ãã®è¨äºã¯ããããã³ãã£ãã¯æ°å¦ãã¤ãï¼ æ¸è°· #12ãã®äºå¾ãµãã¼ãç¨ã®è¨äºã§ããä»é±ä¸ã«ä½åº¦ãæ´æ°ï¼ç·¨éã»è¿½å ï¼ããã¨æãã¾ãã
[è¿½è¨ date="æ¨æã»æ"]大ããªç·¨éã»è¿½å ã¯ã¾ã ãã¦ã¾ããããã¹ã®ä¿®æ£ã表ç¾ã®å¤æ´ã¯ãã¾ãã[/追è¨][è¿½è¨ date="æ¨æã»å¤"]ãä¸éã®ã¾ã¨ãã¨å±æã以éã追å ãã¾ãããã§ããè³æä½è£½ã¯æªçæã[/追è¨][è¿½è¨ date="éæã»å¤å»"]è³æãæåºããããã¸å解ãã®ç¯ã追å ããã¨ããããã¸å解ã®ã©ã³ãã³ã°åé¡ã¸ã®å¿ç¨ããæ®ã£ã¦ã¾ãããããã¯ææ¥å£é ã§è©±ããããã[/追è¨]
å 容ï¼
- ãã®è¨äºã®ç®ç
- æ¯è¼å¯è½æ§ã°ã©ã
- é¢æ£ãã»ã©ã¼ã çè«ã®ã»ããã¢ãã
- ãã»ã©ã¼ã è¤ä½ã¨ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼
- ãã»ã©ã¼ã è¤ä½ã®è§£é
- ä¸éã®ã¾ã¨ãã¨å±æ
- å対空éããã§ã¼ã³ã¨é¢æ£ç©å
- å ç©ã¨éä¼´ç·å½¢åå
- é¢æ£å¤è§£æï¼é¢æ£ãã¯ãã«è§£æ
- é¢æ£è§£æã®4ã¤ã®ä½ç¨ç´
- ããã¸å解
- ããã¸å解ã®ã©ã³ãã³ã°åé¡ã¸ã®å¿ç¨ï¼è¦åºãã ãï¼
ãã®è¨äºã®ç®ç
2018å¹´8æ11æ¥éå¬ã®ãããã³ãã£ãã¯æ°å¦ãã¤ãï¼ æ¸è°· #12ãã§ã·ã§ã¼ããã¬ã¼ã³ãã¾ããæéã¯æ°åãªã®ã§ãå°»åããã³ãã«ãªãã®ã¯ç®ã«è¦ãã¦ãã¾ãããªã®ã§ãåã®ãã¬ã¼ã³ããèãããã ããå¾ã®ç¢ºèªãè£è¶³ã®ããã«ããã®è¨äºãæºåãã¦ããã¾ãã
ç¾æç¹ã§ã¯ãå½æ¥è³æï¼ã¹ã©ã¤ãï¼ãä½ã£ã¦ãªãã®ã§ãè³æã®ä½è£½ã«ä¼´ããã®è¨äºã«ãæãå ããã§ãããããã£ãã¯ã¹ããã®ã¯éææ¥ããªãï¼è³æã¯ãã®åã«æåºããããã©ãç· åã«éã«åãããªãã©ãããªï¼ -- ã¨ãè¨ã訳ã£ã½ãè¨ã£ã¦ãããï¼
ãã®è¨äºã ãèªãã§ãããã¾ãåãããªãããç¥ãã¾ãããã§ãããã®è¨äºã¨ã¯å¥ã«ãããã¸ã»ã©ã³ã¯ã®å ¥éè¨äºãæ¸ãå¯è½æ§ã¯ããã¾ãããããªãã°ããã®è¨äºã¯ãå ¥éè¨äºã«å¯¾ããç¶ãï¼ç¬¬äºç« ï¼ã¨ããä½ç½®ä»ãã«ãªãã¾ãã
話ã®ãã¿å ã¯æ¬¡ã®è«æã§ãã
- Title: Statistical ranking and combinatorial Hodge theory (2009 v2)
- Authors: Xipaoye Jiang, Lek-Heng Lim, Yuan Yao, Yinyu Ye
- Pages: 42p.
- URL: https://arxiv.org/abs/0811.1067
ãã®è«æãå¿ å®ã«ç´¹ä»ããããã§ã¯ããã¾ããã使ãç¨èªãè¨å·ã»è¨æ³ãå¤ãã¦ããã¨ãããããã¾ãã
äºå¾ãµãã¼ãã§ãããã¨ã®æå³ã¯ãæ¢ã«è©±é¡ã¨åé¡æèã¯ç解ããã¦ããåæã§æ¸ããã¨ãããã¨ã§ããã·ã§ã¼ããã¬ã¼ã³ã§åé¡æèã¯èª¬æã§ãã¦ãããããããæ¹æ³ã¨èæ¯ãè¿°ã¹ãä½è£ã¯ãªãã§ãããã
æ¬æå ã§ããâ¦ã ã¨æ¸ãããç¨èªã¯ããã®è¨äºå ã§èª¬æãã¦ãªããã©æ¢ç¥ã¨ä»®å®ããè¨èã§ããåã®ã·ã§ã¼ããã¬ã¼ã³å ã§èª¬æããã¦ããã§ãããï¼ããæå¾ ãã¾ãï¼ã
æ¯è¼å¯è½æ§ã°ã©ã
G = (V, E) ãæéç¡ååç´ã°ã©ãã¨ãã¾ãããã®æå³ã¯ï¼
- Vã¯ãæééåã§ããVã®è¦ç´ ãé ç¹ãvertexãã¨å¼ã³ã¾ãã
- Eã¯ãVã®2å é¨åéåã®éåPow2(V)ã®é¨åéåã§ããEã®è¦ç´ ãç¡å辺ãundirected edgeããã¾ãã¯åã«è¾ºãedgeãã¨å¼ã³ã¾ããï¼ãã®è¨äºå ã§ã¯ãåã«ã辺ãã¨è¨ã£ããç¡å辺ã§ããï¼
Pow(X)ã¯Xã®ããéåï¼é¨åéåã®éåï¼ã§ãPown(X)ã¯åºæ°ï¼è¦ç´ ã®åæ°ï¼ãnã§ããé¨åéåã®éåã§ããGã¯ã°ã©ãã§ããã辺ã«åãã¯ãªããå¤é辺ãèªå·±ã«ã¼ã辺ãèªãã¾ããã
G = (V, E) ããã©ã³ãã³ã°åé¡ãã®ã¢ãã«ã¨èããã¨ãã¯ï¼
- é ç¹ã¯é¸æè¢ãalternativeãã¨èãã¾ããåã¯è©ä¾¡å¯¾è±¡ã¨å¼ãã§ãã¾ãã
- é ç¹Aã¨é ç¹Bã辺ã§çµã°ãã¦ããï¼{A, B}âE ã§ããï¼ã¨ãã¯ãAã¨Bã¯æ¯è¼å¯è½ãcomparableãã ã¨è¨ãã¾ããAã¨Bãæ¯è¼å¯è½ã§ãªããæ¯è¼ä¸è½ãã¨ã¯ã種é¡ãéãã®ã§æ¯è¼ããã³ã»ã³ã¹ã ã¨ããæ¯è¼ããæ段ãæ¯è¼ç¨ã®ãã¼ã¿ããªãã¨ãã§ãã
Gã¯å¹¾ä½çå½¢ç¶ãæã¤ã®ã§ãé£çµæåã¨ãå¹¾ä½çãµã¤ã¯ã«ï¼1次å ã®æåãªè¼ªï¼ã¨ããå®ç¾©ã§ãã¾ãã
ã¨ãã«ãGã®é ç¹ã®éåVã«å ¨é åºãtotal orderããå ¥ãã¾ãããã®å ¨é åºã¯ã¾ã£ãã便å®çãªãã®ã§ããé ç¹ã«éãçªå·ãä»ãã¦ããã®çªå·ã§é åºä»ããã¦ãããããé ç¹ã®åæ°ãå°ãªããªãè±åä¸æåã§é ç¹ã«ã©ãã«ãã¦ãã¢ã«ãã¡ãããé ã§é åºä»ããã¦ãããã§ãããªãã§ãããã§ãã便å®çãªã®ã§ã
A, B, CâVã{A, B, C}âPow3(V) ã¨ãã¦ãä¸å éå{A, B, C}ãä¸è§å½¢ãtriangleãã ã¨ã¯ã次ãæºãããã¨ã§ãã
- {A, B}âE ã㤠{B, C}âE ã㤠{A, C}âE
ä¸è¾ºå½¢ã¨è¨ã£ã¦ãããã§ãããä¸è§å½¢ã¨ä¸è¾ºå½¢ã¯å義èªã¨ãã¦ä½¿ãã¾ãã辺ã«åãããªãã®ã§ãä¸è§å½¢ãåããorientationããæããªããã¨ã«æ³¨æãã¦ãã ããã
Gã®ãã¹ã¦ã®ä¸è§å½¢ãããªãéåãTï¼TâPow3(V)ï¼ã¨ãã¾ããGããTã¯ä¸æã«æ±ºã¾ãã¾ããä¸è§å½¢ã®éåããã使ãã®ã§ãæåããã°ã©ãã®æ§æç´ ã«å ¥ã㦠G = (V, E, T) ã¨ãã¦ããã¾ããï¼Tãè½ã¨ãã¦ããV, Eããåæ§æã§ãã¾ãããå ¥ãã¦ããã°ä¾¿å©ãï¼
ä¸è§å½¢ã®éåãæ·»ããæéç¡ååç´ã°ã©ã G = (V, E, T) ãããã©ã³ãã³ã°åé¡ãã®è¦³ç¹ããã¯æ¯è¼å¯è½æ§ã°ã©ããcomparability graphãã¨å¼ã³ã¾ãã
é¢æ£ãã»ã©ã¼ã çè«ã®ã»ããã¢ãã
æ¯è¼å¯è½æ§ã°ã©ãã¯ããé¢æ£ãã»ã©ã¼ã çè«ããè¼ããããã®å°ç©ºéãunderlying spaceãã¨è¨ãã¾ããæ¯è¼å¯è½æ§ã°ã©ã G = (V, E, T) ä¸ã«ãã»ã©ã¼ã è¤ä½ãæ§æãã¾ãããããªãããã»ã©ã¼ã è¤ä½ãããã¸å解ã«é¢ãã¦ã¯æ¬¡ã®è¨äºã§èª¬æãã¦ãã¾ãã
- ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(1/2)
- ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(2/2)
ä¸è¨è¨äºã§ãé¢æ£çï¼çµã¿åããçï¼ãªã±ã¼ã¹ãç´¹ä»ãã¦ããã®ã§ããããé¢æ£ãã®æ義ãéãã¾ããä¸è¨è¨äºã§ã¯ã
- é£ç¶ãªç¶æ³ã«å¯¾ããè¿ä¼¼ã¨ãã¦ã®é¢æ£
ãæ³å®ãã¦ãã¾ããä»åã¯ã
- æåããé¢æ£ãªç¶æ³
ã§ãã
ãã¦ãã¾ã G = (V, E, T) ã«å¯¾ããçµã¿åããè¤ä½ï¼åä½è¤ä½ï¼K(G)ãå®ç¾©ãã¾ãããã以ä¸ãK = K(G) ã¨ç¥è¨ãã¾ããä¸è¬çã«ãåä½è¤ä½ã¨ã¯ä½ã§ããããã¯æ°ã«ããªãã¦ããã§ããæ¯è¼å¯è½æ§ã°ã©ãGããä½ã£ãKãåä½è¤ä½ãsimplicial complexãã¨å¼ã¶ãã¨ãããã¨ã ãç¥ã£ã¦ãã°ä»ã¯ååã§ã*1ãåä½è¤ä½Kã¯ãK0, K1, K2 ã¨ãã3ã¤ã®æééåããæ§æããã¾ãã
- K0 := V
- K1 := {(A, B)âVÃV | {A, B}âE}
- K2 := {(A, B, C)âVÃVÃV | {A, B, C}âT}
éåKkã®è¦ç´ ãk-ã»ã«ãk-cellãã¨å¼ã³ã¾ã*2ãk-ã»ã«ï¼k = 0, 1, 2ï¼ã¨ãé ç¹ï¼è¾ºï¼ç¡å辺ï¼ï¼ä¸è§å½¢ãåãæå³ã§ä½¿ãã¨ããå¤ãã®ã§ãããããã§ã¯åãæå³ã¨ã¯éãã¾ããã
- é ç¹Aã¨ã0-ã»ã«Aã¯åãæå³ã
- ç¡å辺{A, B}ã«å¯¾ãã¦ã2ã¤ã®1-ã»ã« (A, B), (B, A) ã対å¿ããã
- ä¸è§å½¢{A, B, C}ã«å¯¾ãã¦ã6ã¤ã®2-ã»ã« (A, B, C), (A, C, B), (B, A, C), (B, C, A), (C, A, B), (C, B, A) ã対å¿ããã
0-ã»ã«ã¯é ç¹ãã®ãã®ã1-ã»ã«ã¨2-ã»ã«ã¯è¾ºã»ä¸è§å½¢ã®é ç¹ã«é çªãä»ãããã®ã§ããé ç¹ã®é çªä»ããoerderingããéãã°ãå°å³å½¢ãunderlying shapeããåãã§ãéãã»ã«ã§ãã
Kkï¼k = 0, 1, 2ï¼ä¸ã®Rå¤é¢æ°ã§ã交代çãå対称ããªãã®ãèãã¾ãã交代çã¨ã¯æ¬¡ã®ãã¨ã§ãã
- f:K0âR ã交代ç :â ãªãã§ãããï¼ç¹ã«æ¡ä»¶ãªãï¼
- Ï:K1âR ã交代ç :â (A, B)âK1 ã«å¯¾ãã¦ãÏ(A, B) = -Ï(B, A) ãæç«ããã
- Ï:K2âR ã交代ç :â (A, B, C)âK2 ã«å¯¾ãã¦ã以ä¸ã®çå¼ãæç«ããã
- Ï(A, B, C) = Ï(A, B, C) ï¼èªæï¼
- Ï(A, C, B) = -Ï(A, B, C)
- Ï(B, A, C) = -Ï(A, B, C)
- Ï(B, C, A) = Ï(A, B, C)
- Ï(C, A, B) = Ï(A, B, C)
- Ï(C, B, A) = -Ï(A, B, C)
ç½®æã®ç¬¦å·ã¨ããæ¦å¿µã使ãã°ä¸è¬çãªå®ç¾©ãã§ãã¾ãããk = 0, 1, 2 ã ããªã®ã§ä¸è¬è«ã¯ä¸è¦ã§ãã
Ω0(K), Ω1(K), Ω2(K) ã次ã®ããã«å®ç¾©ãã¾ãã
- Ω0(K) := {f:K0âR | fã¯äº¤ä»£çï¼ç¹ã«æ¡ä»¶ãªãï¼}
- Ω1(K) := {Ï:K1âR | Ïã¯äº¤ä»£ç}
- Ω2(K) := {Ï:K2âR | Ïã¯äº¤ä»£ç}
Ωk(K) ï¼k = 0, 1, 2ï¼ã¯èªç¶ã«Rä¸ã®ãã¯ãã«ç©ºéã®æ§é ãæã¤ã®ã§ã以ä¸ããã¯ãã«ç©ºéã¨ãã¦æ±ãã¾ãããã¯ãã«ç©ºéΩk(K)ã®è¦ç´ ãk-ã³ãã§ã¼ã³ãk-cochainãã¾ãã¯k-å½¢å¼ãk-formãã¨å¼ã³ã¾ãããã®å¼ã³æ¹ã®èæ¯ãç¥ãããæ¹ã¯ï¼
- ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(1/2) // èæ¯ã®ãªããã·ï¼è¶ ã»æ¥ã足ï¼
- ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(2/2) // å¤æ§ä½ããç·å½¢ä»£æ°ã¸
å ·ä½çãªè¨ç®ãããããã«ããã¯ãã«ç©ºéã®åºåºãåºå®ãã¾ãããã®ããã«ãæ¯è¼å¯è½æ§ã°ã©ãGã®é ç¹éåVã«å ¨é åºãå ¥ãã¾ãããã®å ¨é åºã¯ãè¨ç®ã®é½åã®ããã«ä¾¿å®çã»äººçºçã«å ¥ãããã®ã§ãæ§é çã»å å¨çãªæå³ã¯ä½ããªããã¨ã«æ³¨æãã¦ãã ããã
V = (V, â¦) ã便å®çã»äººçºçã«å®ããå ¨é åºæ§é ã¨ãã¾ãããã®å ¨é åºæ§é ã®ãã¨ã§ï¼
- ä»»æã®0-ã»ã«Aããå¼·å調0-ã»ã«ã¨å¼ã¶
- A < B ã§ãã1-ã»ã«(A, B)ããå¼·å調1-ã»ã«ã¨å¼ã¶
- A < B < C ã§ãã2-ã»ã«(A, B, C)ããå¼·å調2-ã»ã«ã¨å¼ã¶
å¼·å調k-ã»ã«ãstrongly monotonic k-cellãï¼k = 0, 1, 2ï¼ã¯ãã»ã«ã {0, ..., k}âV ã¨ããå ¨é åºéåã®ããã ã®ååã¨èããã¨ãã«å¼·å調ï¼i < j ãªãã° f(i) < f(j)ï¼ãªãã¨ã§ããå¼·å調ãªk-ã»ã«ã«éå®ããã¨ï¼
- æ¯è¼å¯è½æ§ã°ã©ãGã®é ç¹ã¨ãåä½è¤ä½Kã®å¼·å調0-ã»ã«ã¯ã1ï¼1対å¿ããã
- æ¯è¼å¯è½æ§ã°ã©ãGã®è¾ºã¨ãåä½è¤ä½Kã®å¼·å調1-ã»ã«ã¯ã1ï¼1対å¿ããã
- æ¯è¼å¯è½æ§ã°ã©ãGã®ä¸è§å½¢ã¨ãåä½è¤ä½Kã®å¼·å調2-ã»ã«ã¯ã1ï¼1対å¿ããã
å¼·å調k-ã»ã«å ¨ä½ã®éåãK<kã¨ãã¾ããä»è¨ã£ããã¨ãããV $`\stackrel{\sim}{=}`$ K<0, E $`\stackrel{\sim}{=}`$ K<1, T $`\stackrel{\sim}{=}`$ K<2ã
ãã¯ãã«ç©ºéΩk(K) ï¼k = 0, 1, 2ï¼ã®åºåºããå¼·å調k-ã»ã«ã§ã¤ã³ããã¯ã¹ãã¦å®ç¾©ãã¾ããããå®ç¾©ã«ã¯åä»ãã©ã ãè¨æ³ï¼ã³ã³ãåç §ï¼ã使ãã¾ãã
AâK<0 ã«å¯¾ãã¦ã δA := λXâK0.(if (X = A) then 1 else 0) (A, B)âK<1 ã«å¯¾ãã¦ã δA,B := λ(X, Y)âK1.( if ((X, Y) = (A, B)) then 1 elseif ((X, Y) = (B, A)) then -1 else 0 ) (A, B, C)âK<2 ã«å¯¾ãã¦ã δA,B,C := λ(X, Y, Z)âK2.( if ( (X, Y, Z) = (A, B, C) or (X, Y, Z) = (B, C, A) or (X, Y, Z) = (C, A, B) ) then 1 elseif ( (X, Y, Z) = (A, C, B) or (X, Y, Z) = (B, A, C) or (X, Y, Z) = (C, B, A) ) then -1 else 0 )
ä»å®ç¾©ããδéã¯ãã¯ãããã«ã¼ã®ãã«ã¿ã¨ã¨ãã£ã³ãã³ã®ã¤ãã·ãã³ãæ··ãã¦ã«ãªã¼åãã*3ãããªãã®ã§ãããè¨å·ã¯ãã«ã¿ã使ãã¾ãããå¼·å調k-ã»ã«ã§ã¤ã³ããã¯ã¹ãããδéã¯ããã¯ãã«ç©ºéΩk(K) ï¼k = 0, 1, 2ï¼ã®åºåºã¨ãªãã®ã§ã次ã®ãããªè¡¨ç¤ºãå¯è½ã§ãã
$` f \,=\, \sum_{A\in K^{<}_0} f(A)\delta_{A}`$
$` \omega \,=\, \sum_{(A, B)\in K^{<}_1} \omega(A, B)\delta_{A,B}`$
$` {\bf \sigma} \,=\, \sum_{(A, B, C)\in K^{<}_2} {\bf \sigma}(A, B, C)\delta_{A,B,C}`$
ãããã¯ãA, B, CâV ã§ããã®ã¯äºè§£ããã¦ããã¨ãã¦ï¼
$` f \,=\, \sum_{A} f(A)\delta_{A}`$
$` \omega \,=\, \sum_{A < B} \omega(A, B)\delta_{A,B}`$
$` {\bf \sigma} \,=\, \sum_{A < B < C} {\bf \sigma}(A, B, C)\delta_{A,B,C}`$
è¡ããããä¸ãä»å®ç¾©ããΩk(K)ã®åºåºããã«ã¿åºåºãdelta basisãã¨å¼ã³ã¾ããããΩk(K)ã®ãã«ã¿åºåºã¯ãå¼·å調k-ã»ã«ã®éåK<kã§ã¤ã³ããã¯ã¹ããã¾ãããã«ã¿åºåºã®æ¦å¿µã¯ãæåã«äººçºçã«æ±ºããå ¨é åº (V, â¦) ã«ä¾åãã¾ãããé ç¹éåVã®å ¨é åºãåºå®ããä¸ã§ãæ¨æºçãcanonicalããªåºåºã¨è¨ãã¾ãã
ä»å¾ããã¯ãã«ç©ºéΩk(K) ï¼k = 0, 1, 2ï¼ã«é¢ããå ·ä½çè¨ç®ã¯ããã¹ã¦ãã«ã¿åºåºãç¨ãã¦è¡ãã¾ããè¨å·Î´ããã¯ãããã«ã¼ã®ãã«ã¿ã¨ã¯å°ãéããã¨ã«ã¯æ³¨æãã¦ãã ããã
ãã»ã©ã¼ã è¤ä½ã¨ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼
é¢æ£ã®å ´åã®ç¨èªæ³ãã©ããããæ©ãã®ã§ãããããã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(2/2) // å¤æ§ä½ããç·å½¢ä»£æ°ã¸ãã§æ±ºããç¨èªã使ããã¨ã«ãã¾ãã以ä¸ã«ç¨èªå¯¾å¿è¡¨ãåæ²ãã¾ããï¼ä»ãç¨èªã®æå³ãåãããªãã¦ããã¾ãã¾ãããï¼
é£ç¶ï¼å¤æ§ä½ï¼ã®å ´å | é¢æ£ï¼æ¯è¼å¯è½æ§ã°ã©ãï¼ã®å ´å |
---|---|
å¤æ§ä½ M | åä½è¤ä½ K |
ç¹ç°ãã§ã¼ã³ã®ç©ºé Ck(M) | çµã¿åãããã§ã¼ã³ã®ç©ºé Ck(K) |
å¾®åå½¢å¼ã®ç©ºé Ωk(M) | çµã¿åããã³ãã§ã¼ã³ã®ç©ºé Ωk(K) |
å¢çä½ç¨ç´ âk:Ck(M)âCk-1(M) | å¢çä½ç¨ç´ Bk:Ck(K)âCk-1(K) |
å¤å¾®åä½ç¨ç´ dk:Ωk(M)âΩk+1(M) | ä½å¢çä½ç¨ç´ Dk:Ωk(K)âΩk+1(K) |
ãã«ãã©ãä½ç¨ç´ δk:Ωk(M)âΩk-1(M) | ãã«ãã©ãä½ç¨ç´ Ak:Ωk(K)âΩk-1(K) |
ã©ãã©ã·ã¢ã³ Îk:Ωk(M)âΩk(M) | ã©ãã©ã·ã¢ã³ Lk:Ωk(K)âΩk(K) |
調åå½¢å¼ã®ç©ºé Îk(M) = Ker(Îk) | 調åã³ãã§ã¼ã³ã®ç©ºé Îk(K) = Ker(Lk) |
ãã ãããã©ã³ãã³ã°åé¡ãã«åºæãªè¨èãå義èªã¨ãã¦ä½µç¨ãã¾ãã
ã§ã¯ãä½å¢çä½ç¨ç´ ï¼å¤å¾®åä½ç¨ç´ ã«ç¸å½ï¼ãå®ç¾©ãã¾ããããD0:Ω0(K)âΩ1(K) 㨠D1:Ω1(K)âΩ2(K) ã次ã®ããã«å®ç¾©ãã¾ãã
- fâΩ0(K) ã«å¯¾ãã¦ã
(D0(f))(A, B) = f(B) - f(A)
D0(f)âΩ1(K) - ÏâΩ1(K) ã«å¯¾ãã¦ã
(D1(Ï))(A, B, C) = Ï(B, C) - Ï(A, C) + Ï(A, B)
D1(Ï)âΩ2(K)
D0(f), D1(Ï) ã交代çãå対称ãã§ãããã¨ã確èªããå¿ è¦ãããã¾ãï¼ãã£ã¦ãã ããï¼ãããã¦ã次ã®äºå®ã極ãã¦éè¦ã§ãã'$`\circ`$'ã¯ä½ç¨ç´ ã®çµåãåæãã'0'ã¯ã¼ãååã§ããçå¼ã¯ç°¡åã«ç¢ºèªã§ãã¾ããã
- D1$`\circ`$D0 = 0 : Ω0(K)âΩ2(K)
ä¸ã®çå¼ãããKer, Im ãç·å½¢ååã®æ ¸ç©ºéãå空éã¨ãã¦ã次ãæç«ãã¾ãã
- Im(D0) â Ker(D1)
D0ã¨D1ã«ã¼ãååãä»ãå ããç·å½¢ååã®å
- O -(ã¼ãåå)â Ω0(K) -(D0)â Ω1(K) -(D1)â Ω2(K) -(ã¼ãåå)âO
ããåä½è¤ä½Kã®ï¼ãããã¯æ¯è¼å¯è½æ§ã°ã©ãGã®ï¼ãã»ã©ã¼ã è¤ä½ãde Rham complexãã¨å¼ã³ã¾ã*4ãããã¦ããã»ã©ã¼ã è¤ä½ã® Ker/Im ãã¨ã£ã以ä¸ã®ãã¯ãã«ç©ºéã®åããåä½è¤ä½Kã®ï¼ãããã¯æ¯è¼å¯è½æ§ã°ã©ãGã®ï¼ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ãde Rham cohomologyãã¨å¼ã³ã¾ãã
- H0(K) := Ker(D0)/O $`\stackrel{\sim}{=}`$ Ker(D0)
- H1(K) := Ker(D1)/Im(D0)
- H2(K) := Ω2(K)/Im(D1)
ããããã®ãã¯ãã«ç©ºéHk(K)ãk次ã®ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ç©ºéãde Rham cohomology space of degree kãã¨ãããã³ãã¢ãã¸ã¼ç©ºéã®è¦ç´ ãã³ãã¢ãã¸ã¼ã»ã¯ã©ã¹ãcohomologyãã¨å¼ã³ã¾ãããã£ã¨ãã0次ã®ã³ãã¢ãã¸ã¼ã¯ã©ã¹ã¯ããã¨ã®ç©ºéΩ0(K)ã®è¦ç´ ã¨ã¿ãªããã®ã§ãã¯ã©ã¹ï¼åå¤é¡ï¼ã£ã½ããªãã§ããã
ãã©ã³ãã³ã°åé¡ãã®æèã§ã¯ãä»ã¾ã§åºã¦ããéåã»ç©ºéã®è¦ç´ ãã次ã®ããã«å¼ã³ã¾ãã
- AâK0 ï¼ é¸æè¢ãè©ä¾¡å¯¾è±¡
- (A, B)âK1 ï¼ æ¯è¼å¯è½ãã¢ãcomparable pair | pair-wise comparison dataãï¼æ¯è¼ãããäºè ï¼
- (A, B, C)âK2 ï¼ æ¯è¼å¯è½ããªãã«ãcomparable triple | triple-wise comparison dataãï¼A, B, C 3ã¤ã®è©ä¾¡å¯¾è±¡ã¨ã(B, C), (A, C), (A, B) ã®3ã¤ã®æ¯è¼å¯è½ãã¢ï¼
- fâΩ0(K) ï¼ ã¹ã³ã¢é¢æ°ãscore functionã
- ÏâΩ0(K) ï¼ ãã¢é¸å¥½å½¢å¼ãpair-wise preference formãï¼äºè éã§ãã©ã£ã¡ãé¸å¥½ãpreferããããã®å¤ï¼
- ÏâΩ0(K) ï¼ ããªãã«çç¾å½¢å¼ãtriple-wise inconsistency formãï¼ä¸è éã®æ¯è¼ã«çç¾ããããã©ããã示ãå¤ï¼
ããã¢ãããäºè ãã¾ãã¯ãäºè éãããããªãã«ãããä¸è ãã¾ãã¯ãä¸è éãã¨ãããã¾ããä¾ãã°ãäºè éé¸å¥½å½¢å¼ãä¸è éçç¾å½¢å¼ã¨ããè¨èã使ãã¾ãã
ãã»ã©ã¼ã è¤ä½ã®è§£é
æ¯è¼å¯è½æ§ã°ã©ãGããä½ãããåä½è¤ä½Kã«å¯¾ãã¦ããã»ã©ã¼ã è¤ä½ OâΩ0(K)âΩ1(K)âΩ2(K)âO ãå®ç¾©ã§ãã¾ããããã®ãã»ã©ã¼ã è¤ä½ãããã©ã³ãã³ã°åé¡ãã®è¦³ç¹ãã解éãã¦ã¿ã¾ãï¼è«¸ã ã®å¼ã³åã ãã¯åç¯æå¾ã§ç´¹ä»ãã¾ããï¼ã
æ¯è¼å¯è½æ§ã°ã©ãGã¯ãåé¡ã®å®å¼åã®å¹¾ä½çä¸é¨æ§é ãunderlying geometric spaceããä¸ãã¾ããGã®ãããã¸ã«ã«ãªæ§è³ªã¯ãåä½è¤ä½Kã«ãããã«ãã»ã©ã¼ã è¤ä½Î©k(K)ã«ã¨åæ ãããã®ã§ãGã®ãããã¸ã«ã«ãªæ§è³ªãåé¡å ¨ä½ãæ¯é ãããã¨ã«ãªãã¾ãã
ãã»ã©ã¼ã è¤ä½ã®0-å½¢å¼ã0-ã³ãã§ã¼ã³ãã¯ãé ç¹éåVä¸ã§å®ç¾©ãããå®æ°å¤é¢æ°ã§ããããé¸æè¢ãè©ä¾¡å¯¾è±¡ããï¼ç¸å¯¾æ¯è¼ã§ã¯ãªãã¦ï¼å¤§åçã«çµ¶å¯¾æ¯è¼ããçµæã§ããã¹ã³ã¢é¢æ°ã¨ãªãã¾ããã¹ã³ã¢é¢æ°fãããã°ã次ã®ããã«ãã¦Vä¸ã«ãã¬é åºï¼é åºã®å ¬çããå対称å¾ãåãé¤ããé¢ä¿ï¼ãå ¥ãã¾ãã
- A $` \preceq`$ B :â f(A) ⦠f(B)
左辺ã®'â¦'ã¯å®æ°ã®å¤§å°é åºã§ãããããã¦å®ç¾©ããããã¬é åº'$` \preceq`$'ã¯ã便å®çã»äººçºçã«å ¥ããVä¸ã®å ¨é åº'â¦'ã¨ã¯å¥ç©ã§ãä½ã®é¢ä¿ãããã¾ãããfãã決ã¾ãVä¸ã®ãã¬é åºããã¹ã³ã¢é¢æ°ã«ããé ä½ãrank | ã©ã³ã¯ãã§ãããã¬é åºãªã®ã§ãåé ä½ï¼ç²ä¹ã¤ããããï¼ãèªãã¾ãã
æã ãç¹ã«æ³¨ç®ããã®ã¯Î©1(K)ã®è¦ç´ ã1-å½¢å¼ã§ããæ¯è¼å¯è½ãªãã¢ï¼é åºå¯¾ï¼(A, B)ã«å¯¾ãã¦1-å½¢å¼ã¯ããAã«å¯¾ãã¦Bããã©ã®ããã好ã¾ããããã表ãé¸å¥½å¤ãpreference valueããå²ãå½ã¦ã¾ãããAã¨Bãæ¯ã¹ãã¨ããBãã©ã®ãããä½è¨ã«æ¨ãããã§ãããã®ã§æ¨ãå¤ã¨è¨ã£ã¦ãããããç¥ãã¾ããã
é¸å¥½å¤ã{-1, 0, 1}ã«éãã¨ãåç´ãªäºè æ¯è¼ï¼ç¨åº¦ã¯èããªãï¼ã«ãªãã¾ãããããã§ã¯ä»»æã®å®æ°å¤ã許ãã®ã§ãé¸å¥½ï¼æ¨ãï¼ã®ç¨åº¦ãå®éçã«è¡¨ç¾ã§ãã¾ããé¸å¥½å¤ã0ã«è¨å®ããã°ãç²ä¹ã¤ãããããã§ãããããã¯æ¯è¼ä¸è½ã¨ã¯éãã¾ããæ¯è¼ä¸è½ã¯Gã®ãããã¸ã«ã«ãªæ§è³ªã§ãé¸å¥½å¤0ã¯Gä¸ã®1-å½¢å¼ã®ç¹æ§ã§ãã
ä»è¿°ã¹ãäºæ ã«ããã1-å½¢å¼ãäºè éé¸å¥½å½¢å¼ãpair-wise preference formãããããã¯åã«é¸å¥½å½¢å¼ãpreference formãã¨å¼ã¶ããã§ãã
ã¹ã³ã¢é¢æ°fãããã¨ãããã«ä½å¢çä½ç¨ç´ D0ãä½ç¨ãããD0(f)ï¼ãã°ãã°Dfã¨ç¥è¨ãããï¼ã¯äºè éé¸å¥½å½¢å¼ã§ããæ¯è¼å¯è½ãã¢(A, B)ã«å¯¾ããé¸å¥½å¤ã¯ f(B) - f(A) ãªã®ã§ãã¹ã³ã¢ã®å·®åã§ããDfã®å½¢ã§ããé¸å¥½å½¢å¼ãããã¹ã³ã¢é¢æ°fãåç¾ã§ãã¾ãããã®ããã«ã¯ãæ¯è¼å¯è½æ§ã°ã©ãGä¸ã®ãã¹ã«æ²¿ã£ãâç·ç©åâï¼é¢æ£çãªãã®ãè¨ç®ã¯ç·åï¼ãæ±ããã°ããã®ã§ãã
ãã¯ãã«è§£æã¨ã®é¡ä¼¼æ§ããè¨ãã¨ãã¹ã³ã¢é¢æ°ã¯ããã³ã·ã£ã«ã«ç¸å½ãã¾ããããã³ã·ã£ã«ã®å¾é ãgradientãã¨ãã¦å¾ãããå ´ãããç·ç©åã«ãããå®æ°ã®å·®ãé¤ãã°ããã³ã·ã£ã«ãå復ã§ãã¾ããç©åå®æ°ã®åæ°ã¯ãä¸é¨æ§é ã§ããå¤æ§ä½ã®é£çµæåã®åæ°ã¨åãã§ãããæ¯è¼å¯è½æ§ã°ã©ãä¸ã®é¢æ£ç·ç©åã§ãåæ§ã§ãæ¯è¼å¯è½æ§ã°ã©ãGã®é£çµæåã®åæ°ã ãç©åå®æ°ãåºã¦ãã¾ããæ¯è¼å¯è½æ§ããã®åå¤é¢ä¿ã§ã°ã«ã¼ãåãããåã¸ã£ã³ã«ï¼åå¤é¡ï¼é£çµæåï¼ãã¨ã«ãç©åå®æ°ï¼ã¹ã³ã¢é¢æ°ã®åºæºã¼ãå¤ãä»»æã«é¸ã¹ã¾ã*5ã
ä»»æã®å¾®åå½¢å¼ï¼ãã¯ãã«å ´ãããã³ã·ã£ã«ã®å¾é ã¨ãã¦å¾ãããã¨ã¯éããªãã®ã¨åæ§ã«ãä»»æã®é¸å¥½å½¢å¼ãã¹ã³ã¢é¢æ°ã®å·®åã¨ãã¦å¾ãããã¨ã¯éãã¾ãããé¢æ£ç·ç©åããé¢æ°ãå¾ãããã¨ã¯éããªãã®ã§ãããã£ã¨ç²¾å¯ãªåæãå¿ è¦ã§ãããã®ããã«ãåæã®éå ·ãæºåãã¾ãããå ã«é²ãåã«ä¸éã¾ã¨ãï¼æ¬¡ç¯ï¼ã
ä¸éã®ã¾ã¨ãã¨å±æ
ä»ã¾ã§ã®ããããï¼ æã ã®åºçºç¹ã¯ãæéç¡ååç´ã°ã©ã G = (V, E) ã§ãããããã«ãä¸è§å½¢ã®éåTãæ·»ãã¦ãG = (V, E, T) ã¨ãã¦ã2次å ã®å¹¾ä½ç対象ã¨èãã¾ãããGï¼ãã©ã³ãã³ã°åé¡ãã®è¦³ç¹ããã¯æ¯è¼å¯è½æ§ã°ã©ãï¼ã¯ã2次å ã®å¤æ§ä½ã¨é¡ä¼¼æ§ãããã¨æå¾ ã§ãã¾ãã
å®éã2次å ã®ï¼ãªãããã§ã³ã³ãã¯ããªï¼å¤æ§ä½ã¨ä¸è§å½¢ãæ·»ããæéç¡ååç´ã°ã©ãã«ã¯å¼·ãé¡ä¼¼æ§ãããã¾ãããã©ã³ãã³ã°åé¡ãããããã¸ã»ã©ã³ã¯ãã®ç解ã®ããã«å¤æ§ä½ã«ã¤ãã¦ã®ç¥èã¯å¿ é ã§ã¯ããã¾ããããæ¢ã«ãåç¥ã®æ¹ã®ããã«ãå¤æ§ä½ï¼é£ç¶ã®å ´åã¨é¢æ£ã®å ´åã®å¯¾å¿é¢ä¿ã示ãã¾ãï¼ä¸ã®è¡¨ï¼ãä¸ã®è¡¨å ã§ãT(M) ã¯å¤æ§ä½Mã®æ¥ãã³ãã«ãVâ§W ã¯ãã¯ãã«ç©ºéVã¨Wã®å¤ç©ã§ãã
é¢æ£ã®å ´å | é£ç¶ã®å ´å |
---|---|
æéç¡ååç´ã°ã©ãï¼ä¸è§å½¢ G | 2次å ã³ã³ãã¯ãå¤æ§ä½ M |
Gã®é ç¹ AâV ï¼é ç¹ï¼0-ã»ã«ï¼ | Mã®ç¹ pâM |
Gã®1-ã»ã« (A, B)âVÃV | Mã®æ¥ãã¯ãã«ï¼ç·ç´ ï¼ XpâTp(M) |
Gã®2-ã»ã« (A, B, C)âVÃVÃV | Mã®é¢ç´ ï¼ç¡éå°ï¼ SpâTp(M)â§Tp(M) |
åä½è¤ä½ K = K(G) | - |
0-å½¢å¼ã®ç©ºé Ω0(K) | 0-å¾®åå½¢å¼ã®ç©ºé Ω0(M) |
1-å½¢å¼ã®ç©ºé Ω1(K) | 1-å¾®åå½¢å¼ã®ç©ºé Ω1(M) |
2-å½¢å¼ã®ç©ºé Ω1(K) | 2-å¾®åå½¢å¼ã®ç©ºé Ω2(M) |
ä½å¢çä½ç¨ç´ D0:Ω0(K)âΩ1(K) | å¤å¾®åä½ç¨ç´ d0:Ω0(M)âΩ1(M) |
ä½å¢çä½ç¨ç´ D1:Ω1(K)âΩ2(K) | å¤å¾®åä½ç¨ç´ d1:Ω1(M)âΩ2(M) |
ãã»ã©ã¼ã è¤ä½ Ωk(K)âΩk+1(K) | ãã»ã©ã¼ã è¤ä½ Ωk(M)âΩk+1(M) |
ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ Hk(K) | ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ Hk(M) |
2次å å¤æ§ä½Mãä¸è§å½¢åå²ããã°ãMããåä½è¤ä½ K(M) ãä½ãã¾ãããã°ã©ãGãå¤æ§ä½ã®è¿ä¼¼ã¨ããããã§ã¯ãªãã®ã§ãK(G) ââ K(M) ã®ãããªå¯¾å¿ã¯èããªããã¨ã«ãã¾ããã¤ã¾ããK = K(G) ã«ç´æ¥å¯¾å¿ããé£ç¶ãã¼ã¸ã§ã³ã¯ãªãã¨ãã¾ãã
G = (V, E, T) ã2次å ã®å¹¾ä½ç対象ã¨ã¿ãªããå³å½¢ï¼åä½è¤ä½Kã®å¹¾ä½å®ç¾ï¼ã¯ããã¾ãããããã2次å å¤æ§ä½ã¨ãªãã¨ã¯éãã¾ãããããããããã¦ãã¯å¤æ§ä½ãããªãã§ããä¸ã«æããé¡ä¼¼æ§ã¯ãk-å½¢å¼ï¼k-ã³ãã§ã¼ã³ã¨ãå¼ã¶ï¼ã®ãã¯ãã«ç©ºéΩk(-)ã¨ãã®ããã ã®ä½ç¨ç´ ï¼ç·å½¢ååï¼ã®ã¬ãã«ã§ããé¡èã§ããã¤ã¾ããæ½è±¡ç·å½¢ä»£æ°ã«æã¡è¾¼ãã§ãã¾ãã°ãã»ã¼åã代æ°çæ§é ãæã¡ã¾ãã
ãG = (V, E, T) ã¨2次å ã³ã³ãã¯ãå¤æ§ä½Mã®é¡ä¼¼æ§ãã¯æã ã®æå°åçï¼ã¢ã¤ãã£ã¢ã®æºæ³ï¼ã§ãããMä¸ã«ã¯ãªã¼ãã³è¨éãè¼ããå¤å¾®å解æãexterior differential calculusãï¼ãã¯ãã«è§£æãvector calculus ããã§ãã¦ãããã¸çè«ãHodge theoryããå±éã§ãã¾ãããããã®æ¦å¿µã®é¢æ£ãã¼ã¸ã§ã³ãä½ããã¨ã次ã®ç®æ¨ã«ãªãã¾ãã
å対空éããã§ã¼ã³ã¨é¢æ£ç©å
æ¯è¼å¯è½æ§ã°ã©ã G = (V, E, T) ã«ããã¦ãVã¯æééåã§ãããEâPow2(V) ãæéã§ãTâPow3(V) ãæéãK1âVÃV, K2âVÃVÃV ãæéã§ããcardãéåã®åºæ°ãã¨ãé¢æ°ã ã¨ãã¦ã
- dim(Ω0(K)) = card(V)
- dim(Ω1(K)) = card(K<1) = card(E)
- dim(Ω2(K)) = card(K<2) = card(T)
ãªã®ã§ãKã®ï¼Gã®ï¼ãã»ã©ã¼ã è¤ä½ã«åºç¾ãããã¯ãã«ç©ºéã¯ãã¹ã¦æé次å ã§ãããããã£ã¦ãæé次å å®æ°ä¿æ°ã®ç·å½¢ä»£æ°ãé©ç¨ã§ãã¾ãããããããå対空éãå対ãã¯ãã«ç©ºéãã®è°è«ãåºã¦ãã¾ããã次ã®è¨äºãå¤å°ã¯åèã«ãªãããã
- å対ãã¯ãã«ç©ºéãããå°ãç¥ã£ã¦ãããã»ããã¤ã¤ã«ã¢
- å対ãã¯ãã«ç©ºéããããããç¥ã£ã¦ãã°ã¤ã¤ã³ã¸ã£ãã¤
ãã¦ãã¾ããk-å½¢å¼ï¼k-ã³ãã§ã¼ã³ã¨ãããï¼ã®ç©ºéΩk(K)ã®å対空éãCk(K)ã¨æ¸ããCk(K)ã®è¦ç´ ãk-ãã§ã¼ã³ãk-chainãã¨å¼ã³ã¾ããkã¯ãã§ã¼ã³ã®æ¬¡å ãdimensionãã¾ãã¯æ¬¡æ°ãdegreeãã¨å¼ã³ã¾ããå次å ã®ãã§ã¼ã³ã次ã®ããã«è¡¨ããã¨ã«ãã¾ãã
- 0-ãã§ã¼ã³ ï¼ P, Q, R ï¼è±å大æåï¼
- 1-ãã§ã¼ã³ ï¼ a, b, c ï¼è±åå°æåï¼
- 2-ãã§ã¼ã³ ï¼ s, t, u ï¼è±åå°æå太åï¼
ãã¨ã®ç©ºéã¨å対空éã®ããã ã®æ¨æºãã¢ãªã³ã°ãcanonical pairingãï¼ãå対ãã¯ãã«ç©ºéããããããç¥ã£ã¦ãã°ã¤ã¤ã³ã¸ã£ã㤠// æ¨æºå対ãã¯ãã«ç©ºéãåç §ï¼ã¯ <-|->kï¼kã¯æ¬¡æ°ï¼ã¨æ¸ãã¾ããã¤ã¾ãï¼
- <P|f>0 = P(f) ï¼PâC0(K), fâΩ0(K)ï¼
- <a|Ï>1 = a(Ï) ï¼aâC1(K), ÏâΩ1(K)ï¼
- <s|Ï>2 = s(Ï)ï¼sâC2(K), ÏâΩ2(K)ï¼
ããã¦ãã<-|->k:Ck(K)ÃΩkâR ã®kã¯çç¥ãã¾ãã
æã ã®ã¹ãã¼ãªã¼ã§ã¯ãk-ã³ãã§ã¼ã³ã®ç©ºéΩk(K)ãå ã«å®ç¾©ããã®ã§ãk-ãã§ã¼ã³ã®ç©ºéCk(K)ãå対空éã¨ãã¦å®ç¾©ãã¾ãããããããCk(K)ãå ã«å®ç¾©ããã°ãΩk(K)ããã®å対空éã«ãªãã¾ãããã¨ã®æé次å ãã¯ãã«ç©ºéã¨ãã®å対空éã¯å¯¾çãªã®ã§ãã©ã£ã¡ãå ã§ã大ä¸å¤«ã§ããå·®å¥ããªãã§ãå ¬å¹³ãunbiasedãã«æ±ãã¾ãããã
k-ã³ãã§ã¼ã³ãk-å½¢å¼ãã®ç©ºéΩk(K)ã«ã¯ãæ¨æºçãªåºåºã§ãããã«ã¿åºåºãããã¾ããããã«ã¿åºåºã®å対åºåºã便å®ä¸ã¬ã³ãåºåºãgamma basisãã¨å¼ã³ã次ã®ããã«è¡¨ãã¾ãã
- γA ï¼ ãã«ã¿åºåºã¨ã®é¢ä¿ <γA|δX>0 = if (A = X) then 1 else 0
- γA,B ï¼ ãã«ã¿åºåºã¨ã®é¢ä¿ <γA,B|δX,Y>1 = if (A = X ã㤠B = Y) then 1 else 0
- γA,B,C ï¼ ãã«ã¿åºåºã¨ã®é¢ä¿ <γA,B,C|δX,Y,Z>2 = if (A = X ã㤠B = Y ã㤠C = Z) then 1 else 0
ã¬ã³ãåºåºããK<0, K<1, K<2 ã§ã¤ã³ããã¯ã¹ãããåºåºã§ããã¬ã³ãåºåºã«ããk-ãã§ã¼ã³ã®å±éã¯æ¬¡ã®ããã«ãªãã¾ãã
$` P \,=\, \sum_{A\in K^{<}_0} P_A\gamma_{A}`$
$` a \,=\, \sum_{(A, B)\in K^{<}_1} a_{A, B}\gamma_{A,B}`$
$` {\bf s} \,=\, \sum_{(A, B, C)\in K^{<}_2} {\bf s}_{A, B, C}\gamma_{A,B,C}`$
ã¬ã³ãåºåºã®è¦ç´ γA, γA,B, γA,B,C ããå¼·å調k-ã»ã« A, (A, B), (A, B, C) ã¨åä¸è¦ãã¦ãã¾ãã次ã®ããã«ãæ¸ãã¾ãã
$` P \,=\, \sum_{A\in K^{<}_0} P_A A`$
$` a \,=\, \sum_{(A, B)\in K^{<}_1} a_{A, B} (A, B)`$
$` {\bf s} \,=\, \sum_{(A, B, C)\in K^{<}_2} {\bf s}_{A, B, C} (A, B, C)`$
ãããã¯ãA, B, CâV ã§ããã®ã¯äºè§£ããã¦ããã¨ãã¦ï¼
$` P \,=\, \sum_{A} P_A A`$
$` a \,=\, \sum_{A < B} a_{A, B} (A, B)`$
$` {\bf s} \,=\, \sum_{A < B < C} {\bf s}_{A, B, C} (A, B, C)`$
ããèããã¨ãæ¨æºãã¢ãªã³ã°ã¯æ¬¡ã®ããã«å±éã§ãã¾ãã
$`\langle P \mid f \rangle \,=\, \langle \sum_{A} P_A A \mid f\rangle \,=\, \sum_{A} P_{A}f(A)`$
$`\langle a \mid \omega \rangle \,=\, \langle \sum_{A < B} a_{A,B} (A, B) \mid \omega \rangle \,=\, \sum_{A < B} a_{A,B}\omega(A, B)`$
$`\langle {\bf s} \mid {\bf \sigma} \rangle \,=\, \langle \sum_{A < B < C} {\bf s}_{A,B, C} (A, B, C) \mid {\bf \sigma} \rangle \,=\, \sum_{A < B < C} {\bf s}_{A,B,C}{\bf \sigma}(A, B, C)`$
è¨ç®ã®éä¸ã§ <A|f> = f(A) ãªã©ã¨ãã¦ãã¾ããããã¯é ç¹Aã¨é ç¹Aã«ãããæ±å¤ä½ç¨ãevaluationããåä¸è¦ãã¦ããããã§ãAï½â<A|-> ã¯ã²ã«ãã¡ã³ãå¤æã§ã -- 詳ããã¯ãå対ãã¯ãã«ç©ºéããããããç¥ã£ã¦ãã°ã¤ã¤ã³ã¸ã£ã㤠// äºéå対空éããåç §ã
ä»è¿°ã¹ãåä¸è¦ã®ãã¨ã§ãk-ãã§ã¼ã³ã¨ã¯ãk-ã»ã«ï¼é ç¹ãé ç¹ã®é åºãã¢ãé ç¹ã®é åºããªãã«ï¼ã®ç·å½¢çµåã ã¨è¨ãã¾ãã1次ã®æ¨æºãã¢ãªã³ã° <a|Ï>1 ã¯1-å½¢å¼ã®é¢æ£ç·ç©åã2次ã®æ¨æºãã¢ãªã³ã° <s|Ï>2 ã¯2-å½¢å¼ã®é¢æ£é¢ç©åãä¸ãã¾ãã
é¢æ£ç·ç©åï¼é¢ç©åã«é¢ãã¦ãã¹ãã¼ã¯ã¹ã®å®çã¨ãã¢ã³ã«ã¬ã®è£é¡ãæç«ãã¾ããå¢çä½ç¨ç´ Bk:Ck(K)âCk-1(K) ãã¬ã³ãåºåºã使ã£ã¦æ¬¡ã®ããã«å®ç¾©ãã¾ãã
- B2(γA,B,C) = γB,C - γA,C + γA,B
- B1(γA,B) = γB - γA
å®çã®è¨è¿°ã¯æ¬¡ã®ããã«ãªãã¾ãã
- ã¹ãã¼ã¯ã¹ã®å®ç 1-2次å ï¼ <B2s|Ï> = <s|D1Ï>
- ã¹ãã¼ã¯ã¹ã®å®ç 0-1次å ï¼ <B1a|f> = <a|D0f>
- ãã¢ã³ã«ã¬ã®è£é¡ï¼ åä¸ã®ä¸è§å½¢ {A, B, C} ã«é¢ãã¦ããã®ä¸è§å½¢ã ãããä½ã£ãåä½è¤ä½ãLã¨ããã¨ãLã®ãã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¯ãã¹ã¦ã®æ¬¡æ°ã§ã¼ã空éã«ãªããi.e. Hk(L) = O ï¼k = 0, 1, 2ï¼ã
å ç©ã¨éä¼´ç·å½¢åå
ä»ã¾ã§ãk-å½¢å¼ãk-ã³ãã§ã¼ã³ãã®ç©ºéΩk(K)ã«å ç©ã¯ããã¾ããã§ãããå ç©ãå ¥ãã¾ããããΩk(K)ã«å ç©ãå ¥ãããã¨ã¯ãé£ç¶ï¼å¤æ§ä½ï¼ã®å ´åã«ãªã¼ãã³è¨éãä¸ãããã¨ã«ç¸å½ãã¾ãã
ããã§ã¯ããã£ã¨ãç°¡åãªå½¢ã®å ç©ãèãã¾ããä¸çªåç´ãªå ç©ãæ¡ç¨ãã¦ããå®ç¨çã¢ãã«ã¨ãã¦åå使ãã¾ãã
$` (f|g)_0 \: :=\, \sum_{A \in K^{<}_0} f(A)g(A) `$
$` (\omega|\rho)_1 \: :=\, \sum_{(A, B) \in K^{<}_1} \omega(A, B)\rho(A, B) `$
$` ({\bf \sigma}|{\bf \tau})_2 \: :=\, \sum_{(A, B, C) \in K^{<}_2} {\bf \sigma}(A, B, C){\bf \tau}(A, B, C) `$
ãã®å ç©ã«ããããã«ã¿åºåºã¯æ£è¦ç´äº¤åºåºã«ãªãã¾ããéã®è¨ãæ¹ãããã°ããã«ã¿åºåºãæ£è¦ç´äº¤åºåºã«ããå ç©ãå ¥ããã®ã§ãã
æé次å ãã¯ãã«ç©ºéã«ããã¦ã¯ãå ç©ãå ¥ããã¨ãå ç©ãå ¥ãã空éã¨ãã®å対空éã®ããã ã®ç·å½¢ååãèªå°ããã¾ããä»ã®å ´åã次ã®ååãèªå°ããã¾ãã
- Ω0(K) $`\stackrel{\sim}{=}`$ C0(K)
- Ω1(K) $`\stackrel{\sim}{=}`$ C1(K)
- Ω2(K) $`\stackrel{\sim}{=}`$ C2(K)
ãã®ååãé常ã«åç´ã§ããã«ã¿åºåºã¨ã¬ã³ãåºåºã®1ï¼1対å¿ï¼ä¸ï¼ãç·å½¢æ¡å¼µãããã®ã§ãã
- δA ââ γA
- δA,B ââ γA,B
- δA,B,C ââ γA,B,C
ãã®ããã«ã¿ââã¬ã³ã 対å¿ãã¯ãåç´ã§èªç¶ãªããããã°ãã°Î©k(K)ã¨Ck(K)ãåºå¥ã§ããªããªãã¾ããããã¯è¯ãç¹ï¼è©±ãåç´ã«ãªãï¼ããããæªãç¹ï¼éããã®ãæ··åããï¼ãããã¾ããåºå¥ã¯ããªããããã»ã¨ãã©åãã ã¨èãã¾ãããã
ä¸è¬ã«ãå ç©ç©ºéã®ããã ã®ç·å½¢ååãããã¨ãéåãã®éä¼´ç·å½¢ååãä½ããã¨ãã§ãã¾ããΩk(K)éã«å ç©ãå ¥ãã°ããã»ã©ã¼ã è¤ä½ã®ä½å¢çä½ç¨ç´ Dk:Ωk(K)âΩk+1(K) ã®éä¼´ç·å½¢ååãå®ç¾©ã§ããã®ã§ããããã Ak:ΩkâΩk-1 ã¨ãã¾ãã次ã®ãããªæãã«ãªãã¾ãã
詳ããã¯ããã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(2/2) // å ç©ãã¯ãã«ç©ºéã¨éä¼´ç·å½¢ååããåç §ã
Ak:Ωk(K)âΩk-1(K) ã¯ãä½å¢çä½ç¨ç´ ã®éä¼´ç·å½¢ååãªã®ã§ããã®ã¾ãã¾éä¼´ä½å¢çä½ç¨ç´ ãadjoint coboundary operatorããã¾ãã¯ãã«ãã©ãä½ç¨ç´ ãBeltrami operatorãã¨å¼ã³ã¾ããä½å¢çä½ç¨ç´ ã®ç³»åã¨ãéä¼´ä½å¢çä½ç¨ç´ ã®ç³»åã®åæ¹åç³»åãåããΩk(K)éããããã§ã¯ãã»ã©ã¼ã ï¼ããã¸è¤ä½ãde Rham-Hodge complexãã¨å¼ã³ã¾ããããé常ãããããã»ã©ã¼ã è¤ä½ã¨å¼ãã§ãã¾ãã®ã§ãããéä¼´ç³»åãããã¨ããã¸çè«ï¼å¾è¿°ï¼ãæ§æã§ãã¾ãã
é¢æ£å¤è§£æï¼é¢æ£ãã¯ãã«è§£æ
ä»ã¾ã§ã®è©±ã¯ãåºæ¬çã«ã¯ç·å½¢ä»£æ°ã®è°è«ã§ããå³æ°ãªãã»è²æ°ãªãã¨ããå°è±¡ã¯ã¾ã¬ãããªãã§ãããããããå ã§ã¯ãK = K(G) ã®ãã»ã©ã¼ã ï¼ããã¸è¤ä½Î©k(K)ã«ãé¢æ£ç©ççãªæå³ä»ããä¸ãã¾ããç´æã«è¨´ããã«ã©ãã«ã»ã´ã£ã´ã£ãããªæåãå¾ããã¾ãã
å¤æ§ä½Mä¸ã®è§£æï¼å¾®ç©åï¼ããå¤å¾®å解æãexterior differential calculusãï¼ãã¯ãã«è§£æãvector calculusãã¨å¼ã³ã¾ããå¤å¾®å解æã¯å¾®åå½¢å¼ï¼ã®å ´ï¼ã®å¾®ç©åããã¯ãã«è§£æã¯ãã¯ãã«å ´ã®å¾®ç©åã§ããé¢æ£ã®å ´åã«ãå¾®åããä»ããã®ã¯ãããã«æµæãããã®ã§ããå¾®åå½¢å¼âå½¢å¼ããå¤å¾®å解æâå¤è§£æãã¨ãã¾ãã
ã¾ããé¢æ£ç©ºéã§ãã G = (V, E, T) ä¸ã®âãã¯ãã«å ´âãå®ç¾©ãã¾ããããGã¯ãæéç¡ååç´ã°ã©ãã ã£ãã®ã§ããã¨ãã¨åããdirection, orientationãã¯ãªããã¨ã«æ³¨æãã¦ãã ããããã¯ãã«å ´ãvector fieldãã¯ãGã«åãã¨å¤§ãããä¸ãã¾ãã
Gä¸ã®ãã¯ãã«å ´ã®å®ç¾©ããã¤ã³ãã©ã¼ãã«ã»å³å½¢çã«ä¸ãã¾ããGã®ç¡å辺 {A, B} ãã¨ã«ããã®åããdirectionããã次ã®ããããã²ã¨ã¤ãå®è¡ãã¦ä¸ãã¾ãã
- AããBã«åããç¢å° AâB ãæãã
- BããAã«åããç¢å° BâA ãæãã
- ç¢å°ãæããªãã
次ã«å¤§ãããmagnitudeããå²ãå½ã¦ã¾ãã
- AâB ã¾ã㯠BâA ã®ç¢å°ã«ã¯ãæ£ã®å®æ°ã大ããã¨ãã¦å²ãå½ã¦ãã
- ç¢å°ãæããªã£ã辺ã«ã¯ã大ãã0ãå²ãå½ã¦ãã
次ã®çµµã¯Gã¨Gä¸ã®ãã¯ãã«å ´ã®ä¾ã§ãã
Gä¸ã®ãã¯ãã«å ´ããã©ã¼ãã«ã«å®ç¾©ããã¨ã1-å½¢å¼ï¼1-ã³ãã§ã¼ã³ã¨ãããï¼ã®å®ç¾©ã¨åãã«ãªã£ã¦ãã¾ãã¾ãããã¯ãã«å ´ã¨ã¯ã1-å½¢å¼ã«å¯¾ããå¥ãªè¦æ¹ã§ãããã ããå¿ççï¼ã¡ã³ã¿ã«ï¼ã«ã¯å¥ç©ã¨æã£ã¦ããã»ããããããç¥ãã¾ããï¼é£ç¶ã®å ´åããã¯ãã«å ´ã¯1-å½¢å¼ã®å対ãªã®ã§ï¼ã
é£ç¶ï¼å¤æ§ä½ï¼ã®å ´åããã¯ãã«å ´ã¯å¤æ§ä½ä¸ã®æµããflowããèªå°ãã¾ãï¼ä¸ã®å³ï¼ããªã®ã§ããã¯ãã«å ´ã¨æµããå義èªã®ããã«æ±ãå ´åãããã¾ããé¢æ£ã®å ´åãããã¯ãã«å ´ã¨æµãã¯ãã»ã¼å義èªã¨ãã¦æ±ãã¾ãã
é¢æ£ç©ºéï¼ç¡åã°ã©ãä¸ã®æµãã¯ãé»æ°åè·¯ãelectric circuitãã液ä½ãã¤ã網ãliquid piping network/systemãã®ã¢ãã«ã¨èããã¨ããã§ãããããã¯ãã«å ´ã¯ãæµãã®é度ãå¢ãã表ãã¾ãã
é¢æ£1-å½¢å¼ãæµãã¨è§£éããå ´åãΩk(K)ã®è¦ç´ ã¯æ¬¡ã®ãããªç©çç解éãæã¡ã¾ãã
0-å½¢å¼ âΩ0(K) | ããã³ã·ã£ã« ã¾ã㯠湧ãåºãéï¼å¸ãè¾¼ã¿é |
1-å½¢å¼ âΩ1(K) | æµã |
2-å½¢å¼ âΩ2(K) | 渦æºããããã | ãããã |
ããã³ã·ã£ã«ã¯ãé»æ°åè·¯ãªãé»ä½ã§ãã液ä½ãã¤ã網ãªããé ç¹ã«ã¿ã³ã¯ãããã¨ãã¦ã¿ã³ã¯ã®æ°´éã¨ãä½ç½®ï¼é«åº¦ï¼ããªã湧ãåºãï¼å¸ãè¾¼ã¿ã®éã¯ãé ç¹ãå¤é¨ã¨å ¥åºåããã¦ããã¨ãã¦ãé ç¹ããï¼é»æµã液ä½ãï¼æ¹§ãåºãï¼å¸ãè¾¼ã¾ããéã§ãã渦æºãvortex sourceãã¯ãä¸è§å½¢ã®å é¨ã«ãã£ã¦ã渦ãå¼ãèµ·ããæºãã¿ãªãã¨ãã渦æºãããã¨ãä¸è§å½¢ã®å¨å²ã«å¾ªç°æµãcirculation flowããçºçãã¾ãã
é¢æ£è§£æã®4ã¤ã®ä½ç¨ç´
2次å ã®ãã»ã©ã¼ã ï¼ããã¸è¤ä½ã§ã¯ã4ã¤ã®ä½ç¨ç´ ï¼ç·å½¢ååï¼ãåºã¦ãã¾ãã
- D0:Ω0(K)âΩ1(K) 0次ä½å¢çä½ç¨ç´
- D1:Ω1(K)âΩ2(K) 1次ä½å¢çä½ç¨ç´
- A2:Ω2(K)âΩ1(K) 2次éä¼´ä½å¢çä½ç¨ç´
- A1:Ω1(K)âΩ0(K) 1次éä¼´ä½å¢çä½ç¨ç´
åç¯ã®ç©çç解éã念é ã«ããããã®ä½ç¨ç´ ã«å¥åãä¸ãã¾ãã
- grad = D0:Ω0(K)âΩ1(K)
- curl = D1:Ω1(K)âΩ2(K)
- circ = A2:Ω2(K)âΩ1(K)
- div = A1:Ω1(K)âΩ0(K)
gradãå¾é ãgradientããcurlãå転ãcurl | rotationããcircã循ç°ãcirculationããdivãçºæ£ãdivergenceãã¨å¼ã³ã¾ãããããã®è¨èã¯ã3次å ã®ï¼æ®éã®ï¼ãã¯ãã«è§£æã§ã馴æã¿ã§ãããã3次å ãã¯ãã«è§£æã§ã¯ãcurlã¨circã®åºå¥ããªãã®ã§ãããããã¯è¨ç®ä¸ã®å·®ããªãããã¨ãéãä½ç¨ç´ ãåä¸è¦ãã¦ããããã§ãï¼ãããªãï¼ã
gradã¨curlã®å ·ä½çãªè¡¨ç¤ºï¼å®ç¾©ï¼ã¯æ¢ã«ããã¾ãããcircã¨divãå ·ä½çã«è¡¨ç¤ºã§ãã¾ãããã®ããã«ãç¡åã°ã©ãä¸ã§ã®é£æ¥ç¹ãadjacent point/vertexãã¨ããæ¦å¿µã使ãã¾ãã
- AâV ã®é£æ¥ç¹ã¨ã¯ã{A, B}âE ã¨ãªãç¹B
- {A, B}âE ã®é£æ¥ç¹ã¨ã¯ã{A, B, C}âT ã¨ãªãç¹C
Aã®é£æ¥ç¹ã®å ¨ä½ï¼ãããªãéåï¼ãAdja(A)ã{A, B}ã®é£æ¥ç¹ã®å ¨ä½ãAdja(A, B)ã¨æ¸ããã¨ã«ãã¾ã*7ãé£æ¥ç¹ã使ã£ã¦ãcirc, div ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$` (circ \,{\bf \sigma})(A, B) \: :=\: \sum_{X\in Adja(A, B)} {\bf \sigma}(A, B, X)`$
$` (div \,\omega)(A) \: :=\: \sum_{X\in Adja(A)} \omega(A, X)`$
ãã®å ·ä½çå®ç¾©ã¨ãéä¼´ç·å½¢ååã¨ãã¦ã®å®ç¾©ãä¸è´ãããã¨ã¯è¨ç®ã§ç¢ºèªã§ãã¾ãããããã®å®ç¾©ã®ç´æçæå³ã¯æ¬¡ã®ã¨ããã§ãã
- (circ Ï)(A, B) ï¼ è¾º{A, B}ãå«ãä¸è§å½¢{A, B, X}ï¼ã®æ¸¦æºï¼ã«ãã循ç°æµã®ãAâBæ¹åã®æµéï¼å®æ°å¤ï¼ããXãåããã¦è¶³ãåãããéã
- (div Ω)(A) ï¼ è¾º{A, X}ã®ãAâXæ¹åã®æµéï¼å®æ°å¤ï¼ããXãåããã¦è¶³ãåãããéã
以ä¸ã§ã¯ã1-å½¢å¼ããã¯ãã«å ´ã®ãã¨ãâæµãâã¨è¡¨ç¾ããã®ã§æ°ãã¤ãã¦ãã ãããæ£ç¢ºã«è¨ãã°ã1-å½¢å¼ï¼ãã¯ãã«å ´ããèªå°ãããæµããã§ãã
- æµãÏããããã³ã·ã£ã«fã«ãã Ï = grad f = D0(f) ã¨æ¸ããã¨ããÏãå¾é æµãgradient flowãã¨å¼ã³ã¾ãã
- æµãÏããcurl Ï = D1(Ï) = 0 ã®ã¨ããç¡å転æµãirrotational flow | curl-free flowãã¨å¼ã³ã¾ãã
- æµãÏãã渦æºÏã«ãã Ï = circ Ï = A2(Ï) ã¨æ¸ããã¨ããÏã循ç°æµãcirculation flowãã¨å¼ã³ã¾ãã
- æµãÏããdiv Ï = A1(Ï) = 0 ã®ã¨ããç¡çºæ£æµãdivergence-free flowãã¨å¼ã³ã¾ãã
ç¡å転æµã¯ãæ¬ç°åä½ã乾貴士ã®ã·ã¥ã¼ãã»ãã¯ããã¯ã¿ãããªã®ã§ã渦ç¡ãæµãã¨ããè¨èã使ãã¾ããç¡çºæ£æµã¯ãå¤é¨ã¨ã®å ¥åºåï¼æµå ¥ã¨æµåºï¼ããªãã®ã§ãåºå ¥ãç¡ãæµãã¨ãè¨ããã¨ã«ãã¾ããã¾ããdiv Ï = 0 ã¯ç©çã®éå§ç¸®æ§æµä½ã®é£ç¶ã®æ¹ç¨å¼ï¼ä¿ååï¼ã«é¡ä¼¼ãªã®ã§ãÏãä¿åæµãconservative flowãã¨ãå¼ã³ã¾ãã
ãã»ã©ã¼ã è¤ä½ã®æ§è³ªã¨ã㦠Dk+1$`\circ`$Dk = 0 ãªã®ã§ã次ãæç«ãã¾ãã
- curl grad f = 0
å¾é æµ grad f ã®å転ãã¼ãã«ãªãã®ã§ãããã³ã·ã£ã«fã«ããå¾é æµã¯å¿ ã渦ç¡ãã§ãã
éä¼´ç·å½¢ååã«é¢ã㦠Ak-1$`\circ`$Ak = 0 ãæç«ããã®ã§ã
- div circ Ï = 0
循ç°æµ circ Ï ã®çºæ£ãã¼ãã«ãªãã®ã§ã渦æºÏã«ãã循ç°æµã¯å¿ ãåºå ¥ãç¡ãã®ä¿åæµã§ãã
次ã«è¿°ã¹ãããã¸å解ã¯ãå¾é æµãç¡å転æµï¼æ¸¦ç¡ãæµãï¼ã循ç°æµãç¡çºæ£æµï¼åºå ¥ãç¡ãæµãï¼ã®ããã ã®ããã£ã¨ç²¾å¯ãªé¢ä¿ãä¸ãã¾ãã
ããã¸å解
ãã»ã©ã¼ã ï¼ããã¸è¤ä½ã®ããã¸å解ãHodge decompsitionãã¨ã¯ãå次å ã®ã³ãã§ã¼ã³ç©ºéΩk(K)ã«å¯¾ãã¦ãç´äº¤ç´åå解ãä¸ãããã®ã§ãã主ããèå³ã¯ k = 1 ã®ã¨ãããΩ1(K) ã®å解ã§ã*8ããã¯ãã«ç©ºéΩ1(K)ã¯1-å½¢å¼ã1-ã³ãã§ã¼ã³ãã®ç©ºéã§ãããæ¢ã«è¿°ã¹ãããã«ãGä¸ã®ãã¯ãã«å ´ã®ç©ºéããããã¯Gä¸ã®æµãã®ç©ºéã¨ãã¿ãªãã¾ãã
ãã»ã©ã¼ã ï¼ããã¸è¤ä½ã®ãªãã§ãΩ1(K)ãä½åãçµåãã¨ããä½ç¨ç´ ã2ã¤ãΩ1(K)ãåãå§åãã¨ããä½ç¨ç´ ã2ã¤ããã¾ãã
- grad = D0 ï¼ Î©1(K)ãä½å
- circ = A2 ï¼ Î©1(K)ãä½å
- curl = D1 ï¼ Î©1(K)ãå
- div = A2 ï¼ Î©1(K)ãå
Ω1(K)ãä½åã¨ããä½ç¨ç´ ã§ã¯ãã®å空éããΩ1(K)ãåã¨ããä½ç¨ç´ ã§ã¯ãã®æ ¸ç©ºéãèããã¨ãΩ1(K)ã«4ã¤ã®é¨å空éãå®ç¾©ã§ãã¾ããããããã®é¨å空éã®è¦ç´ ã®å¼ã³åãè¨ãã¾ããï¼å¼ã³åã®æ´çã«ã¤ãã¦ã¯ãããã»ã©ã¼ã ã»ã³ãã¢ãã¸ã¼ã¨ããã¸å解ã®ãªã¢ã㣠(2/2) // å¤æ§ä½ããç·å½¢ä»£æ°ã¸ãåç §ãï¼
è¦ç´ | ä¸è¬çãªå¼ã³å | æµãã¢ãã«ã®å¼ã³å |
---|---|---|
Ωk(M)ã®è¦ç´ | 1-ã³ãã§ã¼ã³ | æµã |
Im(grad)ã®è¦ç´ | 1-ã³ãã¦ã³ã㪠| å¾é æµ |
Im(circ)ã®è¦ç´ | 1-éä¼´ã³ãã¦ã³ã㪠| 循ç°æµ |
Ker(curl)ã®è¦ç´ | 1-ã³ãµã¤ã¯ã« | ç¡å転æµï¼æ¸¦ç¡ãï¼ |
Ker(div)ã®è¦ç´ | 1-éä¼´ã³ãµã¤ã¯ã« | ç¡çºæ£æµï¼åºå ¥ããªãï¼ |
ãã¯ãã«ç©ºéΩ1(K)ã®é¨å空é Im(grad), Im(circ), Ker(curl), Ker(div) ã®é¢ä¿ã¯ã次ã®å³ã®ããã«ãªãã¾ãã
ãã®ãããªé¨å空éã®ç¸äºé¢ä¿ãæãã¦ãããã®ããããã¸ã®å®çã§ãããã»ã©ã¼ã ï¼ããã¸è¤ä½ã®å®ç¾©ããããå¾é æµã®ç©ºé â ç¡å転æµã®ç©ºéãã¨ã循ç°æµã®ç©ºé â ç¡çºæ£æµã®ç©ºéãã¯è¨ãã¾ããï¼åç¯ï¼ããããã«ï¼
- å¾é æµã®ç©ºéï¼Im(grad)ï¼ã¨ç¡çºæ£æµã®ç©ºéï¼Ker(div)ï¼ã¯ç´äº¤ãããããã®ç´åã¯Î©1(K)ã«ãªãã
- 循ç°æµã®ç©ºéï¼Im(circ)ï¼ã¨ç¡å転æµã®ç©ºéï¼Ker(curl)ï¼ã¯ç´äº¤ãããããã®ç´åã¯Î©1(K)ã«ãªãã
- ç¡å転æµã®ç©ºéï¼Ker(curl)ï¼ã¨ç¡çºæ£æµã®ç©ºéï¼Ker(div)ï¼ã®å ±éé¨åï¼Ker(culr)â©Ker(div)ï¼ã調åæµãharmonic flowãã®ç©ºéã¨å¼ã¶ï¼ããã¯å®ç¾©ï¼ã
- å¾é æµã®ç©ºéï¼Im(grad)ï¼ã¨å¾ªç°æµã®ç©ºéï¼Im(circ)ï¼ã¨èª¿åæµã®ç©ºéï¼Ker(culr)â©Ker(div)ï¼ã¯äºãã«ç´è¡ãããããã®ç´åã¯Î©1(K)ã«ãªãã
次ã®3ã¤ã®ç´äº¤ç´åå解ãããã¸å解ã§ãã
- Ω1(K) = Im(grad) $`\oplus`$⥠Ker(div)
- Ω1(K) = Im(circ) $`\oplus`$⥠Ker(curl)
- Ω1(K) = Im(grad) $`\oplus`$⥠Im(circ) $`\oplus`$⥠(Ker(curl)â©Ker(div))
ãã»ã©ã¼ã ï¼ããã¸è¤ä½ã®å¯¾ããããã¸å解å®çã¯ãç´ç²ã«ä»£æ°çã«è¨¼æã§ãã¾ãã次ãåç §ãã¦ãã ããã
調åæµã®ç©ºéã¯ãKer(curl)â©Ker(div) ã¨ãã¦å®ç¾©ãã¾ããããã©ãã©ã·ã¢ã³ï¼ã¨ããä½ç¨ç´ ï¼ã®æ ¸ç©ºéã¨ãã¦ãå®ç¾©ã§ãã¾ããããã«ã¤ãã¦ã¯ï¼
ããã¸å解ã®ã©ã³ãã³ã°åé¡ã¸ã®å¿ç¨ï¼è¦åºãã ãï¼
... TBD ...
*1:ããã§ç»å ´ããåä½è¤ä½ã¯ãã°ã©ãã®2-ã¯ãªã¼ã¯è¤ä½ã2-clique complexãã¨å¼ã°ãããã®ã§ãã
*2:k-åä½ã¨å¼ãã§ãããã®ã§ãããããã§ã®å®ç¾©ã§ã¯ãééåãªåä½ããèãã¦ãªãã®ã§ã»ã«ã¨å¼ã¶ãã¨ã«ãã¾ããã
*3:ãæ··ãã¦ã«ãªã¼åãã¯ãã©ãèãã¦ãæçã®ææ³ã
*4:Ω-1(K) := O = ã¼ã空éãΩ3(K) := OãD-1:Ω-1(K)âΩ0(K)ãD2:Ω2(K)âΩ3(K) ã¨å®ç¾©ããã¨ã次æ°ä»ãã®è¾»è¤ã¯åãã¾ããD-1ã®(-1)ã¯éååãããªãã¦ãåãªãçªå·ã§ããã¾ã¼ã次æ°ä»ãã®æ´åæ§ã¯æ°ã«ããã»ã©ã®ãã¨ã§ã¯ãªãã§ãããã
*5:ããã³ã·ã£ã«ã¯ãã¹ã«ã©ã¼ä½ã1次å ãã¯ãã«ç©ºéã«å¤ãã¨ãã¨ããããã1次å ã¢ãã£ã³ç©ºéã«å¤ãã¨ãã®ã§ãåç¹ã®é¸ã³æ¹ã¯èªç±ã§ãã
*6:ç»åï¼ https://en.wikipedia.org/wiki/Vector_field#/media/File:VectorField.svg ãã
*7:Adjã§ãªãAdjaã¨ããã®ã¯ãadjointãadjunctionã¨èª¤è§£ãããªãããã«ã§ãã
*8:k = 1 ã®ããã¸å解ããã«ã ãã«ãå解ãHelmholtz decompositionãã¨ãå¼ã³ã¾ãã