¾ã§ã¯ãZ = 2 + 2 + 1/2 + 1/2 + 1/2 + 1/2 + 2 + 2 ãªã®ã§ãZ = 10 ã§ãããã®Zã§å²ãç®ãã¦ç¶æ ã®åºç¾ç¢ºçãåºã¾ãã
ç¶æ s | ã¨ãã«ã®ã¼E(s) | (1/2)E(s) | ç¶æ sã®åºç¾ç¢ºç | |
---|---|---|---|---|
+, +, + | -1 | 2 | 1/5 | |
+, +, - | -1 | 2 | 1/5 | |
+, -, + | 1 | 1/2 | 1/20 | |
+, -, - | 1 | 1/2 | 1/20 | |
-, +, + | 1 | 1/2 | 1/20 | |
-, +, - | 1 | 1/2 | 1/20 | |
-, -, + | -1 | 2 | 1/5 | |
-, -, - | -1 | 2 | 1/5 |
ã¹ãã³ãæã£ã¦ããç¶æ ãç£ç³ãªã®ã§ããã®å ´åã¯ã4/5 ã®å²åã§ç£ç³ã1/5ã®å²åã§ç£ç³ãããªãããã§ãã
ã¤ã¸ã³ã°æ¨¡åã¨ããã模å
å ã®æ¨¡åã§ã¯ãç£ç³ã¨ãªãå²åï¼ç£ç³ã§ããç¶æ ã®åºç¾ç¢ºçï¼ã大ããã£ãã®ã§ãããããã¯ãªããã¨ããã¨ãç£ç³ã«ãªããããç©ä½ï¼ç©è³ªã®ç©ºéçãªæ¡ããã¨æ§è³ªï¼ãã¢ãã«åãã¦ããããã§ãããç£ç³ã«ãªããããããã«ä½ã£ããããç£ç³ã«ãªãããããã ãã
ä»ç¤ºããç£ç³ã«ãªããããç©ä½ã®ã¢ãã«ã¯ã¤ã¸ã³ã°æ¨¡åï¼Ising modelï¼ã®æãç°¡åãªä¾ã§ããä¸æ¹ãç£ç³ã«ãªãã«ããç©ä½ã®ã¢ãã«ã«ããã模åï¼Potts modelï¼ãããã¾ããå±æã¨ãã«ã®ã¼ãã¤ã¸ã³ã°æ¨¡åã¨éãã ãã§ãããã模åã®å±æã¨ãã«ã®ã¼ã¯æ¬¡ã®ããã«å®ç¾©ããã¾ãã
- ãã³ãã®ä¸¡ç«¯ãåãã¹ãã³ãªãããã®ãã³ãã®å±æã¨ãã«ã®ã¼ã¯1
- ãã³ãã®ä¸¡ç«¯ãéãã¹ãã³ãªãããã®ãã³ãã®å±æã¨ãã«ã®ã¼ã¯0
ã¤ã¸ã³ã°æ¨¡åã¨åãããã«ãããã模åã«ãããç¶æ ã®åºç¾ç¢ºçãæ±ããã¨ï¼
ç¶æ s | ã¨ãã«ã®ã¼E(s) | (1/2)E(s) | ç¶æ sã®åºç¾ç¢ºç | |
---|---|---|---|---|
+, +, + | 1 | 1/2 | 1/12 | |
+, +, - | 1 | 1/2 | 1/12 | |
+, -, + | 0 | 1 | 1/6 | |
+, -, - | 0 | 1 | 1/6 | |
-, +, + | 0 | 1 | 1/6 | |
-, +, - | 0 | 1 | 1/6 | |
-, -, + | 1 | 1/2 | 1/12 | |
-, -, - | 1 | 1/2 | 1/12 |
1/3 ã®å²åã§ç£ç³ã2/3ã®å²åã§ç£ç³ãããªããã¨ããçµæã§ãã
åé é¢æ°ã¨çµã³ç®
ç¶æ ã®åºç¾ç¢ºçãæ±ããã¨ããåæ¯ï¼æ£è¦åå åï¼ã¨ãã¦Zãåºã¦ãã¾ãããZã¯æ¬¡ã®ããã«å®ç¾©ããã¾ãã
- Z = Σ(ãã¹ã¦ã®ç¶æ sã«æ¸¡ã£ã¦ : cE(s))
ãããç¶æ åã¨ãåé é¢æ°ã¨å¼ã³ã¾ãããå®æ°ãªã®ã«ããªãã§é¢æ°ãããï¼ãã¨çåã«æãã®ã§ãããå®éã«ã¯æ¸©åº¦Tããã©ã¡ã¼ã¿ã§å ¥ãã¾ãã温度ä¸å®ã¨ä»®å®ãã¦ããç©ä½ã®å½¢ç¶ã«ããZã®å¤ãå¤ããã¾ããç©ä½ã®å½¢ç¶ã¯ã°ã©ãGã§è¡¨ç¾ãããã®ã§ãZã¯Gã®é¢æ° Z(G) ã¨ãªãã¾ãã
ã¤ã¸ã³ã°æ¨¡åãããã模åã®ãããªãç¶æ ã®åºç¾ç¢ºçã®ç®åºæ³ã1ã¤é¸æãã¦åºå®ããã¨ããã®åé é¢æ°Zã¯ãç´ç·å ã®ã°ã©ãGã®é¢æ°ã ã¨ãããã¾ããã空éã2次å ã«ããã¨ãåæ§ã«ãã¦2次å ã°ã©ãGã®é¢æ° Z = Z(G) ãå®ç¾©ã§ãã¾ãã
3次å 空éå ã®çµã³ç®ï¼knotï¼ã絡ã¿ç®ï¼linkï¼ã¯ãå¹³é¢ã«å°å½±ãã¦ãå½±ã§ãã2次å ã°ã©ãï¼4-æ£åã°ã©ãã«åããï¼ã¨ã交差ç¹ã«ãããç´ã®ä¸ä¸ãæå®ãããã¼ãã³ã°ã«ãã£ã¦è¨è¿°ã§ãã¾ããä¸ä¸äº¤å·®ãã¼ãã³ã°ä»ãå¹³é¢ã°ã©ãGã«å¯¾ãã¦ãåé é¢æ°ï¼ã«ç¸å½ããéï¼ããã¾ãå®ç¾©ããã¨ãã¾ã£ããä¸æè°ãªãã¨ã«çµã³ç®ã絡ã¿ç®ã®ä¸å¤éï¼åé¡ã®ææ¨ï¼ãä¸ãã¾ãã
ãã£ãããªãã§ãç£ç³ã¨ç´ãé¢ä¿ãããã ï¼ å·èµåº«ã«ã¡ã¢ãè²¼ãä»ããç£ç³ã¨æ¢±å ç¨ããã¼ã«ç´ãçºãã¦ã¿ãããããã¾ã«ä½¿ããããªãã¨å°ãã以å¤ã®å ±éç¹ã¯è¦ã¤ãããªãã£ãã