ããã¨ãºã¨ã¹ãã¤ã®ãã¼ãã¿ã¹ãã¼ã³è«æã¨ç¾ä»£ã®ãã¨ãã°ãªããã§ç´¹ä»ãããã¼ãã¿ã¹ãã¼ã³è«æã§ã¯ãçµµå³ã»çµµç®ï¼pictorial calculationï¼ã使ããã¦ãã¾ããããã»ã©å¤ãã£ãæãæ¹ã§ã¯ãªãã®ã§ãããçãéï¼claspï¼ã¨ããå°ç©ãé¢ç½ãã®ã§ç´¹ä»ãã¦ããã¾ãã
å 容ï¼
è¦ç´ã»ã¢ãã¤ãéå
é常ã«ãããã£ã±ã«ãã¢ãã¤ãéåã®ããããããã¦ããã¾ãã
é常ã®ã¢ãã¤ãã¨ããä¼¼ãç©ï¼monoidal productï¼ãæã¤åãã¢ãã¤ãåï¼monoidal categoryï¼ã§ãããã«ã«ãç©ï¼cartesian productï¼ãã¤ã¾ãç´ç©ãæã¤åã¯ã¢ãã¤ãåã®ä¾ã§ãï¼ããã«ã«ãåå ¥éããåç §ï¼ãéååSetã¯ãã«ã«ãåã®ä¾ã§ããããã¡ããã¢ãã¤ãåã®ä¾ã§ãããã¾ãã
ã¢ãã¤ãç©ï¼ãã«ã«ãç©ã¨ã¯éããªãï¼ããÃãã§è¡¨ãã¨ãã¾ãã対象Bã«ããã¢ãã¤ãç© (-)ÃA ã«éä¼´ãããã¨ãããããAã«ããææ°ï¼exponent, exponential objectï¼ã¨å¼ã³ãæ®éã¯(-)A ã¨æ¸ãã¾ãï¼(-)ã¯å¯¾è±¡ã表ãç¡åå¤æ°ã§ãï¼ãBAããç¢å°ã使ã£ã¦ (AâB) ã¨æ¸ããã¨ãããã¾ãããç¢å°ã¯ä»ã®æå³ã§å¤ç¨ãããã®ã§ããã®è¨æ³ã¯æ··ä¹±ããã¡ã§ããæ®éã®ç¢å°ãâãã«ä»£ãã¦ãå ããã«ã«ãªã£ãã--oãã®ãããªå½¢ã使ããã¨ãããã¾ããã¤ã¾ããBA = (A --o B)
ã¢ãã¤ãåCã®ã©ããªå¯¾è±¡Aã«å¯¾ãã¦ããã®ææ°(-)Aãåå¨ãããªããææ°æ¼ç®ï¼exponentiationï¼ãå®ç¾©å¯è½ã§ããææ°æ¼ç®ãæã¤ã¢ãã¤ãåãã¢ãã¤ãéåï¼monoidal colosed categoryï¼ãã¾ãã¯åã«éåï¼closed categoryï¼ã¨å¼ã³ã¾ãã
ä¸è¬çãªæ¦å¿µ | ç¹æ®åãããæ¦å¿µ | å ¸åçãªå ·ä½ä¾ |
---|---|---|
ã¢ãã¤ãç© | ãã«ã«ãç©ï¼ç´ç©ï¼ | éåã®ç´ç© |
ã¢ãã¤ãå | ãã«ã«ãå | ç´ç©ãèããéåå |
ææ° | ãã«ã«ãææ° | é¢æ°éå |
ã¢ãã¤ãéå | ãã«ã«ãéå | é¢æ°éåãèããéåå |
ææ°ã¨éåã«é¢ãã¦ã¯æ¬¡ã®ã¨ã³ããªã¼ã§ãæ¸ãã¦ãã¾ãã
- åè«çææ°ã®å¨è¾ºï¼ã©ã ãè¨ç®ããã«ã«ãéåããã¤ãã³åã³ã³ãã¥ã¼ã¿
- åè«çææ°ã®å®ç¾©
- ã¢ãã¤ãåãè±é¥åãéåã¨å é¨ãã
ãªãã³ã´å³
ãã¨ãºï¼ã¹ãã¤ã®å³å¼æ³ã¯ãåºæ¬çã«ã¯ç®±ã¨ç·ï¼boxes and wiresï¼ã使ããã®ã§ãï¼ããã«ã«ãéåã«ããããçµµæãè¨ç®ã®åºç¤ããåç §ï¼ããã ããç®±ãåè§ã§ã¯ãªãã¦ä¸¸å°ã«ãªã£ã¦ãã¾ããf:AâB, g:BâC, h:DâE ã¨ãã¦ãf;g 㨠fÃh ã¯æ¬¡ã®ãããªæãã§ãã
ãã¤ã¦åãä¸ã®ãããªçµµãæãã¦ãããã次ç·ãå¯ã£ã¦ãã¦ããã¼ããªãã³ã´ã ãã¨ãããªãã³ã´ããã¦ä½ãã¦ãã®ï¼ãã¨èãããã®ã§ãè¨ç®ãã¨çããã¨ãããªãã³ã´ãå ¨é¨ã§ä½åãããè¨ç®ãããã§ããã足ãç®ããã°ããã ããã¨æãã¦ããã¾ããããã以æ¥ããã¨ãºï¼ã¹ãã¤æµã®æãæ¹ãåã¯ãªãã³ã´å³ã¨å¼ãã§ãã¾ã :-)
ææ°ã¨çãé
以ä¸ãææ°ã«ã¯è¨å·ã--oãã使ãã¾ãï¼çç±ãããã¾ãï¼ããä¸ãèªãã°åããã¾ãï¼ã
ãªãã³ã´å³ã«ã¯ãçãéï¼claspï¼ã¨ããå°ç©ãç»å ´ãã¾ããC(AÃB, C) ï¼ C(B, (A --o C)) ï¼ããã®ï¼ã¯ååï¼ãéä¼´ãä¸ããã¨ãã¦ãf:AÃBâC ã«å¯¾ããã«ãªã¼å f^:Bâ(A --o C) ã次ã®ããã«æãã¾ã*1ã
Aã®ã¯ã¤ã¤ã¼ï¼åããéã«ãªãã¾ãï¼ã¨Cã®ã¯ã¤ã¤ã¼ãæãã¦ããå°ç©ãçãéã§ãããã®å³å¼æ³ã®ãã½ã¯ã(A --o C) ã¨ããè¨æ³ã¨çµµå³ãä¸è´ãããã¨ã§ãã
ããã«é¢ç½ãã®ã¯ãC(AÃB, C) ï¼ C(A, (C o-- B)) ã¨ããè¨æ³ãå°å ¥ãã¦ãå·¦å³ãéã«ãªã£ãçãéãå°å ¥ã§ãããã¨ã§ããå·¦å³å¯¾ç§°ãªè¨å·ã--oãã¨ão--ãããçµµå³ã®ããã¨ä¸è´ãã¾ãã
å¤ãã®ã±ã¼ã¹ã§ã¯ã--oãã ãã§ååãªã®ã§ãããã¢ãã¤ãç©Ããã¾ã£ããå¯æã§ã¯ãªããã¨ãããã¾ãããã¾ã£ããå¯æã§ã¯ãªããã¨ã¯ã対称æ§é ï¼å¯¾ç§°æ§ï¼symmetryï¼ãçµã¿ç´æ§é ï¼ãã¬ã¤ãã£ã³ã°ï¼braidingï¼ãå°å ¥ã§ããªãã¨ãã§ãããã®ãã¾ã£ããå¯æã§ã¯ãªããã±ã¼ã¹ã§ã¯ã(A --o C) 㨠(C o-- A) ã¯å¥ç©ã¨ãã¦æ±ãå¿ è¦ãããã¾ãã
å·¦ææ°ãå³ææ°ãæ± è¢
å·¦ããã®æãç® AÃ(-) ã®éä¼´ã A --o (-) ãå³ããã®æãç® (-)ÃA ã®éä¼´ã (-) o-- A ã¨ãããã¨ã«ãªãã¾ããA --o (-) ã (-)A ã®æå³ã ã¨ãããªãã(-) o-- A 㯠A(-) ã¨ã§ãæ¸ããã¨ã«ãªãã§ãããã
å·¦ããã®æãç®ã¨å³ããã®æãç®ãå¥ç©ã§ããåã§ã¯ãå·¦ææ°ã¨å³ææ°ãå¿ è¦ã«ãªãã¾ãã(A --o (-)) = (-)A ãå·¦ææ°ã((-) o-- A) = A(-) ãå³ææ°ã§ããå·¦ææ°ãå³è©ææ°ã§ãå³ææ°ãå·¦è©ææ°ã£ã¦ãã¨ã«ãªãã¾ãããªãã¦ç´ãããããã ï¼ ã§ãåä¾ã¯ããã¾ããæ± è¢é§ ãæ±å£ã«è¥¿æ¦ç·ã西å£ã«æ±æ¦ç·ã§ãã
*1:ãã®å³ã®ç»åãã¡ã¤ã«åã¯ãªãã³ã´ã«ã¬ã¼ï¼odango-curry.gifï¼ã§ãã