ãå³å¼ããå½¢ç¶ãã¨ããè¨èã¯æ®éã«ä½¿ãæ¥å¸¸èªãªã®ã§ããã¯ãã«ã«ã¿ã¼ã ã¨ãã¦ä½¿ãã®ã¯ããã£ã¦é£ããã§ããããã使ããã¨ã¯ãã£ããããã®ã§ãããç¨åº¦ã¯éç¨æ³ã決ãã¦ããã¾ããç¹ã«ãã©ã¼ã«ã¹ããã®ã¯ããå³å¼ããå½¢ç¶ããçµã¿åããå¹¾ä½ç対象ç©ãcombinatorial geometric objectãã«å¯¾ãã¦ä½¿ãããå ´åã§ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\mfk}[1]{\mathfrak{#1}}
\newcommand{\In}{ \text{ in } }
\newcommand{\id}{\mathrm{id} }
\newcommand{\op}{\mathrm{op} }
\newcommand{\twoto}{\Rightarrow }
\newcommand{\T}[1]{\text{#1} }
`$
å 容ï¼
- å³å¼ ï¼ é¢æ
- çµã¿åããå¹¾ä½ç対象ç©
- ãªã¼ãã£å
- ãªã¼ãã£åã®ä¾
- åå¤é¢æã主æµ
- å½¢ç¶ä»ãéå
- è¨æ³ã®ä¸æ¡
- ç©å½¢åã¨ç©å½¢éå
- ãããã«
å³å¼ ï¼ é¢æ
Diagæ§æï¼ãDiagæ§æï¼ åè«çæ§ææ³ã®å æ¬çãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦ãåç §ï¼ã®"Diag" ã¯å³å¼ããã¤ã¢ã°ã©ã | diagramãã®ãã¨ã§ããããã§ã®å³å¼ã¯é¢æã¨åãã§ãã颿ããèªä½ãå³å½¢ã¨ãã¦æ±ãã¨ãããæ¥µéã»ä½æ¥µéã¨é¢é£ããã¨ãã¯ã颿ãå³å¼ã¨å¼ã³ã¾ããããæèã§ã¯ã颿ã¨å³å¼ã¯å義èªã§ãã颿ã®åã¯å³å¼ã®åãcategory of diagramsãã¨ãå¼ã³ã¾ãã
ãã¡ãããã¹ããªã³ã°å³ããã¼ã¹ãã£ã³ã°å³ãå³å¼ã§ãããªãããã®ã¿ã¼ã²ããåã«æåºãrenderingããããã¹ããªã³ã°å³ï¼ãã¼ã¹ãã£ã³ã°å³ã¯ã颿ï¼ãããã¯é¢æé¡ä¼¼ç©ï¼ã¨ã¿ãªãã¾ãããæåºããåã®çµåãå¹¾ä½ç対象ç©ãå³å¼ã¨å¼ã¶ã®ã§ãå ¨ä½çã«è¾»è¤ãåãããã®ã¯é£ããã§ããç¡çã«ã³ã¸ãã±ãªãã§ãç¨èªã®ã³ã³ããªã¯ããèµ·ããã¨å²ãåã£ãã»ããï¼å°ãªãã¨ãç²¾ç¥è¡çä¸ã¯ï¼ããã¨æãã¾ãã
颿ãå³å¼ã¨å¼ã¶ã¨ãã颿ã®ååãdomain category | source categoryãã¯å½¢ç¶ãshapeãã¨å¼ã¶ãã¨ãããã¾ããæ¥µéã®è°è«ãªãã°ãéä½ãconeãã®åºé¢å½¢ç¶ãåºã¦ãã¾ããããçµåãå¹¾ä½çé¦ããå¼·ãå ´åãããã¾ã -- ãã®ã¨ãã¯ãå½¢ç¶ãã¨å¼ã³ããæ°æã¡ãå¼·ããªãã¾ããããããå ´åãæ¬¡ç¯ä»¥éã§è¿°ã¹ã¾ãã
çµã¿åããå¹¾ä½ç対象ç©
åé ã¨åç¯ã§ããçµã¿åããå¹¾ä½ç対象ç©ãcombinatorial geometric objectããã¨ããè¨èã使ã£ãã®ã§ãããããã¯ã©ããªã¢ããæå³ããã®ãã説æãã¾ãã
å³å¯ãªå®ç¾©ãããããã§ããªãã®ã§ãå ¸åçãªä¾ãæãã¾ãã以ä¸ã®çµµã¯ãWikipediaé ç®ãè¤ä½ãã«ããçµµã§ãã
ãã®å³ã¯åä½è¤ä½ãsimplicial complexãï¼[追è¨]ãå¹¾ä½åä½è¤ä½ã¨æ½è±¡åä½è¤ä½ãã«è©³ãã説æãããã¾ãã[/追è¨]ï¼ã®ä¾ã§ããåºæ¬ã¨ãªãå³å½¢ãçµã¿åããã¦ä½ã£ãå³å½¢ã§ãããã®å ´åã®âåºæ¬ã¨ãªãå³å½¢âã¯ãç¹ãç·åãä¸è§å½¢ãåé¢ä½ã§ããâåºæ¬ã¨ãªãå³å½¢âãä½åãããç®è¦ã§åå®ãã¦ã¿ã¾ãããã
- ç¹ï¼0次å åä½ã¨å¼ã¶ï¼ã 18 å
- ç·åï¼1次å åä½ã¨å¼ã¶ï¼ã 23 æ¬
- ä¸è§å½¢ï¼å é¨ãå«ãï¼ï¼2次å åä½ã¨å¼ã¶ï¼ã 8 é¢
- åé¢ä½ï¼å é¨ãå«ãï¼ï¼3次å åä½ã¨å¼ã¶ï¼ã 1 å
以ä¸ã¯åã®ææãã®çµµã§ãããäºè§å½¢ãdigonããæ··ãã£ãå³å½¢ã§ãã
ãã®å ´åã®âåºæ¬ã¨ãªãå³å½¢âã¯ãç¹ãç·åãäºè§å½¢ãä¸è§å½¢ã§ããããããâåºæ¬ã¨ãªãå³å½¢âãä½åãããç®è¦ã§åå®ãã¦ã¿ã¾ãããã
- ç¹ã 7 å
- ç·åã 10 æ¬
- äºè§å½¢ï¼å é¨ãå«ãï¼ã 3 é¢
- ä¸è§å½¢ï¼å é¨ãå«ãï¼ã 1 é¢
以ä¸ã®å³ã¯ã¾ã£ããå¥ãªæèï¼éå»è¨äºãã¹ã¿ãã¯å³ã®é襲ãï¼ã§åºã¦ããå³ã§ãã
ç¹ãé»ä¸¸ã§æãã¦ãªãã®ã§åããã«ããã§ãããâåºæ¬ã¨ãªãå³å½¢âã¯ãç¹ã縦ç·åï¼äºéç·ï¼ã横ç·åãåè§å½¢ã§ããâåºæ¬ã¨ãªãå³å½¢âã®åæ°ã¯ä»¥ä¸ã®ã¨ããã§ãã
- ç¹ã 15 å
- 縦ç·åã 9 æ¬
- 横ç·åã 11 æ¬
- åè§å½¢ï¼å é¨ãå«ãï¼ã 6 é¢
âåºæ¬ã¨ãªãå³å½¢âã®ç¨®é¡ãå½¢ç¶ã½ã¼ããshape sortãã¨å¼ã¶ãã¨ã«ãã¾ããå½¢ç¶ã½ã¼ãã«å¯¾ãã¦æ¬¡å ãdimensionããæ±ºã¾ã£ã¦ãã¾ããä¸è¨ã®ä¾éã«åºã¦ããå½¢ç¶ã½ã¼ãã¨ãã®æ¬¡å ãåæããã¨ä»¥ä¸ã®ããã§ãã
- ç¹, 0次å
- ç·å, 1次å
- ä¸è§å½¢, 2次å
- åé¢ä½, 3次å
- äºè§å½¢, 2次å
- 縦ç·å, 1次å
- 横ç·å, 1次å
- åè§å½¢, 2次å
æåã®ä¾ï¼åä½è¤ä½ï¼ã§ã¯ã忬¡å ãã¨ã«ä¸ç¨®é¡ã®å½¢ç¶ã½ã¼ããäºçªç®ã®ä¾ã§ã¯2次å ã®å½¢ç¶ã½ã¼ãã2ã¤ï¼äºç¨®é¡ã®2次å å³å½¢ï¼ãä¸çªç®ã®ä¾ã§ã¯1次å ã®å½¢ç¶ã½ã¼ãã2ã¤ï¼äºç¨®é¡ã®1次å å³å½¢ï¼ã§ããã
ãããã®å ´åã§ããåºæ¬å³å½¢ã¯ã»ã«ãcellãã¨å¼ã³ã¾ãããã®ç¯ã®3ã¤ã®ä¾ã§ãåå½¢ç¶ã½ã¼ããã¨ã®ã»ã«ãä½åããããåå®ãã¾ããã
ã»ã«ã«ã¯1次å ä½ãå¢çãããã¾ãããå¢çå³å½¢ãã©ããªã»ã«ããæ§æããããï¼ ã¯ãå½¢ç¶ã½ã¼ãã«å¯¾ããè¦åã¨ãã¦è¨è¿°ã§ãã¾ãã
- ç¹ã®å¢çã¯ãç¡ã
- ç·åã®å¢çã¯ã2åã®ç¹
- ä¸è§å½¢ã®å¢çã¯ã3æ¬ã®ç·å
- åé¢ä½ã®å¢çã¯ã4é¢ã®ä¸è§å½¢
- äºè§å½¢ã®å¢çã¯ã2æ¬ã®ç·å
- 縦ç·åã®å¢çã¯ã2åã®ç¹
- 横ç·åã®å¢çã¯ã2åã®ç¹
- åè§å½¢ã®å¢çã¯, 4æ¬ã®ç·åï¼ç¸¦ç·å2æ¬ã¨æ¨ªç·å2æ¬ï¼*2
以ä¸ã«è¿°ã¹ããããªãã»ã«ï¼åºæ¬ã¨ãªãå³å½¢ï¼ãã»ã«ãçµã¿åãããå³å½¢ãã»ã«ã®å¢çãªã©ã®æ¦å¿µã系統çã«æ´çããããã«å½¢ç¶ä»ãéåãshaped setãã¨ããæ¦å¿µã使ãã¾ããå½¢ç¶ä»ãéåã«ã¤ãã¦ã¯ãææ¨ã¨ã®é¢é£ã«ããã¦ãææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéåãã§è¿°ã¹ã¦ãã¾ããå ã«éå»è¨äºãå¼ãã§ããã¨çè§£ãã¹ã ã¼ãºããç¥ãã¾ããã
ãªãã±ã¨ãã¦ããã²ã¨ã¤ã2008å¹´ã®è¨äºããã¨ã話ã¨ãã¦ã®n-å -- è¨ç®ã§ããå³å½¢éã®ä¸çãã®çµµããã®ã¾ã¾åæ²ãã¾ãããçä½éåéã®åã®æ§æè¡¨ç¤º 1/2ãã«ããã¦ãåãçµµãåç §ãã¦ãã¾ãã
ãã®çµµã¯ãn次å çä½ï¼n = 3, 2, 1, 0 ã®å ´åï¼ã®å¢çãçµµã«æãããã®ã§ãã
- 3次å çä½ããã¼ã«ãã®å¢çã¯ã2é¢ã®2次å çä½ãåæ¿ã
- 2次å çä½ãåæ¿ãã®å¢çã¯ã2æ¬ã®1次å çä½ãç·åã
- 1次å çä½ãç·åãã®å¢çã¯ã2åã®0次å çä½ãç¹ã
- 0次å çä½ãç¹ãã®å¢çã¯ãç¡ãï¼ã®ã ããããã¼ã®(-1)次å çä½ãèãã¦ããï¼
(-1)次å çä½ã¯ç©ºéåã§ãããæ¬¡å ãä½ãæ¹ããå³å½¢ãçµã¿ç«ã¦ã¦ããã¨ãã®åæç¶æ ã¨ãã¦ä½¿ããã¨ãããã¾ãããçä½éåéã®åã®æ§æè¡¨ç¤º 1/2ãã§ã¯ãåçè«çãªæ¼ç¹¹ç³»ã使ã£ã¦å³å½¢ãçµã¿ç«ã¦ã¦ãã¾ãããã®ã¨ãã®åæç¶æ ãããã¼ã®(-1)次å çä½ã§ãã
ãªã¼ãã£å
ãçµåãå¹¾ä½çé¦ããå¼·ãå ´åãã¨ã¯ä½ããããããªã¨è¿°ã¹ãããã«ããªã¼ãã£åãReedy categoryããç´¹ä»ãã¾ãããææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéåãã§ãªã¼ãã£åãåºãã¦ãã¾ãããå®ç¾©ã¯ nLab ãåç §ãã¦ããã ãã§ããã
å®ã¯ãå½¢ç¶ä»ãéåã®ããã«ãªã¼ãã£åãæºåããã®ã¯ãªã¼ãã¼ã¹ããã¯ã§ããããªã¼ãã£åãã¨å¼ã°ãããã種ã®åãããã®ã ãªãã¨ã ãæ¿ç¥ããããã§ããã®ç¯ãé£ã°ãã¦æ¬¡ç¯ã«é²ãã§ãåé¡ããã¾ããã
ãªã¼ãã£åã¯å°ããå $`R`$ ã§ãæ¬¡ã®æ§é ãæã¡ã¾ãã
- åºãé¨åå $`R_{+}`$
- åºãé¨åå $`R_{-}`$
- 次æ°é¢æ° $`\mrm{deg} : |R| \to |\mbf{Odnl}|`$
$`\mbf{Odnl}`$ ã¯ãã¹ã¦ã®é åºæ°ãããªã大ããªåã§ãã$`R`$ ã¯å°ããåãªã®ã§ã$`|R|`$ ã¯å°ããéåã§ãããããã£ã¦ãé©å½ãªé åºæ° $`\kappa \in |\mbf{Odnl}|`$ ãåã£ã¦ã次æ°é¢æ°ã¯æ¬¡ã®å½¢ã ã¨ãã¦ããã¾ãã¾ããã
$`\quad \mrm{deg} : |R| \to \kappa \In \mbf{Set}`$
次æ°é¢æ°ã®ä½åã¯è°è«ã«å¹ãã¦ããªãã®ã§ãã©ãã§ãããã§ããå¤ãã®å ´åãæ®éã®å ¨é åºãå ¥ããèªç¶æ°ã®éåãä½åã«åãã¾ãã
$`\quad \mrm{deg} : |R| \to \mbf{N} \In \mbf{Set}`$
次æ°é¢æ° $`\mrm{deg}`$ ã«ãããå $`R`$ ã®å°ã®ã¯ã©ã¹ãé¨åéåãã以ä¸ã®ããã«æ±ºãã¾ããå¾ã®é½åããããªã¼ãã£åã®å°ã¯ã¢ãã¼ãarrowãã¨å¼ã³ã¾ãã
- $`f\in \mrm{Mor}(R)`$ ãã$`\mrm{deg}(\mrm{dom}(f)) \lt \mrm{deg}(\mrm{cod}(f))`$ ãæºããã¨ããé è¡ã¢ãã¼ãdirect arrowãã¨å¼ã¶ã
- $`f\in \mrm{Mor}(R)`$ ãã$`\mrm{deg}(\mrm{dom}(f)) \gt \mrm{deg}(\mrm{cod}(f))`$ ãæºããã¨ããéè¡ã¢ãã¼ãinverse arrowãã¨å¼ã¶ã
ãªã¼ãã£åã®æ¡ä»¶ãå ¬ç | æ³åãã¯æ¬¡ã§ãã
- $`\mrm{Mor}(R_{+})`$ ã®è¦ç´ ã¯ãé è¡ã¢ãã¼ãæçã¢ãã¼ãæçå°ãã§ããã
- $`\mrm{Mor}(R_{-})`$ ã®è¦ç´ ã¯ãéè¡ã¢ãã¼ãæçã¢ãã¼ãæçå°ãã§ããã
é è¡ã¢ãã¼ã®éåã¨éè¡ã¢ãã¼ã®éåã¯æä»çãªã®ã§ã
$`\quad \mrm{Mor}(R_{+})\cap \mrm{Mor}(R_{-}) = \mrm{Id}(R)`$
ã§ãã$`\mrm{Id}(R)`$ ã¯ãæçå°ã ããããªãé¨ååï¼é¢æ£åï¼ã§ãã
ãªã¼ãã£åã®æ¡ä»¶ã¯ããã²ã¨ã¤ãã£ã¦ï¼
- $`R`$ ã®ä»»æã®ã¢ãã¼ãå°ãã¯ã$`R_{-}`$ ã®ã¢ãã¼ã®å¾ã« $`R_{+}`$ ã®ã¢ãã¼ãçµåããå½¢ã«åè§£ãfactorization*3ãã§ãã¦ããã®åè§£ï¼ãªã¼ãã£åè§£ãReedy factorizationããéè¡ã»é è¡åè§£ãinverse-direct factorizationãï¼ã¯ä¸æçã§ããã
ä¸è¨ã®æ¡ä»¶ã«ãã $`f\in \mrm{Mor}(R)`$ ã®åè§£ã $`f = f_{-}; f_{+}`$ ã¨æ¸ãã¾ãã$`f_{-}`$ ã $`f`$ ã®éè¡æåãinverse factor | éè¡å åãã$`f_{+}`$ ã $`f`$ ã®é è¡æåãdirect factor | é è¡å åãã¨å¼ã³ã¾ããéè¡æåãé è¡æåã®ã©ã¡ãããæçã¢ãã¼ããç¥ãã¾ããã両æ¹ã®æåãæçã¢ãã¼ãªãããã¨ã®ã¢ãã¼ãæçã¢ãã¼ã§ãã
ãªã¼ãã£åã®ãªãã§ç¹ã«æ±ãããããã®ã¨ãã¦ï¼
- $`R = R_{+}`$ ã§ãããªã¼ãã£åãé è¡ãªã¼ãã£åãdirect Reedy categoryãã¨å¼ã¶ã
- $`R = R_{-}`$ ã§ãããªã¼ãã£åãéè¡ãªã¼ãã£åãinverse Reedy categoryãã¨å¼ã¶ã
é è¡ãªã¼ãã£åã¾ãã¯éè¡ãªã¼ãã£åã«ãããéè¡ã»é è¡åè§£ã¯ãã©ã¡ããã®å åãæçã¢ãã¼ã¨ããæå³ã§èªæã«ãªãã¾ãã
ä½è«ã§ããããªã¼ãã£åã¯ããããã¢ã³ã®å ï¼ ã·ã¹ãã ãã®æå³ã§ããã¢ã³ã®åã§ãããªã¼ãã£åã¨åååãªåã¯ãªã¼ãã£åã«ãªãã¾ãããååå¤ãªåããªã¼ãã£åã«ãªãã¨ã¯éããªãããã§ãã
ãªã¼ãã£åã®ä¾
ãªã¼ãã£å $`R`$ ãåã¨ããå ±å¤é¢æ $`X:R \to \mbf{Set}`$ ãããã¯åå¤é¢æ $`X: R^\op \to \mbf{Set}`$ ã¯ãçµåãå¹¾ä½ç対象ç©ï¼çµã¿åããæ§é ãæã¤å³å½¢ï¼ã¨ã¿ãªããã¾ãããããã¯åããã¨ã§ãããçµåãå¹¾ä½ç対象ç©ã¯ãªã¼ãã£åããã®éååã¸ã®é¢æãå³å¼ãã¨ãã¦è¨è¿°ããã¾ãããã®ãã¨ãããã®è¨äºã§è¨ããããã¨ã§ãã
ãªã¼ãã£åã®å®ç¾©ã«åºã¦ããæ¬¡æ°é¢æ°ã次å 颿°ãdimension functionãã¨ãå¼ã³ã$`\mrm{dim}`$ ã¨ãæ¸ãã¾ããå¼ã³åã¯ä½ã§ãããã®ã§ãããçµåãå¹¾ä½ç対象ç©ãæ±ãã¨ãã¯ã次å ãããµããããã¨æãã¾ãããªã¼ãã£åã®å¯¾è±¡ãå½¢ç¶ã½ã¼ããshape sortãããããã¯åã«ã½ã¼ããsortãã¨å¼ã³ã¾ããåã ç¯ã§éå½¢å¼çãé°å²æ°çãã«å®ç¾©ããå½¢ç¶ã½ã¼ãã®å¯¾å¿ç©ã¨ãã¦ãªã¼ãã£åã®å¯¾è±¡ãèããããã§ãã
åä½åãsimplex categoryããçä½åãglobe categoryããå ¸åçãªãªã¼ãã£åã§ãããããã§ã¯ä»¥ä¸ã®2ã¤ã®åãäºä¾ã«ä½¿ãã¾ãã
- 1次å ï¼ã¾ã§ã®ï¼çä½å $`\mbf{g1}`$
- ç©å½¢åãrectangle categoryã $`\mbf{r2}`$
ã©ã¡ãã®ãªã¼ãã£åããæéåã®å¯¾è±¡ãå½¢ç¶ã½ã¼ããã¨å°ãã¢ãã¼ãããæã¡ã¾ããã
- $`\mbf{g1}`$ ã¯ã2åã®å½¢ç¶ã½ã¼ãã¨ãæçã¢ãã¼ä»¥å¤ã«2æ¬ã®é è¡ã¢ãã¼ï¼æ¬¡å ãä¸ããã¢ãã¼ï¼
- $`\mbf{r2}`$ ã¯ã4åã®å½¢ç¶ã½ã¼ãã¨ãæçã¢ãã¼ä»¥å¤ã«12æ¬ã®é è¡ã¢ãã¼ï¼æ¬¡å ãä¸ããã¢ãã¼ï¼
対象ãå½¢ç¶ã½ã¼ããã¨å°ãã¢ãã¼ããåæãã¾ãããããã£ï¼ããå¥å¦ã ãã¨æãããããã¾ããããã¨ããããå®ç¾©ã¯ãã®ã¾ã¾åãåã£ã¦ãã ããã
- $`\mbf{g1}`$ ã®å¯¾è±¡ $`= \{0, 1\}`$
- $`\mbf{g1}`$ ã®å°ï¼æçå°ä»¥å¤ï¼
- $`s: 0 \to 1`$
- $`t: 0 \to 1`$
- $`\mbf{r2}`$ ã®å¯¾è±¡ $`= \{O, V, H, D\}`$
- $`\mbf{r2}`$ ã®å°ï¼æçå°ä»¥å¤ï¼
- $`sDV: V \to D`$
- $`tDV: V \to D`$
- $`sDH: H \to D`$
- $`tDH: H \to D`$
- $`sVO: O \to V`$
- $`tVO: O \to V`$
- $`sHO: O \to H`$
- $`tHO: O \to H`$
- $`sDV;sVO: O \to D`$
- $`sDV;tVO: O \to D`$
- $`sDH;sHO: O \to D`$
- $`sDH;tHO: O \to D`$
対象ãå½¢ç¶ã½ã¼ããã«å¯¾ããæ¬¡å 颿°ã¯æ¬¡ã®ãã§ãã
- $`\mbf{g1}`$ ã®æ¬¡å
颿°
- $`\mrm{dim}(0) = 0`$
- $`\mrm{dim}(1) = 1`$
- $`\mbf{r2}`$ ã®æ¬¡å
颿°
- $`\mrm{dim}(O) = 0`$
- $`\mrm{dim}(V) = 1`$
- $`\mrm{dim}(H) = 1`$
- $`\mrm{dim}(D) = 2`$
ãªã¼ãã£å $`\mbf{g1}`$ ã¯ãã°ã©ããæåã°ã©ã | {directed}? graphãã¨ããçµã¿åããå¹¾ä½ç対象ç©ãè¨è¿°ããããã®åã§ãããªã¼ãã£å $`\mbf{r2}`$ ã¯ãäºéåã®å°æ§é ã{underlying | carrier } structureãã¨ãªãçµã¿åããå¹¾ä½ç対象ç©ã§ããäºéåã«é¢ãã¦ã¯ãéå»è¨äºãäºéåã縦横ãããä¸åº¦ããåç §ãã¦ãã ããã
$`\mbf{g1}, \mbf{r2}`$ ã®ã¢ãã¼ãå°ãã¯ãã»ã«ã®å¢çãè¨è¿°ããããã«ä½¿ãã®ã§ãããããªãã§æ¬¡å ãä¸ããã¢ãã¼ãªãã ï¼ éã§ã¯ãªãããã¨è¨ããæãããç¥ãã¾ãããããã¯æ¬¡ç¯ã§èª¬æãã¾ãã
åå¤é¢æã主æµ
çµã¿åããå¹¾ä½ç対象ç©ã¯ããªã¼ãã£åããéååã¸ã®é¢æãå³å¼ãã¨ãã¦è¨è¿°ããã®ã§ãããåå¤é¢æã使ãã»ãã夿°æ´¾ãªã®ã§ããä¾ãã°ãã°ã©ããæåã°ã©ããã¯ã次ã®é¢æã ã¨èãã¾ãã
$`\quad X: \mbf{g1}^\op \to \mbf{Set} \In \mbf{CAT}`$
åå¤é¢æãªã®ã§ã次ã®ããã«ãªãã¾ãã
- $`X(0) \in |\mbf{Set}|`$
- $`X(1) \in |\mbf{Set}|`$
- $`X(s): X(1) \to X(0) \In \mbf{Set}`$
- $`X(t): X(1) \to X(0) \In \mbf{Set}`$
$`\mbf{g1}`$ å ã®ã¢ãã¼ $`s`$ 㯠$`s: 0 \to 1`$ ã§ãããåå¤é¢æ $`X`$ ã§ç§»ãããå ã§ã¯ $`X(s): X(1) \to X(0)`$ ãªã®ã§æ¬¡å ãä¸ããæ¹åã®å°ãªã®ã§ãããããããããã®ãããããã¯ãç¨èªãè¨æ³ã«ãï¼æªãï¼å½±é¿ãããã¾ãã
ä¸è¬ã«ãã»ã«ã«ãã®å¢çï¼ã®ä¸é¨ï¼ãæ§æããã»ã«ã対å¿ãããååãé¢ååãface mapãã¨å¼ã³ã¾ããé¢ååã¯ãåå¤é¢æã®åã§ãããªã¼ãã£åã®ã¢ãã¼ã«ç±æ¥ãã¾ããâãªã¼ãã£åå´ã®ã¢ãã¼âã¨å¯¾å¿ããâéååå´ã®ååã颿°ãâãããããä½ã¨å¼ã¶ãï¼ 2ã¤ã®æµåãããã¾ãã
- ãªã¼ãã£åã®ã¢ãã¼ã¯ãä½é¢ã¢ãã¼ãcoface arrowãã¨å¼ã¶ãä½é¢ã¢ãã¼ã®åå¤é¢æã«ããåãå¤ããé¢åå
- ãªã¼ãã£åã®ã¢ãã¼ããé¢ã¢ãã¼ãface arrowãã¨å¼ã¶ãé¢ã¢ãã¼ã®åå¤é¢æã«ããåãå¤ããé¢åå
ããã§ã¯ãä½é¢ã¢ãã¼ã使ãã¾ãã
$`\quad \mrm{Mor}(\T{ãªã¼ãã£å}) \ni \T{ä½é¢ã¢ãã¼} \mapsto \T{é¢åå}\in \mrm{Mor}(\T{éåå})`$
ç¨èªã®éç¨ãããå°ã詳ãã説æããã¨ï¼
- åå¤é¢æã®åã§ãããªã¼ãã£åã®ãçæå°ï¼å°ã®éåã®çæå ï¼ã§ãããæ¬¡å ã1ã¤ä¸ããã¢ãã¼ããä½é¢ã¢ãã¼ãcoface arrowãã¨å¼ã¶ã
- ä½é¢ã¢ãã¼ã®åå¤é¢æã®åã§ãããéååã®å°ãåå | 颿°ããé¢ååãface mapãã¨å¼ã¶ã
- åå¤é¢æã®åã§ãããªã¼ãã£åã®ãçæå°ï¼å°ã®éåã®çæå ï¼ã§ãããæ¬¡å ã1ã¤ä¸ããã¢ãã¼ããä½éåã¢ãã¼ãcodegeneracy arrowãã¨å¼ã¶ã
- ä½éåã¢ãã¼ã®åå¤é¢æã®åã§ãããéååã®å°ãåå | 颿°ããéåååãdegeneracy mapãã¨å¼ã¶ã
ä»åã®2ã¤ã®ä¾ã§ã¯ãä½é¢ã¢ãã¼ã¨é¢ååããåºã¦ãã¾ãããä½éåã¢ãã¼ï¼éåååã¯ä½¿ã£ã¦ã¾ããã
ãªã¼ãã£åããã®åå¤é¢æã«ããåãå¤ã $`X(s)`$ ã¯ãã°ãã° $`s^*`$ ã¨ç¥è¨ãã¾ãã
$`\quad s^* : X(1) \to X(0) \In \mbf{Set}`$
ä¸ä»ãã¢ã¹ã¿ãªã¹ã¯ã¯åå¤ã§ãããã¨ã示ãã¦ãã¾ãããã¢ã¹ã¿ãªã¹ã¯ãçç¥ãã¦ãã¾ãã±ã¼ã¹ãããã¾ãã
$`\quad s : X(1) \to X(0) \In \mbf{Set}`$
ãããªãã¨ã$`s`$ ã颿ã®åå´ãä½åå´ããï¼$`s`$ ã ãè¦ã¦ãï¼åãããªãã®ã§è§£éã«é£åããã§ããããæ¬¡ã®ç¹ãæèãã確èªãã¦ä¸ããã
- åå¤é¢æï¼å¤æ°æ´¾ï¼ã使ã£ã¦ããã®ãï¼ ããã¨ãå ±å¤é¢æï¼å°æ°æ´¾ï¼ã使ã£ã¦ããã®ãï¼
- 颿ã®åå´ã®å°ã¨å¯¾å¿ããä½åå´ã®å°ãã©ã®ããã«è¡¨è¨ãã¦ãããï¼
å½¢ç¶ä»ãéå
éååã¸ã®é¢æãå³å¼ããçµã¿åããå¹¾ä½ç対象ç©ã表ãç¶æ³ã§ã¯ããã®é¢æãå³å¼ããå½¢ç¶ä»ãéåãshaped setãã¨å¼ã³ã¾ãã颿ãåå¤ã®ã¨ããå ±å¤ã®ã¨ããããã¾ãããããã§ã¯ã夿°æ´¾ã§ããåå¤é¢æï¼å層ãpresheafãã¨ãå¼ã¶ï¼ã使ãã¨ãã¾ãã
å½¢ç¶ä»ãéåãå層ãã®åã§ããåãå½¢ç¶åãshape categoryããå½¢ç¶ã¹ãã¼ããshape schemaãããããã¯åã«å½¢ç¶ãshapeãã¨å¼ã³ã¾ãã
è¤æ°ã®å½¢ç¶ã¹ãã¼ãããå½¢ç¶ã¹ãã¼ãã®ããã ã®é¢æãèãããã¨ãããã¾ããããã¨ãå½¢ç¶ã¹ãã¼ãã対象ã¨ããåãåºç¾ãã¾ããå½¢ç¶ã¹ãã¼ãã対象ã¨ããåï¼0-å ï¼ éåã®ã¨ããã2-åã®ã¨ããããï¼ã¯å½¢ç¶ãã¯ããªã³ãshape doctrineãã¨å¼ã¶ãã¨ã«ãã¾ãã
ãå½¢ç¶ããå½¢ç¶åãã¨ããè¨èã以ä¸ã®ã©ããæããããããªãããããã¯æ··åã»æ··ä¹±ãã¦ããç¶æ³ãçããã¡ãªã®ã§æ³¨æãã¦ä¸ããã
- å½¢ç¶ã¹ãã¼ãã対象ã¨ããåã§ããå½¢ç¶ãã¯ããªã³
- å½¢ç¶ãã¯ããªã³ã®å¯¾è±¡ã§ãããå½¢ç¶ã½ã¼ãã対象ã¨ããåã§ããå½¢ç¶ã¹ãã¼ã
- å½¢ç¶ã¹ãã¼ãã®å¯¾è±¡ã§ãããå½¢ç¶ã½ã¼ã
ã¾ããå½¢ç¶ã½ã¼ãï¼å½¢ç¶ã¹ãã¼ãã®å¯¾è±¡ï¼ã¨ãå³å¼ã«ããåãå¤ãã§ããéåï¼éååã®å¯¾è±¡ï¼ãæ··åããããã¨ãããã¾ããå½¢ç¶ã½ã¼ãã®åã§ããéåã®è¦ç´ ãã»ã«ãcellãã§ããå½¢ç¶ã¹ãã¼ãã«ã¯ã»ã«ã¨ããæ¦å¿µãããã¾ããã
è¨æ³ã®ä¸æ¡
æ··åã»æ··ä¹±ããã¡ãªæ¦å¿µãåºã¦ããã®ã§ãæå種ã»ãã©ã³ãã«ããåºå¥ããã»ããããã§ããããã¹ãã´ã¡ãã¯ãDavid I. Spivakãéã使ã£ã¦ããè¨æ³ã»ç¨èªãåèã«ä¸æ¡ãèãã¾ããã
- å½¢ç¶ã¹ãã¼ãï¼ã表ã夿°ï¼ã¯ãã©ã¯ãã¥ã¼ã«ä½ã®ã©ãã³æåå°æåã§æ¸ãã$`\mfk{c}, \mfk{s}`$ ãªã©ã
- å½¢ç¶ã¹ãã¼ãã®å¯¾è±¡ã§ããå½¢ç¶ã½ã¼ãï¼ã表ã夿°ï¼ã¯ã®ãªã·ã£æåå°æåã§æ¸ãã$`\alpha, \beta, \xi`$ ãªã©ã
- 次å 颿°ã®å¤ã¨ãªã次å ãèªç¶æ°ãï¼ã表ã夿°ï¼ã¯ã©ãã³æåå°æåã§æ¸ãã$`n, m, k`$ ãªã©ã
- å½¢ç¶ã½ã¼ãã¨ãã®æ¬¡å ããã¢ã«ã㦠$`(\alpha, n)`$ ã®ããã«æ¸ãã
- å½¢ç¶ä»ãéåï¼ã表ã夿°ï¼ã¯ã©ãã³æå大æåã§æ¸ãã$`X, Y, A`$ ãªã©ã
- å½¢ç¶ä»ãéåï¼å®ä½ã¯é¢æï¼ $`X`$ ã®å¤ã§ããéå $`X(\alpha)`$ ã $`X_\alpha`$ ã¨ãæ¸ããå½¢ç¶ã½ã¼ãã®æ¬¡å ãæç¤ºãããã¨ã㯠$`X_{\alpha, n}`$ ã¨æ¸ãã
- å½¢ç¶ä»ãéåï¼å®ä½ã¯é¢æï¼ $`X`$ ã®å¤ã§ããåå $`X(f)`$ ã $`f^*_X`$ ã¨æ¸ãã
- $`f^*_X`$ ã«å¥ãªååãä»ãã¦ãããã
ä¾ãã°ãã°ã©ããæåã°ã©ããã¯ããªã¼ãã£å $`\mbf{g1}`$ ãå½¢ç¶ã¹ãã¼ãã¨ããåå¤ã®å½¢ç¶ä»ãéåã§ããã¹ãã´ã¡ãã¯ãDavid I. Spivakãéã®ãã¤ãã³ã使ãè¨æ³ã§æ¸ããªãï¼
$`\quad \mbf{Graph} := \mbf{g1}^{\op}\T{-}\mbf{Set} = [\mbf{g1}^{\op}, \mbf{Set}]`$
å½¢ç¶ã¹ãã¼ã $`\mbf{g1}`$ ã§ã¯ãå½¢ç¶ã½ã¼ãã¨ãã®æ¬¡å ãä¸è´ãã¦ãã¾ãããåé·ã«ãªãã®ããã¾ããã«æ¸ãã°ï¼
- å½¢ç¶ã½ã¼ã $`(0, 0)`$ ã«å¯¾ãã $`X`$ ã®ã»ã«ã®éå㯠$`X_{0, 0}`$ ã$`(0, 0)`$-ã»ã«ã¯é ç¹ãvertexãã¨ãå¼ã¶ã
- å½¢ç¶ã½ã¼ã $`(1, 1)`$ ã«å¯¾ãã $`X`$ ã®ã»ã«ã®éå㯠$`X_{1, 1}`$ ã$`(1, 1)`$-ã»ã«ã¯è¾ºãedgeãã¨ãå¼ã¶ã
- ä½é¢ã¢ãã¼ $`s: 0 \to 1`$ ã«å¯¾ãã $`X`$ ã®é¢åå㯠$`s^*_X : X_{1, 1} \to X_{0, 0}`$ ãã½ã¼ã¹ååãsource mapãã¨ãå¼ã¶ã
- ä½é¢ã¢ãã¼ $`t: 0 \to 1`$ ã«å¯¾ãã $`X`$ ã®é¢åå㯠$`t^*_X : X_{1, 1} \to X_{0, 0}`$ ãã¿ã¼ã²ããååãsource mapãã¨ãå¼ã¶ã
ã°ã©ãã®å $`\mbf{Graph}`$ ã®å°ã¯ãåå¤é¢æãå層ãã®åã®å°ãªã®ã§ãå®ä½ã¯èªç¶å¤æã§ãã
ç©å½¢åã¨ç©å½¢éå
ãªã¼ãã£å $`\mbf{r2}`$ ã¯ç©å½¢åãrectangle categoryãã§ãããç©å½¢åãå½¢ç¶ã¹ãã¼ãã¨ããï¼åå¤ã®ï¼å½¢ç¶ä»ãéåã¯ã$`\mbf{r2}^\op`$-å½¢ç¶ä»ãéåã$`\mbf{r2}^\op`$-shaped setãã§ãããããçãç©å½¢éåãrectangular setãã¨å¼ã³ã¾ãããã®ãã¼ãã³ã°ã¯ãåä½åï¼åä½éåãçä½åï¼çä½éåãªã©ã¨åãã«ã¼ã«ã§ãã
ãã¤ãã³ã使ãè¨æ³ã§æ¸ããªãï¼
$`\quad \mbf{r2Set} := \mbf{r2}^{\op}\T{-}\mbf{Set} = [\mbf{r2}^{\op}, \mbf{Set}]`$
å½¢ç¶ã¹ãã¼ã $`\mbf{r2}`$ ã«é¢ãã¦ã¯ï¼
- å½¢ç¶ã½ã¼ã $`(O, 0)`$ ã«å¯¾ãã $`X`$ ã®ã»ã«ã®éå㯠$`X_{O, 0}`$ ãäºéåã®æèã§ã¯ã$`(O, 0)`$-ã»ã«ã¯å¯¾è±¡ãobjectãã¨ãå¼ã¶ã
- å½¢ç¶ã½ã¼ã $`(V, 1)`$ ã«å¯¾ãã $`X`$ ã®ã»ã«ã®éå㯠$`X_{V, 1}`$ ãäºéåã®æèã§ã¯ã$`(V, 1)`$-ã»ã«ã¯ç¸¦å°ãvertical morphismãã¨ãå¼ã¶*4ã
- å½¢ç¶ã½ã¼ã $`(H, 1)`$ ã«å¯¾ãã $`X`$ ã®ã»ã«ã®éå㯠$`X_{H, 1}`$ ãäºéåã®æèã§ã¯ã$`(H, 1)`$-ã»ã«ã¯æ¨ªå°ãhorizontal morphismãã¨ãå¼ã¶ã
- ä½é¢ã¢ãã¼ $`sDV: V \to D`$ ã«å¯¾ãã $`X`$ ã®é¢åå㯠$`{sDV}^*_X : X_{D, 2} \to X_{V, 1}`$ ãäºéåã®æèã§ã¯ãäºéã»ã«ãdouble cellãã®å·¦ãã¬ã¼ã ååãleft frame mapãã¨ãå¼ã¶ã
- (以ä¸çç¥)
ç©å½¢éåã¯äºéåã®ä¸é¨æ§é ã«ãªã£ã¦ãã¾ããä¸é¨æ§é ã§ããäºéåã®ç¨èªãæåãã¦é¢ååã«ååãä»ãããã¨ãã§ãã¾ãããä¸è¬çãªå½¢ç¶ä»ãéåã®é¢ååéã«ãããããååãä»ãããã¨ã¯ç¡çã§ãã峿°ãªãçªå·ã»ç¬¦ä¸ã§å¼ã¶ãããªãã§ãããã
ãããã«
ã¢ãã¤ãã群ã®ãããªä»£æ°ç³»ã¯ãéåã®ä¸ã«æ¼ç®ã¨æ³åãè¼ãã¦ãã¾ããããã«å¯¾ãã¦ãåãäºéåããã¾ãã¾ãªç¨®é¡ã®é«æ¬¡åã¯ãå½¢ç¶ä»ãéåã®ä¸ã«æ¼ç®ã¨æ³åãè¼ãã¦ãã¾ãããããã£ã¦ãåå°ã¨ãªãå½¢ç¶ä»ãéåãææ¡ãã¦ããå¿ è¦ãããã¾ãããã®è¨äºã§è¿°ã¹ãããã«ãå½¢ç¶ä»ãéåã¯æå¤ã«è¤éãªæ¦å¿µã§ãããç°ãªã£ãã¬ãã«ã®æ§æç´ ãæ··åããã¡ã§ããæ··åããªãããã«æ´çãã¦ããã¾ãããã
*1:ç»å㯠https://upload.wikimedia.org/wikipedia/commons/thumb/5/50/Simplicial_complex_example.svg/220px-Simplicial_complex_example.svg.png
*2:[追è¨]ãã®çµµã®ç·åã¯ãã¹ï¼åºæ¬ç·åãç¹ãã ã¢ãï¼ãå«ã¾ãã¾ãããå¢çãåºæ¬å³å½¢ã«ãªãã¨ã¯éãã¾ãããä¾ãã°ãããã¼ã¹ãã£ã³ã°å³ãã³ã³ãã¥ã¼ã¿ãããã¹ããªã³ã°å³ãåç §ã[/追è¨]
*3:"factorisation" ã®ç¶´ãã®ã»ããå¤ãããã
*4:ã縦横ãã使ãã®ã¯å¥½ã¾ãããªãã®ã§ãããä»ããã§ã¯ããã¨ãã¾ãã