次ã¯ã¤ãã³ã»ãã¿ã¼ã½ã³ã®å¦ä½è«æã§ãã
- Title: The algebra and machine representation of statistical models
- Author: Evan Patterson
- Submitted: 16 Jun 2020
- Pages: 224p
- URL: https://arxiv.org/abs/2006.08945
Youtubeåç»ã§ãä¸è¨å¦ä½è«æã®ä¸»ã«3ç« "The algebra of statistical theories and models" ã«ã¤ãã¦ãã¿ã¼ã½ã³èªèº«ãèªã£ã¦ãã¾ãã
ãµããªã¼ã ãç¥ãããæ¹ã¯ã48å30ç§ãã5åã»ã©ã§ç·æ¬ããã¦ãã¾ããã¾ãã質åæéï¼53å30ç§ãããããï¼ã«ã¹ãã´ã¡ãã¯ãDavid SpivakããããªãããTobias Fritzããç»å ´ãã¦ãã¾ãã
ãã¿ã¼ã½ã³ã主é¡ã¨ãã¦ãã"statistical theories"ã¯ãæ®éã®æå³ï¼å½èªè¾æ¸çæå³ï¼ã®âçè«âã§ã¯ãªãã¦ããã¼ã´ã§ã¢ãWilliam Lawvereãã®æå³ã®âã»ãªãªã¼âã§ãããã»ãªãªã¼ãã¯ã©ãã«ãç´ããããè¨èã§ãããæè¿ã¾ãã¾ãéè¦æ§ãå¢ãã¦ããããã«æããã®ã§ããã¼ã´ã§ã¢æµã®ã»ãªãªã¼è«ãtheory of theoriesãã¨ãã¦ã®âãã¿ã¼ã½ã³ã®çµ±è¨ã»ãªãªã¼è«âãç´¹ä»ãã¾ãã
å 容ï¼
- ã»ãªãªã¼ã®çè«
- çµ±è¨ã»ãªãªã¼è«ã®ã¢ã³ãã¨ã³ãå
- ãã«ã³ãææ¨ã¨çµ±è¨ã»ãªãªã¼
- çµ±è¨ã¢ãã«
- ãããã
ã»ãªãªã¼ã®çè«
ããã©ã³ã°ã®âå æã»ãªãªã¼âã®çè«ãã§ãåè«ã®æèã§ç¾ãã"theory"ãå½èªï¼ã¾ãã¯è±èªï¼è¾æ¸çæå³ã§ã¯ãªãã¦ãã¯ãã«ã«ã»ã¿ã¼ã ãªäºãããã¨ææãã¾ããã
âã»ãªãªã¼ãtheoryãâã®æ®éã§ã¯ãªã使ãæ¹ã¯ããã¼ã´ã§ã¢ãWilliam Lawvereãã«ç±æ¥ãã¾ãããã¼ã´ã§ã¢ã¯éãæ´å¯åã¨è±å¯ãªã¢ã¤ãã£ã¢ãæã£ãåè«ã®å¤§å®¶ã§ããã人ãæ©ã¾ãå¥å¦ãªãã¼ãã³ã°ããã¾ãã[...snip...]
ãã¼ã´ã§ã¢ã®ä»£æ°çè«ï¼ç¾å¨ã¯"Lawvere theory"ã¨å¼ã°ãããã¨ãå¤ãï¼ã¯ã代æ°å¦ã®çè«ã¨ããæå³ã§ã¯ããã¾ãããã¨ããæ¡ä»¶ãæºããåã®ãã¨ã代æ°çè«ã¨å¼ã¶ã®ã§ããåã¯ãå°ãã§ãæ··ä¹±ãé¿ããããã«ä»£æ°ã»ãªãªã¼ï¼ã¾ãã¯ãã¼ã´ã§ã¢ã»ã»ãªãªã¼ï¼ã¨ã«ã¿ã«ãã®ãã»ãªãªã¼ãã使ãã¾ãã
ãã©ã³ã°ãBrendan Fongãã使ã£ã¦ããè¨èãå æã»ãªãªã¼ãcausal theoryããã®ãã»ãªãªã¼ãã¯ãã¼ã´ã§ã¢ã®ã»ãªãªã¼ã®ãã¨ã ãããå æãããåå ã¨çµæãã¨ããæå³ã¯ãªãã¦åã«ã°ã©ãã®è¾ºï¼ã¾ãã¯åã®å°ï¼ã®ãã¨ã§ãããå æã»ãªãªã¼ã®å½¢å¼çå®ç¾©ã¯å°ããªå³å¯å¯¾ç§°å³å¯ãã«ã³ãåãsmall strictly-symmetric strict Markov categoryãã§ãã
ãã¿ã¼ã½ã³ã®çµ±è¨ã»ãªãªã¼ããã©ã³ã°ã®å æã»ãªãªã¼ã¨åæ§ã§ãå°ããªå³å¯ãã«ã³ãåã§ãããã¿ã¼ã½ã³ã¯ãç¹å®ã®ã²ã¨ã¤ã®å°ãæå®ãããå°ããªå³å¯ãã«ã³ãåãçµ±è¨ã»ãªãªã¼ãstatistical theoryãã¨å¼ãã§ã¾ãããçæç³»ãsystem of generatorsããåããå°ããªå³å¯ãã«ã³ãåã¨å®ç¾©ããã»ããããã§ãããï¼å¾è¿°ï¼ãçæç³»ã¯ããã«ã³ãåã®ææ¨ãsignatureãã¨è¨ã£ã¦ãåãã§ãã
ä¾ãã°ã次ã¯ä¸çªåç´ã§ä¸çªãã使ãããææ¨ã§ãããã¿ã¼ã½ã³ã¯ä¸»ã«ãã®åç´ãªææ¨ãæ±ã£ã¦ãã¾ãã
signature Simple { sort P // ãã©ã¡ã¼ã¿ç©ºé sort D // ãã¼ã¿ç©ºéãæ¨æ¬ç©ºéã operation f:P -> D // 確çæ³åï¼ã®ãã©ã¡ã¼ã¿æï¼ }
ãã¤ãºç¢ºçè«ã§ããäºååå¸ãæã£ãææ¨ã¯æ¬¡ã®ããã§ãã
signature SimpleBayesian { sort P // ãã©ã¡ã¼ã¿ç©ºé sort D // ãã¼ã¿ç©ºéãæ¨æ¬ç©ºéã operation p:1 -> P // äºååå¸ operation f:P -> D // 確çæ³åï¼ã®ãã©ã¡ã¼ã¿æï¼ }
(1)åã®çæç³»ã§ããææ¨ã(2)ææ¨ããçæãããåã§ããã»ãªãªã¼ã(3)ã»ãªãªã¼ããã®é¢æã§ããã¢ãã«ãããã¼ã´ã§ã¢æµã»ãªãªã¼è«ã®ä¸ç¨®ã®åºæ¬çæ§æç´ ã§ããã»ãªãªã¼è«ã¨ã¯ãããªãããã¢ãã«ãæ±ãã¢ãã«è«ãmodel theory | theory of modelesããå«ãã§ãã¾ãã
ãã¿ã¼ã½ã³ã¯ããã¼ã´ã§ã¢æµã»ãªãªã¼è«ãåè«çè«çãcategorical logicãã¨ãã¦åç §ãã¦ãã¾ãããè«çã®ãªãã§ãç¹ã«ã¢ãã«è«ãåè«çã«åå®ç¾©ãããã®ãåè«çã»ãªãªã¼è«ãcategorical theory of categorical theoriesãã§ãã
ã¹ãã´ã¡ãã¯ã®é¢æãã¼ã¿ã¢ãã«ï¼ãè¡æçãªãã¼ã¿ãã¼ã¹çè«ã»é¢æçãã¼ã¿ã¢ãã« å ¥éãåç §ï¼ããã¼ã´ã§ã¢æµã»ãªãªã¼è«ã®å¿ç¨ä¾ã§ãããã§ã¯ãææ¨ã¾ãã¯ã»ãªãªã¼ã¯ã¹ãã¼ãã¨å¼ã°ããã¢ãã«ã¯ãã¼ã¿ã¤ã³ã¹ã¿ã³ã¹ã¨å¼ã°ãã¦ãã¾ãã
ï¼å¿ ãããåè«çã§ã¯ãªãï¼è«çã§ã¯ãè«çå¼ã®éåãã»ãªãªã¼ã¨å¼ã¶ãã¨ãããã¾ããããã¯ãç¡é¢ä¿ã§ã¯ããã¾ãããããã¼ã´ã§ã¢æµã»ãªãªã¼è«ã®ã»ãªãªã¼ã¨ã¯å°ãéãã®ã§æ³¨æãã¦ãã ããã
çµ±è¨ã»ãªãªã¼è«ã®ã¢ã³ãã¨ã³ãå
åè«çã«ç¢ºççµ±è¨ã®è°è«ãããã¨ãã®åºæ¬çãªãã¼ã«ï¼ãã¬ã¼ã ã¯ã¼ã¯ã¯ãã«ã³ãåãMarkov categoryãã§ãããã«ã³ãåã«ã¤ãã¦ã¯ãããã«ã³ãå A First Look -- åè«ç確çè«ã®æè¯ã®å®å¼åãã¨ããããåç §ããã¦ããè¨äºãåç §ãã¦ãã ããã
ã¾ããããã«ã³ãåã®ä¸æ // æ§ã ãªè£ ååãã§è§¦ããè£ åãsupplyãæ¦å¿µ*1ã¯ããã¯ãã¢ãçéã§ã¯å¸¸èã®ããã§ããã¢ãçéã¨ã¯ãã¹ãã´ã¡ãã¯ããã©ã³ã°ãããªãããããã¦ãã¿ã¼ã½ã³ãªã©ãåå ãã¦ãã MIT Categories Seminar ã®å¨è¾ºã®ãã¨ã§ãã
è£ åï¼åã¯ã¢ããªãã£ã¨å¼ãã§ããï¼æ¦å¿µã使ãã°ããã«ã³ãåã¨ã¯ä½å¯æã³ã¢ããè£ åä»ãåãã«ã«ãã»ã¢ãã¤ãåã§ãããã«ã³ãåã®ããã ã®ãã«ã³ãé¢æã¯ãã¢ãã¤ãé¢æï¼å¹¾ã¤ãã®ç¨®é¡ãããï¼ã§ãã£ã¦è£ åãä¿åããé¢æãsupply-preserving functorãã¨ãã¦å®ç¾©ã§ãã¾ãããã«ã³ãèªç¶å¤æããè£ åã¨æ´åãã*2ã¢ãã¤ãèªç¶å¤æã¨ãã¦å®ç¾©ã§ããã§ãããã
ãã«ã³ãåã対象ã¨ãã¦ããã«ã³ãæ§é ï¼ã¢ãã¤ãæ§é ã¨ä½å¯æã³ã¢ããè£ åï¼ã¨æ´åããé¢æã¨èªç¶å¤æã1-å°ï¼2-å°ã¨ãã2-å MarkovCAT ãæ§æã§ãã¾ããããã¯ãã«ã³ãåã®2-åã2-category of Markov Categoriesãã§ããå°ããªå³å¯ãã«ã³ãåï¼âå³å¯âã¯ã¢ãã¤ãåã¨ãã¦ã®å³å¯æ§ï¼ãããªãé¨å2-å㯠StrMarkovCat â MarkovCAT ã¨ãã¾ãã
2-å MarkovCAT ã¯ãçµ±è¨ã»ãªãªã¼è«ãtheory of statistical theorysããå±éããç°å¢ã¨ãªãåãªã®ã§ã¢ã³ãã¨ã³ãåãambient categoryãã¨å¼ã³ã¾ãããï¼å®éã¯2-åã§ããã©ï¼ãã¢ã³ãã¨ã³ãåã®éè¦ãªæ§è³ªã¯ãAâ|StrMarkovCat| 㨠Câ|MarkovCAT| ã«å¯¾ãã¦ãé¢æå [A, C] ãä½ãããã¨ã§ããé¢æåã¯ãã¢ãã¤ãæ§é ããã«ã³ãæ§é ãå¿ ãããæããªãã¦ãããã®ã§ã[A, C]â|CAT| ã¨èãã¾ãï¼ã¨ããããã¯ï¼ãããã¨ã[-. -] ã¯æ¬¡ã®ãããªäºé é¢æãåé¢æãã§ãã
- [-, -]:StrMarkovCatopÃMarkovCat â CAT
ãã®ãã®äºé é¢æã«ã¤ãã¦ã¯æ¬¡ã®è¨äºã§èª¬æãã¦ãã¾ãã
ãã«ã³ãææ¨ã¨çµ±è¨ã»ãªãªã¼
çµ±è¨ã»ãªãªã¼ãçæããææ¨ã¯çµ±è¨ææ¨ã¨å¼ã¶ã®ãè¯ãããã§ããããçµ±è¨ææ¨ãã£ã¦è¨èã§å ¨ç¶éã£ãé£æ³ã»å°è±¡ãæã¤äººãå¤ãããªã®ã§ãã«ã³ãææ¨ã«ãã¾ããããã«ããã«ã³ãææ¨ã¨å¼ãã ã»ãããã¼ãã³ã°ã®ä¸è²«æ§ãä¿ã¦ã¾ãï¼æ¬¡ã®æ®µè½ï¼ã
ææ¨ã¯ãã³ã³ãã¥ã¼ã¿ãããcomputadãã¨ãå¤ã°ã©ããpolygraphãã¨ãå¼ã°ããåãçæã»å®ç¾©ããæ段ã¨ãã¦ç¨ãããã¾ããåã®ç¨®å¥ï¼ãã¯ããªã³ãã¡ã¿ææ¨ï¼ãã¨ã«ææ¨ã®ç¨®å¥ã決ã¾ãã¾ããä»ã¯ããã«ã³ãåã¨ããåã®ç¨®å¥ãæ±ã£ã¦ããã®ã§ã対å¿ããææ¨ã¯ãã«ã³ãææ¨ãMarkov signatureãã§ãã
ãã«ã³ãææ¨Î£ã¯ãΣ0, Σ1, Σ2 ã¨ãã3ã¤ã®éåï¼ç©ºã§ããããç¥ããªãï¼ã§æ§æããã¾ããΣ0 ã¯åã®å¯¾è±¡ã表ãè¨å·ã®éåãΣ1 ã¯åã®å°ã表ãè¨å·ã®éåãΣ2 ã¯åã®çå¼çå¶ç´ï¼å¯æå³å¼ã¨è¨ã£ã¦ãåãï¼ã表ãè¨å·ã®éåã§ãã
Σ1 ã®è¨å·ã®åã»ä½åã¨ãã¦ã¯ãΣ0 ã®è¨å·ã®é£æ¥ã使ããé£æ¥ã¯åã®ã¢ãã¤ãç©ã«å¯¾å¿ãã¾ããΣ2 ã®è¨å·ã®åã»ä½åï¼çå¼ã®å·¦è¾ºã»å³è¾ºï¼ã¨ãã¦ã¯ãΣ1 ã®è¨å·ã¨ãã«ã³ãåã®è£ åã«å¯¾å¿ããè¨å·ã使ã£ãé ï¼å°ã表ãè¤åè¨å·ï¼ã使ãã¾ãã
ãã«ã³ãææ¨Î£ãããå°ããå³å¯ãã«ã³ãå Σâ ãä¸æçã«çæããã¾ããããΣ 㨠Σâ ãããã³ã¨è¨è¿°ããã®ã¯ç ©éãªçµã¿åããçè°è«ããã£ã¦å¤§å¤ã§ãã詳細ã¯å²æãã¾ãã
ãã«ã³ãææ¨Î£ããçæãããå°ããå³å¯ãã«ã³ãå Σâ ãçµ±è¨ã»ãªãªã¼ããããã¯ãã«ã³ãã»ã»ãªãªã¼ã§ãããã®æå³ã§ã®çµ±è¨ã»ãªãªã¼ã¯ããã®é¨åç³»ï¼é¨ååã¨ã¯éããªãï¼ã¨ãã¦çæ系Σãæã£ã¦ããããΣãã Σâ ã¯æ±ºã¾ã£ã¦ãã¾ãã¾ãããããã£ã¦ããã«ã³ãææ¨Î£ã¨çµ±è¨ã»ãªãªã¼ããã«ã³ãã»ã»ãªãªã¼ãΣâ ã¯ãã°ãã°åä¸è¦ããã¾ããã»ãªãªã¼ã®çè«ã¯ææ¨ã®çè«ã§ãããããã§ãã
ä¸è¨ã®äºæ ãããã»ãªãªã¼å°ãtheory morphismãã¨ææ¨å°ãsignature morphismããã»ãªãªã¼ã®åãcategory of theories | theory categoryãã¨ææ¨ã®åãcategory of signatures | signature categoryãããã°ãã°åä¸è¦ããã¾ããããããã§ã¯åºå¥ãããã®ã§ããã«ã³ãææ¨ã®åãMarkovSignãçµ±è¨ã»ãªãªã¼ããã«ã³ãã»ã»ãªãªã¼ãã®åãMarkovTheoã¨ãã¾ããMarkovTheo ã¯ãMarkovSignï¼ãã«ã³ãã»ãã¯ããªã³é ä¸ã®2-ã³ã³ãã¥ã¼ã¿ããã®åï¼ã¨ StrMarkovCat ã両端ã¨ããéä¼´ãã¢ãèªå°ããã¢ããã®ã¯ã©ã¤ã¹ãªåã§ããã¤ã¾ããMarkovTheo ã®å¯¾è±¡ã¯ãã«ã³ãææ¨ã§ã2ã¤ã®ãã«ã³ãææ¨ Î£, Σ' ã®ããã ã®ã»ãªãªã¼å°ã¯ãèªç±çæé¢æ (-)â ï¼ã®èªç±ã»å¿å´-éä¼´ãã¢ï¼ããå¾ãããã¢ããã®ã¯ã©ã¤ã¹ãªå°ã§ãã
ææ¨ã¨ã»ãªãªã¼ã«é¢ãã¦è²ã ãªæ¦å¿µãç»å ´ãã¾ãããããããã¯ææ¨ï¼ã»ãªãªã¼ã®ä¸è¬è«ããã®ãã®ã§ããã«ã³ãææ¨ï¼ãã«ã³ãã»ã»ãªãªã¼ãçµ±è¨ã»ãªãªã¼ãã«ç¹æã®ãã®ã§ã¯ããã¾ãããå¾ã§è¿°ã¹ãããã«ãããã°ã©ã æå³è«ã§ã使ããã¦ããéå ·ã»æ çµã¿ã§ãã
çµ±è¨ã¢ãã«
ãã«ã³ãææ¨Î£ããçæãããçµ±è¨ã»ãªãªã¼ T := Σâ ãåºå®ãã¾ããå®ç¾©ã«ãããT ã¯å°ããªå³å¯ãã«ã³ãåã§ãããT ã¯ãæ§æé åï¼è¨å·ã®ä¸çï¼ãæä¾ããåã§ããæ§æã«æå³ãä»ä¸ããã«ã¯æå³é åãæä¾ããåãå¿ è¦ã§ãã
æå³é åãå ·ä½çã§ãããã¨ãä¿è¨¼ããããã«ã確ççåï¼æ¨æ¥ã®è¨äºãçµ±è¨çå転ã®åè«çã»ããã¢ãã 1/2 // 確ççåã¨æºç¢ºççåãåç §ï¼Cãé¸ãã§åºå®ãã¾ããCãæå³é åããããã¯æå³è«ãsemanticsãã®ã¿ã¼ã²ããåãtarget categoryãã§ãã
çµ±è¨ã»ãªãªã¼Tã®ç¢ºççåCã«ãããã¢ãã«ãmodelãã¨ã¯ããã«ã³ãé¢æ M:T â C in MarkovCAT ã§ããã¢ã³ãã¨ã³ãåMarkovCATã®æ§è³ªãããã¢ãã«ã®å ¨ä½ã¯é¢æå [T, C]â|CAT| ãæ§æãã¾ãã
T-çµ±è¨ã¢ãã«ã®å ¨ä½ [T, C] ãåã®æ§é ãæã¤ãã¨ãããã¢ãã«ãååã§ãããã¨ãåè«çã«å®ç¾©ã§ãã¾ããååã«éãããã¢ãã«ã®ããã ã®é¢ä¿ãå°ã¨ãã¦æ確ã«è¡¨ç¾ã§ãã¾ãããã®å ·ä½ä¾ã¯ããã¿ã¼ã½ã³ã®åç»ãè«æã§è¿°ã¹ããã¦ãã¾ãã
ããã²ã¨ã¤ã®ãã«ã³ãææ¨Î£'ã¨çµ±è¨ã»ãªãªã¼ T' := (Σ')â ããã£ãã¨ãã¾ããããã»ãªãªã¼å° Ï:Σ â Σ' in MarkovTheo ã¯ãã«ã³ãé¢æï¼ã»ãªãªã¼å°Ïã®ã¯ã©ã¤ã¹ãªæ¡å¼µï¼ Ï#:T â T' in StrMarkovCat ãèªå°ãã¾ããããã«ãÏ# ã®ãã¬çµåå¼ãæ»ããpre-composition pullbackã(Ï#)*:[T', C] â [T, C] in CAT ã«ãããçµ±è¨ã¢ãã«ã®åã®ããã ã®é¢æãå®ç¾©ã§ãã¾ãã
ãã¿ã¼ã½ã³ã¯ã(Ï#)* ãã¢ãã«ç§»è¡é¢æãmodel migration functorãã¨å¼ãã§ãã¾ããã¹ãã´ã¡ãã¯ã®ãã¼ã¿ç§»è¡é¢æãdata migration functorãã«åãããç¨èªæ³ã§ãããã»ãªãªã¼å°ã«æ²¿ã£ãã¢ãã«ç§»è¡é¢æãã¹ãã¼ãå°ã«æ²¿ã£ããã¼ã¿ç§»è¡é¢æãåãæ¦å¿µã§ããããã°ã©ã æå³è«ï¼ã®ã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ï¼ã§ã¯ãªãã¯ãé¢æãreduct functorããã¤ã³ããã¯ã¹ä»ãåã®æèã§ã¯åã¤ã³ããã·ã³ã°é¢æãreindexing functorãã¨ãå¼ã°ãã¾ãã
ã¢ãã«ç§»è¡é¢æã使ãã°ãç°ãªãçµ±è¨ã»ãªãªã¼ä¸ã®çµ±è¨ã¢ãã«ãæ¯è¼ãããã¨ãã§ãã¾ãããã¿ã¼ã½ã³ã¯ãã¢ãã«ç§»è¡é¢æã®å®ä¾ãåºãã¦ãã¾ããä¾ãã°ãç·å½¢ã¢ãã«ãä¸è¬åç·å½¢ã¢ãã«ã®ç¹æ®ä¾ã§ãããã¨ã¯ç´æçã«ã¯å½ããåããã§ãããå³å¯ãªè¨è¿°ã¨è¨¼æã¯åºæ¥ãã§ããããï¼ ãã¿ã¼ã½ã³ã®åç»ã§ãã®ä¾ãèªããã¦ãã¾ãã
ãããã
ãã¼ã´ã§ã¢æµã»ãªãªã¼è«ï¼ãã¼ã´ã§ã¢æµã¢ãã«è«ã§ãããï¼ã®ããã¨ããã¯ãæ§æã¨æå³ã®é¢ä¿ãåè«çã«æ´çã§ãã¦äºæ ãã¯ãªã¢ã«ãªããã¨ã§ãããã¿ã¼ã½ã³ã¯ããã¼ã´ã§ã¢ã®ã¬ã·ããçµ±è¨ã»ãªãªã¼ï¼çµ±è¨ã¢ãã«ã«é©ç¨ããããã§ãããã®çµæãçµ±è¨ã«é¢ããæ§æã¨æå³ã®é¢ä¿ã¯å®éã¯ãªã¢ã«ãªãã¾ããã
ã¯ãªã¢ã«ãªã£ãæ¯è²ãçºããã¨ãå¹¾ã¤ãæ°ãä»ããã¨ãããã¾ãã
ã¹ãã´ã¡ãã¯ã¯ããã¼ã¿ç§»è¡é¢æã«é¢ãã¦ãã«ã³æ¡å¼µãå©ç¨ããΣ-Î-Î éä¼´ããªãªï¼ãΣ-Î-Î éä¼´ãããä¸è¨ãåç §ï¼ãæ§æãã¦ãã¾ããçµ±è¨ã¢ãã«ã®ã¢ãã«ç§»è¡é¢æã«ã¤ãã¦ãåæ§ãªÎ£-Î-Î éä¼´ããªãªã¯å¯è½ã§ããããï¼ ãã¼ã¿ãã¼ã¹ã®å ´åï¼åãªãåï¼ã¨æ¯ã¹ãã¨çµ±è¨ã¢ãã«ã®å ´åï¼ãã«ã³ãåï¼ã¯äºæ ãè¤éãªã®ã§ããã¾ãæå¾ ã¯åºæ¥ãªãæ°ããã¾ããããããé¨åçã«ã§ãΣ-Î-Î éä¼´ããªãªãæ§æã§ããã°é¢ç½ããã
ã¸ã§ã¤ã³ãã¹ãBart Jacobsãéã¯ã確çã®è¨ç®ã«ããã°ã©ã æå³è«ã®ç¶æ å¤æåï¼è¿°èªå¤æåã®æ¦å¿µãç§»å ¥ãã¾ããï¼ããã¤ãºç¢ºçè«ãã¸ã§ã¤ã³ãã¹éã®æ°ãã風ãåç §ï¼ããã¼ã«ã¯ã¥ã¤ã¹ããFredrik Dahlqvistãéã¯ããã¤ãºå転ã®å®å¼åã®ããã«ããã°ã©ã æå³è«ã®Ïå®åæ§ã®æ¦å¿µãç§»å ¥ãã¾ããï¼ãçµ±è¨çå転ã®åè«çã»ããã¢ãã 1/2ãåç §ï¼ãå®ã¯ãã¹ãã´ã¡ãã¯ï¼ãã¿ã¼ã½ã³ãå©ç¨ãããã¼ã´ã§ã¢æµã»ãªãªã¼è«ããããã°ã©ã æå³è«ã«ãããã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ãinstitution theoryãã¨ãã¦ããªãæ´åããã¦ãã¾ãï¼ãã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³ãã®ããã°å æ¤ç´¢ï¼ã
ã©ãããããã°ã©ã æå³è«ã®å種ææ³ã¯ã確ççµ±è¨ã«é©ç¨ã§ããå¯è½æ§ãé«ãããã§ãããã¾ä¾ã«æãããç¶æ å¤æåï¼è¿°èªå¤æåãé åçè«ãã¤ã³ã¹ãã£ãã¥ã¼ã·ã§ã³çè«ä»¥å¤ã«ããé©ç¨å¯è½ãªææ³ãããããç¥ãã¾ãããããã«ã確ççµ±è¨ã®è¨ç®ãå®éã«è¡ãã¨ãã«ã³ã³ãã¥ã¼ã¿ã使ããã¨ãããã確ççµ±è¨ã¨è¨ç®ç§å¦ã®ç¸äºæµ¸éã¯æè¿ã§ãããã¨ã§ããã
*1:https://arxiv.org/abs/1908.02633 åç §ã
*2:ãæ´åããããã©ãããæ¡ä»¶ãåã¯ããåãã£ã¦ã¾ãããã²ãã£ã¨ããã¨ãç¹ã«æ¡ä»¶ã¯è¦ããªãã®ããã